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Nonlinear stability for dusty fluids ( *) 

E. VA LENTINI and M. MAIELLARO (BARI) 

THE NONLINEAR stability problem for the flows of dusty fluids in a bounded domain, subject 
to three-dimensional perturbations, is studied and an erroneous stability condition presented 
by two other authors in an earlier paper is corrected. By considering a family of equivalent 
Lyapunov energy measures, a new idea is introduced and new stability conditions are given and 
compared with the previous one. Moreover, the instabilizing effect of the dust on the fluid is 
recovered and a Lyapunov measure for the minimum instabilization is given. Finally, the best 
measure for the best stability of the equilibrium of dusty fluids is presented. 

Przeanalizowano zagadnienie nieliniowe statecznosci przeplyw6w w plynach zapylonych zaj
mujqcych obszar ograniczony, prostujqc przy tym mylny warunek statecznosci zaproponowany 
wczesniej przez innych autor6w. Zaproponowano nowq ide~ polegajqcq na wprowadzeniu ro
dziny miar Lapunowa, a nowe warunki statecznosci por6wnano mi~dzq sobq a takze z warun
kiem stosowanym uprzednio. Wskazano na destabilizujqcy efekt zapylenia i podano miar~ 
Lapunowa dla destabilizacji minimalnej. Podano takZe optymaln<t miar~ dla optymalnej sta
tecznosci stanu r6wnowagi plynu zapylonego. 

TipoaHam!3MpoBaHa HemmeiiHaH 3a~a'!a ycToH'I.HBOCTM Te'Iellliii B 3aiibiJieHHhiX >KM~I<OCTHX, 
3aHMMaJO~MX orpaHn'IeHHYIO o6JiacTl>, McrrpaBJIHH rrpM 3TOM orrm6o'!Hoe ycJioBMe ycroii'IM
BOCTM IIpe~JIO)I<eHHoe paHee ~pyrMMH 3BTOpaMM. llpe~JIO>KeHa HOB3H M~eH, 33I<JIIO'IaiO~aHCH 
BO BBe~eHMM ceMeiicTBa Mep JlHrryHoBa, a HOBbie ycJioBMH ycroii'!MBOCTM cpaBHeHbi Me>K~Y 
co6oii, a Tai<>Ke c ycJioBMeM rrpMMeHHeMbiM paHbllle. YI<a3aH ~ecTa6MJIM3Hpyro~nii 3¢¢ei<T 
33IIhiJieHMH M IIpHBe~eHa Mepa JlHIIYHOBa ~JIH MMHHM3JlbHOH ~ecTa6HJIM33Q.H:H. llplfBe~eHa 
T3I<>Ke OIITHMaJibHaH Mepa ~JIH OIITMM3JlbHOH YCTOH'IMBOCTH COCTOHHMH paBHOBeCMH 33IlbiJieH
HOH )I{U~I<OCTH. 

1. Introduction 

STABILITY problems for dusty gas, that is for viscous fluids with suspended particles, play 
an important role in many applications such as, for instance, in eliminating the pollu
tion problems and in aerosol suspensions in the atmosphere. After the papers of KAZA
KEVICH-KRAPIVIN [1] and SPROULL [2], several ones [3-15] have been published on the 
dynamics of dusty gases; but only in the papers [3-6] is the stability problem considered. 
The mathematical model adopted is the model introduced by SAFFMAN in [3]. In his paper 
Saffman considers only the linear stability of plane laminar dusty gas flows and the effects 
of the dust particles on the critical Reynolds number from laminar to turbulent flows. 
The conclusion was that coarse dust particles have a stabilizing effect on the dust-gas 
system. On the contrary, he proved that fine dust destabilizes the flow. Only linear stability 
is considered in [4]. Nonlinear stability aspects have, nevertheless, not received adequate 
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attention. In fact, to our knowledge, the nonlinear stability was studied only in two pa
pers [5, 6]. Unfortunately, in [5], indicated in the sequel with D. G., there is a mistake 
as we shall prove- that questions the reliability of some results found there. In [6] we 
have investigated the nonlinear Lyapunov stability of some hydrodynamic laminar dusty 
flows in plane layers and some magnetohydrodynamic dusty flows in a bounded domain. 
In this paper [6] we have introduced a new idea that reverses, in some sense, the usual 
energy method - that gives sufficient conditions for nonlinear stability in the mean once 
the Lyapunov functionals, as a measure of the perturbations, are prefixed. In this paper 
we have considered some parametric families of equivalent energy measures depending 
on not a priori prefixed constants and we have investigated the stability, obtaining 
some best measures for the best, that is absolute unconditional stability. 

In the present paper, adopting the Saffman's model, we investigate the nonlinear sta
bility for dusty fluids in an arbitrary bounded domain subject to arbitrary three-dimen
sional perturbations. 

After the model has been recalled in Sect. 2, in Sect. 3 - by the classical energy method 
-we correct the mistake of D. G. in [5], we obtain the correct stability conditions and 
we recover the instabilizing effect of the dust on the fluid. In Sect. 4, following the idea 
introduced in our last paper [6] and applying a stability theorem given in [16], we obtain 
new stability conditions with respect to families of Lyapunov functionals chosen as measures 
for the perturbations. Moreover, in Sect. 5 we discuss and compare all these condi
tions and we find a subfamily of measures that gives stability conditions better than our 
(correct) conditions given by D. G. in [5]. 

In a remark of Sect. 5, we give a measure leading to the minimum instabilizing effect. 
Finally, in Sect. 6 we give a stability condition, in the considered family of Lyapunov 
measures, for the equilibrium of a dusty fluid and we find the best measure for the best 
stability of this equilibrium, that is for absolute unconditional stability. 

2. The mathematical model 

The equations governing the hydrodynamics of a dusty fluid, following Saffman's 
incompressible model [3], are 

(2.1) 

e ( ~~ + v · vv) = -Vp+wW -KN(V -v), 

V·V = 0, 

mN( ~ +v· Vv) = KN(V-v), 

V·v = 0. 

In these equations V and v are the fluid and the dust velocities, respectively. Moreover, 
N is the number density of dust particles, each of mass m; K is the Stokes coefficient of 
resistance; p, (!, fl are pressure, density and viscosity of the fluid. In this model the simpli-

http://rcin.org.pl



NONLINEAR STABILITY FOR DUSTY FLUIDS 761 

fying assumptions made by SAFFMAN [3] also hold. The introduction of the following 

parameters will be useful: 

v = p,j (!, the kinematic viscosity of the clean fluid; 

r = KN/e, dimension of frequency; 
r = m f K, dimension of time, relaxation time of dust particles; 

f = mN/e = rr mass concentration of the dust; 

s = 1 /r = Kfm. 
Of course, to complete the evolution problem, suitable initial and boundary conditions 

must be added to Eq. (2.1). 

3. Nonlinear stability problem and instabilizing effect of the dust 

Referring to the D. G. paper [5], we intend to show and to correct a mistake in the 

stability conditions of Sect. 2., following the same classical technique of energy method 

adopted there. 

Let us consider an arbitrary basic flow in a bounded domain S, i.e. , let us consider 

a solution of the system (2.1) belonging to the class 

(3.1) {V(P,t);v(P,t);p } 

that we assume regular - that is with V(P , t) E c< 2·'> : v(P, t) E c(l.l>; p E c(l> 

\f(P , f) E Sx 1 - satisfying the boundary conditions: 

(3.2) V(P, t) = v(P, t) = 0, V(P, f) E as X I 

and the initial conditions 

V(P, 0) = V 0 (P), 

v(P, 0) = v0 (P), \f P E S 
(3.3) 

with given (divergence-free) V0 , v0 and I denoting the time interval [0, oo] of the motions. 

Let 

(3.4) {U(P, t); u(P, t); n} 

be the class of three-dimensional perturbations of one of the flows Eq. (3.1) under the 

initial conditions (3.3); U, u, n denote the perturbed fluid velocity, dust velocity and pres

sure, respectively. 

From Eqs. (2.1 )-(3.4), we obtain that the perturbations have to satisfy the following 

dimensionles equations: 

(3.5) 

au 
at - R(V + U) · VV-RV · VV -Vn+L1V-R 1(V-u), 

au 
01 

= -R(v+u)·Vu-Ru·Vv+R 2 (U-u), 

v. u = v. u = 0. 

The dimensionless variables are introd u~;d: 

t = d 2 fvt* , x = x*d, U = W0 V*, u = ~V0u*, 

10 ArL·h. M el:h . Stos. 5/89 
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with d and W0 being suitable reference length and velocity. In Eqs. (3.5), in which the 
stars have been omitted, the following dimensionless numbers appear: 

that is, the Reynolds number for the corresponding clean fluid and the two numbers R 1 , 

R 2 , of the Reynolds type, for the dust. Moreover, the perturbed velocities U, u must sa
tisfy the homogeneous boundary conditions 

(3.6) U(P, t) = u(P, t) = 0, V(P, t) E oSx I 

and the initial conditions 

(3.7) U(P, 0) = U 0 (P), u(P, t) = u0 (P), V PES 

with given (divergence-free) U 0 and u0 . 

At this point the stability problem of a flow of class (3. I), that is (from the analytical 
point of view) the behaviour of the strong solutions of the system (2.1) or of the zero sol
ution of the system (3.5) is reduced to the choice of a Lyapunov functional as a measure 
for the perturbations (3.4), and to the choice of the initial values (3.7) for these perturba
tions. 

Proceeding like in the D. G. paper, let us introduce the energy measure of the per
turbations: 

(3.8) 

Multiplying Eqs. (3.5) 1 and (3.5h by U and u, respectively, and integrating over S, we 
find: 

(3.9) 

(3.10) 

dK1 - - -+2R K dt 1 1 
-J [RU ·D·U 2 +(VU) 2 -R 1U · u]dS, 

s 

-J [Ru·D'·u2 -R2U·u]dS, 
s 

where D and D' are the deformation tensors of the fluid and the dust, respectively. From 
Eqs. (3.6), (3.8), (3.9) and (3. 10), by classical integral inequalities and by the divergence 
theorem, it follows that 

(3.11) dK1 ( 2) ( )t /2 dt - +2RIKI ~ 2 R,-y Kt +2Rl Kl K2 , 

(3.12) dK2 ( )t /2 - dt +2R2K2 ~ 2RsK2 +2R2 K1K2 , 

with y 2 denoting the Poincare constant for the domain S, and where two other dimension
less numbers appear, that is, 
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Here - m and - m' are the least (dimensional) characteristic values of D and D'. 
Putting K1 = 02 and K2 = F 2, as in [5] of D. G., we have 

(3.13) - ~~ +(R1 +y2 -R1)0-R.F~ 0, 

dF 
(3.14) -dt + (R2-Rs)F-R20 ~ 0. 

Summing up we find the relation 

(3.15) 

which, for R1 = N 0 , y 2 = <5 and R 2 = G, is exactly the same as Eq. (30) of D. G. From 
Eq. (3.15), D. G. derives the conditions 

(3.16) R2 > Rt +Rs, 

(3.17) 

that imply 

(3.18) ()+F~ (O+F)0e-Lt 

with L =min (R 1 +y2-R1-R2; R 2-R1 -Rs) 

At this point D. G . gives the following theorem: 
A sufficient condition for stability of the flow of a dusty gas is that 

(3.19) 
R2 ~ Rt +Rs, 

y2 > R,+Rs. 

Now the error made in the D. G. paper consists in passing from the conditions (3.16) 

(3.17) - that really assure asymptotic exponential stability - to the conditions (3.19) 
that, as it will be shown, cannot assure stability! In fact, from the condition (3.16) it 
simply follows that 

(3.20) 

therefore the condition (3.19h, that is y 2 > R1 + Rs is not sufficient to guarantee the 
condition (3.17), because from Eqs. (3.19h and (3.20) it could occur that 

So, Eq. (3.19) 1 being true, the condition (3.19h is not enough to assure Eq. (3.17), that is 

the positivity of the term R 1 + y 2 - R1 - R 2 • In fact, 

y2 ~ Rs+R,=>R1 +y2 -R,-R2~ Rs+R,+Rt-R,-R2 = R1+Rs-R2 

and the last term, by Eq. (3.19) 1 is not positive! 
ln conclusion, following the procedure adopted in D. G.'s paper, the correct stability 

conditions in the measure (3.8) are 

R2 > R1 +Rs, 

y 2 > R 2 -R1 +R1 • 
(3.21) 

10• 

http://rcin.org.pl



764 E. VALENTINI AND M. MAIELLARO 

Nevertheless, even if the correct stability conditions are not the inequalities (3.19) but the 

inequalities (3.21), the conclusion given in Sect. 4 (Discussion) of D. G. 's paper on the 

instabilizing effect of the dust on the fluid, remains valid because from the conditions 

(3.21), it follows that (provided R2- R 1 > Rs holds) the flows are stable if 

Rf < y 2-(R2 ·-Rt), ( < y 2-Rs). 

From this inequality we obtain the condition R1 < y 2 for a clean gas (R 1 = R 2 = 0), 

and the instabilizing effect of the dust on the flows is proved. 

4. New stability conditions 

Following the idea introduced in our recent paper [6], we shall introduce not a prefixed 
Lyapunov functional as a measure for the perturbations, but a family of Lyapunov measures 

depending on arbitrary positive parameters, looking for stability conditions better than 

he inequalities (3.21). Let us introduce the family of equivalent energy measures 

(4.1) E(t) = . ~ J (c1 U 2 + c2 u2)dS 
2 s 

with c1 , c2 being arbitrary positive constants. Multiplying Eqs. (3.5) 1 and (3.5) 2 by c 1 U 

and c2 u, respectively, adding and integrating over S, we find 

(4.2) 

whence, by introducing the functionals 

(4.3) 

and by suitable classical integral inequalities, it follows 

(4.4) 

with 

(4.5) 

From Eqs. (4.4) and (4.5), by the Cauchy inequality, it follows that the conditions 

2 l ( Cz ) R f < y - } c-: R 2 - R 1 , 

1 ( c. ) Rs < - Rz- --- R 1 , 
2 Cz 

(4.6) 

assure the asymptotical exponential stability of the dusty flows in the class (3.1), with 

respect to the family of Lyapunov measures (4.1). 
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From the same Eqs. (4.4) and (4.5), by the theorem given in [16], once we have imposed 
the definite positivity of the quadratic form (4.5), we conclude that also the condi
tions 

(4.7) 
R 2 4c1c2R 1Rs+ (c1R 1 - c2 R 2 )

2 

<y- -1 4c1 c2 (R2 - Rs) ' 

Rs < Rl 

assure the asymptotical exponential stability of the dusty flows of (3. I), in the same family 
of Lyapunov measures (4.1). 

Moreover, from the conditions (4.7) we have, in particular, that the conditions 

(4.8) 

assure the asymptotic exponential stability of these dusty flows in the measure (4.1), with 

Ct = Rl' cl = Rt. 

5. Discussion, comparison and improvement 

Finally, let us now discuss and compare the stability conditions (3.21) of D. G. and our 
conditions (4.6), (4.7) and (4.8) and find the measures that guarantee the stability condi
tions better than the conditions (22). Moreover, we want to choose, among these condi
tions, the best one. 

For the sequel it is useful to take into account that 

Rt =f 
Rl , 

where I is the mass concentration of the dust. We stress the role that I will play in follow
ing comparisons. 

I) Comparison between the condition (3.21) (D. G. corrected) and (4.6): 
if the mass concentration of the dust satisfies the condition 

I< 2, 

the stability conditions (4.6) can be better than (3.21) in the subfamily of measures (4.1) 
with 

~ < min(I/2; 2-/). 
Ct 

2) Comparison between the conditions (3.21) and (4.8): 
the condition (4.8) can be better than (3.21) if 

(5.1) 

holds, that is if the condition (4.8)1 is replaced with the condition (3.21)1 • We note that 
the stability condition (3.21) of D. G. has been obtained in the measure of the family (4.1) 
with c1 = c2 = I. Therefore if the inequality (5.1) holds, with the measures c1 = c2 = 1 
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and c2 fc 1 = f adopted in the conditions (4.8), in this second one, better stability conditions 
are obtained. 

3) Comparison between the conditions (3.21) and the condition obtained from (4.7) 
in the same measure (c1 = c2 = 1) adopted by D. G.: 

if the mass concentration of the dust satisfies the inequality 

from the conditions (4.7), with c1 = c2 = 1, our stability condition 

2 4/Rs+ (J-1)2 

Rf < 'Y - 4(1- Rs!R2) ' (5.2) 

Rs < R2 

is better than the conditions (3.21 ). 
4) Comparison between the conditions (3.21) and (4.7): 
if the same stability condition (5.1) holds, there exists a subfamily of measures 

with positive roots b1 , b2 of the equation 

/ 2ci-2[2(1-Rs/R2)-/Jctc2+d = 0, 

in which our conditions (4. 7) are better than (3.21). 
5) Comparison between our conditions ( 4.6) and ( 4. 7): 
the condition ( 4.6) is better than ( 4. 7) in the subfamilies 

~ <f 
c, 

On the contrary, the condition (4.7) is better than (4.6) in subfamilies 

!_!__ >f 
Ct 

Of course, in the measure c2 /c1 = f, the condition (4.6) cannot exist. 
6) Finally, if it is 

1 
f< -

2 

among the conditions (3.21) of D. G., and our conditions (4.6) and (4.7), the (4.7) in 
all the measures such that best stability condition is 

c2 1 f < - < ~- . 
C1 2 

REMARK. From the condition (4.7), the instabilizing effect of the dust on the fluid is ob
vious, with any measure of the family (4.1) we consider. But it is possible to minimize this 
instabilizing effect. In fact, this occurs when 

Rf < y2+Rt -Zmln 
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with 

-------·--- - ---- - -··--·- - - ----·- ·--·--- . - ·- -· 

Z = (clRl + c2R2)2 
4c1 c2 (R 2 - Rs) 

767 

We emphasize that such a minimum ((c1 , c2 ) varying in ]0, oo [ x )0, oo [), occurs exactly 
in the measure 

_c.3._ = f. 
Ct 

6. Unconditional stability of the equilibrium 

Let us consider now the dusty fluid in equilibrium in S. In this case we have V = v = 
= m = m' = R1 = Rs = 0. From the conditions (4.7) we have the following stability 
condition: 

(6.1) 

in all the measures of the family (4.1). 

For this particular measure of the above minimum instabilizing effect, 

(6.2) 

we clearly have absolute unconditional asymptotic exponential stability. 
Therefore the measure (6.2) is the best measure for the best stability of the equilibrium. 
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