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On the equilibrium theory of second grade fluids ( *) 

M. VIANELLO (MILANO) 

THE CLASSICAL theory of fluids is not sufficiently general to include phenomena such as capilla6 
rity and phase transitions. For this reason, among many, fluids of second grade were introduced; 
such a fluid is defined by a constitutive equation in which the stored energy depends not only 
on the density, but also on the density gradient. In this note we use the principle of virtual work 
to develop a consistent set of field equations and boundary conditions for such fluids. The 
theory shows the presence of surface tensions on the external boundary and gives a physically 
acceptable interpretation of the "hypertraction". 

Klasyczna teoria cieczy nie jest dostatecznie og61na na to, by objqc tak.ie zjawiska jak wlosko
watosc lub przejscia fazowe; byl to jeden z powod6w wprowadzenia cieczy drugiego rz<cdu: 
ciecze te opisane sq r6wnaniami konstytutywnymi w kt6rych zmagazynowana energia zalezy nie 
tylko od g<cstosci, ale i od jej gradientu. W pracy wykorzystuje si<c zasad<c prac wirtualnych dla 
zbudowania sp6jnego ukladu r6wnan pola i warunk6w brzegowych dla takich cieczy. Teoria 
pozwala wykazac istnienie napi<cc powierzchniowych na granicy zewn~trznej cieczy i podac 
fizycznie uzasadnionq interpretacj~ "hiperprzyciqgania". 

IViaccnqeci<aH TCOpHH >KI{Z:J;I<OCTCM He HBJIHeTCH ~OCTaTOl.JHO o6ll(eM, 'lT06bi omJ:CaTb Tai<.He 
HBJieHHH I<ai< I<anHJIJIHpHOCTb .HJI.H cpa30BbiC nepeXO~hl; 3TO O~a 11'3 np.H'l.HH BBe~eH.HH >K.H~
I<OCT.H BToporo nopH~I<a: 3TH' >K.H~I<OCTH OflHCaHbl onpe~eJIHIOm.HM.H ypaBHCH.HHM.H, B I<OTO
pbiX Hai<onJieHHaH 3Hepr.HH 3aBHC.HT He TOJibi<O OT DJIOTHOCT.H, HO HOT ee rpa~.HCHTa. B pa6oTe 
lfCDOJib3YCTCH npHHQ.Hfl B.HpTyaJibHblX pa6oT ~JIH DOCTpoeH.HH CBH3HOM C.HCTeMhl ypaBHCH.HM 
noJIH .11 rpaH.Hl.IHhiX ycnoB.HM ~JIH Tai<.HX >K~I<OCTeii. TeopHH no3BOJIHCT noi<a3aTb cymecTBO
BaHHe flOBCpXHOCTHhiX HanpH>KCHHM Ha BHCiliHCM rpaHHQe >K.H~I<OCTH If np.HBCCT.H cp.H3.Hl.JCCI<.H 
o60CHOBaHHYJO .HHTepnpeTaQ.HIO , ,rHDepnp.HTH>KCH.HH''. 

1. Second-grade fluids. Virtual work 

IT IS THE PURPOSE of this note to develop a consistent set field equations and boundary 
conditions for the equilibrium of second-grade fluids; that is, fluids whose stored energy W, 
per unit mass, is a function of the density e and its spatial gradient, grad '2· 

Constitutive equations involving density gradients go back to the work of KoRTEWEG 
[1], and, more recently, to the work of CAHN and HILlARD [2], FIXMAN [3] and FELDER
HOF [4] (Cf. ROWLINSON [5], DAVIS and SCRIVEN [6] and DUNN and SERRIN [7] for selected 
references). 

Since W is necessarily isotropic, this functional relationship may be written in the form 

W(e, M), 

Following TouPIN [8, 9], we use the principle of virtual work (PVW) to deduce the under
lying equations and boundary conditions. Many, but not all, of our results are simply 

(*) This work was supported in part by the Army Research Office (USA) when the author was a Ph.D, 
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specializations of equations of Toupin. However, our derivation, which utilizes a spatial 
(Eulerian) version of PVW, is, for fluids, simpler and more transparent than the deriva
tion of Toupin, which utilizes the material (Lagrangian) description. 

More interestingly, our results lead to the deduction of boundary conditions containing 
a term which can be naturally interpreted as a surface tension. This should be compared 
with other attempts of using second grade fluids for the description of capillarity phenomena 
[10, 11]. 

We assume that there are no other forms of energy; then, for any configuration " 
of the fluid, the total energy E" is given by 

(I) E" = j eW(e, M) 

with e = e". Of course, the density in any two configurations is related through conser
vation of mass. 

Here and in what follows we tacitly assume that all integrals over "(PJ) are taken 
with respect to the ordinary volume measure in the three-dimensional Euclidean space, 
while all integrals over o"(f?l) are taken with respec to tthe induced surface measure. More
over, for simplicity of notation, we shall frequently write " and a" for "(PJ) and o"( PJ). 

To formulate the principle of virtual work (cf., e.g., TRUESDELL and TouPIN [12]), we 
make use of the fact that the family of configurations of PJ has the structure of a smooth 
manifold (cf., e.g., [13]) and use the term virtual displacement u from " for an element 
of the tangent space at "· For any such u we define the total variation of E, written ~Eiu), 
as the derivative of E at " in the direction u. Here we assume that, for every configuration 
"(PJ), o"(PJ) is a smooth closed surface. This is crucial to the derivation of Eq. (5) and, 
for simplicity, we take o"(/11) to be of class C XJ . We comment later on this restriction. 

For future use we note that, for all practical considerations, we can simply think of u 

as a c oo "velocity" field on "(PJ), and, for any quantity 'If~<• we can compute ~'If" as the 
material rate of change of 'If" corresponding to u. 

The PVW postulates the body to be in equilibrium in the configuration " if and only 
if ~E"(u) is equal to the total work Liu) exerted over f1l by the external forces. We assume 
that this work has the form 

(2) L"(u) = J b" · u + J t" · u + J b" · Du, 
" 01( 01< 

where the physical interpretation of the first two terms is classical: b" is the body force 
per unit mass; t" is the surface traction in the configuration "· The remaining term, with D 
the normal derivative on o"(PJ), expresses the possibility of higher-order interactions on 
the boundary through the introduction of a "hypertraction" b". 

Denoting by "Y" the class of virtual displacements from "(fJl) and using the principle 
of virtual work, together with the definitions (1) and (2), we say that the body is in equi
librium in the configuration " if and only if 

(PVW) 

REMARK. DuNN and SERRIN [7] have given a complete thermodynamical theory of 
second grade materials. Their theory masterfully bypasses the well-known obstacle, the 

http://rcin.org.pl



ON THE EQUILIBRIUM THEORY OF SECOND GRADE FLUIDS 643 

incompatibility (cf. CoLEMAN and MIZEL [14], GURTIN [15]) between the laws of thermo
dynamics and the dependence of the stress tensor on higher deformation gradients, by 
introducing an additional term, the "interstitial working", into the clyssical ver
sion of the first law. As one would expect, our results are in some sense related to those of 
Dunn and Serrin, even if boundary conditions show a meaningful difference. 

2. Consequences of the principle of virtual work 

We first introduce terminology and establish some preliminary identities (cf., e.g., [16]). 
We write grad and div for the usual gradient and divergence in R 3

• We choose a configu
ration x and hold it fixed; for the surface ox(§.~), n is the outward unit normal, H the mean 
curvature, D the normal derivative, V s the surface gradient, and div s the surface diver
gence. Then, for any vector field u on x(§.B) and any scalar field ). on 8x(24), 

(3) 

(4) 

on ox(PJ), and 

(5) 

div sO = divu-Du · n, 

div s(J.u) = J.div sU + V s}. • U 

J div su = - 2 J Hu · n. 
o~< 0)( 

Moreover, denoting by I the identity tensor on the tangent space of 8x(.?4) we have 

(6) 

We list three identities, easily verifiable using the divergence theorem m which ¢, 
u and d are functions defined on x(§.B): 

J cf>divu = J cf>u • n- J grad¢· u, 
)( 0)( 

(7) J cf>(gradu)d·d = J cf>(d®d)n · u- J div(cf>d®d) · u, 
" a" " 

J cf>d · graddivu = J cf>(divu)d · n- J (divu)div(cf>d). 
~ 0)( )( 

We may use conservation of mass to derive the relations 

~eiu) = -e)(divu, 

(8) ~(grade")(u) = - (gradu)T grade"- (diVU)gradg"- (J"graddiVU. 

Analogously, for 

we have 

~eiu) = J [~1p,lu)+1p,divsu]. 
OH 
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For the remainder of the paper we shall systematically omit the subscript " for !J, b, 
t, h and other related quantities; besides, we shall repeatedly use the notation 

d:= grade 

(so that M : = d · d). Also, partial derivatives with respect to e or M will be denoted by 
subscripts : 

( M) - OVJ(e, M) 
Vle e, - oe ' '" (n M) = OVJ(e' M) 

rM I::' oM . 

Our next step is to express the variation of the energy 

E = j QW(e, M). 
X 

To do so we need oM, which is easily derived from Eq. (8)2 : 

(9) oM(u) = -2(gradu)d · d-2Mdivu-2Qd · graddivu. 

Clearly 

oE = J eoW(e, M) = J (eWeoe+eWMoM). 
X X 

(Here and in what follows we will often omit the argument u). Substitution from Eqs. (8) 1 

and (9) yields 

OE = J [We(-e2divu)-2eWM(gtadu)d · d-2eWM(divu)d · d-2e2 WMd · graddivu], 
X 

and, if we apply Eqs. (7) in the obvious way, we arrive at 

(10) DE= .r [grad(e 2 We+2eWMM)+div(2eWMd®d] · u 

- J [e 2 Wen+2eWM(d®d)n+2eWMMn] · u 
ox 

J 2e 2 W M(divu)d · n + J (divu)div(2e2 W Md). 
OX X 

Use of Eq. (7) 1 yields the equality 

(II) J (divu)div(2e2 W M d) = J div(2e2 W Md)u · n- J grad( div(2e 2 W M d))· u. 
X OK K 

Defining 

(12) 

Equations (3), (4) and (5) yield 

(13) J2e2 WM(d·n)divu = j2J.Hn·u+ JvsJ.·u- J J.Du·n. 
OK OH OK OH 

With the definition 

http://rcin.org.pl



ON THE EQUILIBRIUM THEORY OF SECOND GRADE FLUIDS 645 

and by Eqs. (11) and (13), Eqs. (10) becomes 

(14) bE= [ div[e2 Wel+cMI-div(ecd)l+cd®d] · u 

- J [e2 Wel+cMI-div(ecd)l+cd®d]n · u+(2AHn+ VsA) · u + J AD· Du, 
OK OK 

where I is the identity tensor in the Euclidean space R 3
• The expression (14) suggests the 

introduction of a tensor T defined as 

(15) 

so that, finally, 

(16) (j£(u) = J ( -divT) · u+ J (TD-2),Hn-VsA) · u+ J AD· Du. 
Y. (J,c OH 

We now state a useful result: 
LEMMA. Let a and b, c be smooth vector fields defined, respectively, on x(86') and on 

8x(PA). 
Assume that 

(L) [ a . u + r (b . u + c . Du) = 0 'v'u E "f/ K; 
Y. c:'~< 

then 

a= b = c = 0. 

This Lemma can be derived using classical techniques of calculus of variations: for 
the sake of completeness we give a formal proof in the Appendix. 

It is important to point out that this result provides a rationale for choosing the form 
of the external work as given by Eq. (2): indeed, the Lemma is sometimes loosely stated 
saying that "the fields u and Du are independent over ox(86)" (cf., e.g., [8, 17, 18]). 

The physical idea underlying this requirement is in fact that the virtual work should be 
independently exerted by b, t and h. 

Combining Eq. (16) with PVW and using the Lemma, we obtain that: 
The body is in equilibrium in the configuration x if and only if the following set of equations 

is satisfied: 

( 17) I 
in x(86') 

on ox(86') 

divT+b = 0, 

{ 
TD-2HAD- VsA = t, 

AD =b. 

It is natural to think ofT, defined in Eq. (14), as the stress tensor: we note that T is 
symmetric and that its role in Eq. (17) 1 is classical. In view of this result we feel that some 
considerations contained in DUNN and SERRIN [7, p. 106] may require appropriate modi
fications. 

The boundary condition ( 17h , which contains an interesting dependence on the mean 
curvature H, by use of Eq. (6) may be rewritten as 

divs(AI)+t-Tn = 0. 
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Comparison with boundary conditions for bodies with surface stresses [16, pp. 304-306] 

suggests at once the possibility of interpreting A as a surface tension. This observation, 
together with Eq. (17h gives an interesting "physical" meaning to the hypertraction vec
tor h. Of course, at this stage, this interpretation is rather formal but, nevertheless, we 
believe it to be of some interest. 

We may consider the scalar appearing in the first part of Eq. (15) as a "generalized" 
pressure: 

T = -pl-cd@d. 

Then 

p = e2 We-eceM-ecL1e-2ecMgrad 2 e · d®d 

(where ;1 is the Laplacian and grad2 is the second gradient), so that T has exactly the form 
found by DuNN and SERRIN [7, p. 104] provided we identify W with their Helmholtz 
free energy. On the other hand, they have only classical boundary conditions (i.e., To = t), 
which, in our scheme, represent the special case obtained assuming 

(18) h = 0, 

on ox(&~). Also, it is important to point out that Eq. (18) together with Eqs. (17) 3 and (12) 

imply 

De = 0 on ax(PA), 

a boundary condition not apparent from the work of DUNN and SERRC'-l [7]. 
The removal of the restriction placed by the assumption that ox(&~) be smooth is of 

some interest: indeed, a weakening of this hypothesis leads to the introduction of edge 
forces (i.e., line distribution of forces over the edges of the body) and other mechanical 
quantities (cf. [8]). In the case of fluids these results would seem to strengthen the role 
of A as a surface tension. 

Appendix 

Pro of of Lemma: Suppose that a(x0 ) =1 0 at some x0 in the interior of ox(!J6): 
because of continuity and with no loss of generality we may assume, in a neighborhood 
of x0 , the positiveness of a1 , the Cartesian component corresponding to the unit vector e 1 • 

Choose a > 0 such that L'a:(x 0 ), the open ball of radius a centered at x0 , is contained 
within this neighborhood and consider a virtual displacement given by u : = rpe 1 

where <p: x(PA) ---+ R is defined as 

._ { exp[1/(lx-x0 1
2 -a2

)], 

<p(x) . - 0 
' 

X E La:(X 0 ), 

elsewhere. 

It is not difficult to see that <p and u belong to C 00 (x(PA)). Moreover, for oc sufficiently 
smalJ, u = Du = 0 on ox(&~) and, since <p > 0 within L'a:(x0), 

J a · u + J (b · u + c · Du) = J a · u = J a 1 <p > 0. 
ox L'o:(Xo) ~a(Xo) 
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By contradiction, we are forced to conclude that a = 0 over x(PJ). Thus (L) is reduced 
to the assuption that 

(L') J (b · u+c · Du) = 0 'v'u E "Yx. 
ox 

Suppose that b(x0 ) "# 0 at some x0 E ox(&~): as before, we may assume b1 > 0 on .;V, 

a neighborhood of x 0 within ox(PJ). 
Let x :111 ---+ R 3 be a local system of curvilinear coordinates defined on an appropriate 

space neighborhood 111 of x0 , such that at all points in the intersection if/ n ox(PJ) the 
local basis vector g3 coincides with the outward unit normal n. Moreover, we take 11/ 
such that this intersection is contained in .;V and is mapped by x onto an open region of 
the xy plane, with x(x0 ) = (0, 0, 0). The existence of such a coordinate system for a c oo 
boundary ox(84) can be derived using standard results of differential geometry (cf., e.g., 
[19]). 

Let 111- : = "'f"nx(&l) and choose a > 0 such that the solid hemisphere 

S; : = { (x, y, z) E R 3 /x 2 + y 2 + z2 < a 1
, z ~ 0} 

is contained in x(if/-). Moreover, we denote by Da. the intersection of S; with the xy 

plane and we define 

.;V a : = X-t (Da). 

Obviously, x(Da) = .;V a and .;V a c .;V c ox( &I). 

Let R~ := {(x,y,z)ER3 Iz ~ 0} and define ip:R~---+ R as 

_( ) ·-j exp[I/(x2 +y2 +z2
-a

2
)], cp x,y,z .-

0, 

We can easily prove that: 

i) 

ii) 

iii) 

Now let o : = cpe 1 , where 

(A.J) 

cp E C00 (R~); 

ip > 0 on S;, 

ip = 0 on R~ ""'S;; 

az Tlz=O = 0. 

X E 111-

(x, y, z) E S;, 

elsewhere. 

<p(x) : = { ~,{x(x) ), 
X E rv(&l)"' 111- . 

The listed properties of ip imply: 

j) 

jj) 

jjj) 

UE"Yx; 

Du = 0 on ox(PJ); 

u = 0 on ox(PJ)""' .;V (X. 

Observing that b · u = b1 cp > 0 on .Ala, we deduce 

J ( b · u + c · Du) = J b · u = [ b1 qJ > 0. 
ox ..Ya ..Ya 
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Thus, by contradiction, we are forced to conclude that b = 0 on oY.(P4), and (L) is further 
reduced to 

(L") J c· Du = 0 VuE "Yu. 
OK 

Again we suppose that c(x0 ) =I= 0 at some x 0 E ox(P4): with no loss of generality we may 
assume that c1 > 0 in a neighborhood % of x0 in ox(PJ). 

Let~, x, 111, 111-, S;, Da. and% a. be defined as before. For some strictly positive c < ex, 
let ip: R!. ~ R be given by 

(A.2) 
_ ._ { exp[l/(x2 +y2 +(z-c)2 -rr)], 
cp(x,y,z) .-

0 
' 

x 2 +y2 +{z-c) 2 ES;, 

elsewhere. 

Let u = cpe1 , where <p is defined through (A. I) and (A.2) and deduce that: 

l) 

II) 

Ill) 

Du = 0 on ox( Pi}"'-% a.; 

Du(x) = (oz<p, 0, O)lx(x) on .Ka.. 

Since x(A'a.) = Da. and Oz<7Jiz=o > 0 we conclude that 

J c · Du = J c · Du > 0, 
OK .A'a. 

contradicting (L"). This implies that c = 0 on ox(14). 
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