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Exact solutions in nonlinear elastodynam.ics 

K. R. RAJAGOPAL, M. MASSOUDI (PITTSBURGH) and A. S. WINEMAN 
(ANN ARBOR) 

Two EXACT solutions of one-dimensional linear elastodynamics are given. The first problem 
concerns harmonic oscillations of a layer of finite thickness made of Mooney-Rivlin material, 
the other one deals with harmonic vibrations of an infinite cylinder made of the same materiaL 
Vibrations of the layer and the cylinder are produced by harmonic variation of loads applied 
to the boundaries. Both problems are reduced to the solution of known linear ordinary diffe
rential equations. 

1. Introduction 

THERE ARE few exact dynamical solutions available within the context of nonlinear consti
tutive theories in elasticity. In addition to describing the solution to simple boundary
initial value problems exactly, these solutions serve a very useful purpose, namely, that 
of providing a check for the numerical schemes which one encounters in more complex 
problems. Recently, several dynamical solutions have been established within the context 
of general theories of incompressible and compressible elastic solids (cf. CARROLL [1-3]). 
However, there are few explicit exact elastodynamic solutions to initial boundary value 
problems within the context of specific nonlinear theories. Such avenues have been 
explored to great lengths in fluid mechanics within the context of the classical linearly 
viscous model, and also several specific non-Newtonian fluid models. While the same can 
be said of the area of elastodynamics of a linearized elastic material, not much effort has 
been expended within the context of nonlinear constitutive theories. Much of the emphasis 
has been put on establishing universal solutions and research has been striving more 
towards generality than the study of the specific constitutive theory. 

Recently, there has been a resurgence of interest in determining exact elastostatic sol
utions within the context of specific nonlinear constitutive theories (cf. CuRRIE and 
HAYES [5), RAJAGOPAL and WINEMAN (6), RAJAGOPAL, WINEMAN and TROY [7], SEN
SENING [8), OGDEN [9), MCLEOD, RAJAGOPAL and WINEMAN[10), CHAO, RAJAGOPAL and 
WINEMAN [11], Fu, RAJAGOPAL and SzERI [12], RAJAGOPAL and CARROLL [13], etc). These 
papers are primarily concerned with nonhomogeneous deformations of nonlinear elastic 
materials within the context of elastostatics. 

In this brief note we discuss a couple of representative examples of elastodynamic 
problems within the context of the neo-Hookean and Mooney-Rivlin theories. The 
problems considered herein are by no means the only ones where exact solutions can be 
established. In fact, the analysis suggests a whole host of unidirectional motion problems 
for which one might reasonably expect to establish exact solutions. 
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The Cauchy stress T in a Mooney-Rivlin material is given by (cf. TRUESDELL and 
NOLL [4]) 

(1.1) 

where 

B = FFT is the right-relative Cauchy-Green strain tensor, and F denotes the deformation 
gradient. The spherical stress - pl is due to the assumption that the material is incom
pressible. When fJ = 1/2, the above constitutive equation simplifies to the neo-Hookean 
constitutive relation 

(1.2) T = -pl+,uB. 

2. Equations of motion 

Let us consider unidirectional time-dependent deformations of the form 

(2.1) x = X, y = Y, z = Z + w(Y, t), 

where (x, y, z) denote the position at time t of a particle initially at (X, Y, Z). A simple 
computation yields 

(2.2) B= 

and 

(2.3) 
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Notice that the det F = detB = 1, and thus the motion under consideration is isocboric. 
It follows that the balance of linear momentum 

(2.4) d
. dv 
tvT+eb = edi' 

f.educes to 

(2.5) op = o ox , 
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(2.6) op = 2p, (P-_L) ow o2w , 
oy 2 . oy oy2 

oz (2.7) 
op 

~ -- = 

On defining a new function p* through 

(2.8) p* = p-p (P- ~ )( ~;r 
we see that Eqs. (2.5}-(2.7) can be rewritten as 

(2.9) op* = ·o 
ox ' 

(2.10) 

ap* 
- - =0 ay , 

781 

Let us suppose we are interested in the problem of a slab of Mooney-Rivlin material 
of thickness H subject to an oscillatory pressure gradient in the z direction of the form 

(2.1 I) 
op op* oz = az = -e{Po+Qocos.Qt}. 

Then Eq. (2. 10) reduces to 

(2.12) 

We shall suppose that the layers at y = 0 andy = Hare at rest, i.e., the appropriate 
boundary conditions are 

(2. 1 3) w(O, t) = 0, w(H, t) = 0. 

It is straightforward to verify that the solution to Eq. (2.12) subject to Eq. (2.13) is 

(2.14) eP o Qo [ ye.Q
2

-w(y, t) = -- -y(H-y)+- cos - y 
2p, .Q2 p, 

-.I (!.Q2 l sin Jl -p--y-1 cos.Qt. 

Let us next consider the problem wherein the layer at y = 0 oscillates with the velocity 
Ucos.Qt and the layer at y = H is at rest, i.e., 

(2.15) w(O, t) = Ucos!lt, w(H, t) = 0. 
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We shall seek a solution to Eq. (2.10) wherein there is no pressure gradient in the z di
rection. It is once again easy to verify that the solution to Eq. (2.1 0), subject to Eq. (2.15) is 

(2.16) u [. ye!J2- ] w(y, t) = - -~ 
2 

-~ sm -- --- (H- y) cos!Jt. 
. -.I e!J H t-t 

sm Jl ---,;--

It is easy to see there are several other elastodynamic boundary value problems in
volving layers for which one can establish such exact solutions. 

Next, we turn our attention to elastodynamic problems involving a cylinder of neo
Hookean material of radius R0 • Consider a deformation of the form 

(2.17) r=R, O=e, z=Z+w(R,t). 

A simple computation yields 

Ow ) ( 0 r ow 
0 -oR- 1 + -ai.- 0 oR 

(2.18) B= 0 0 ' B-t = 0 0 

OW 0 I+(~;)' ow 
0 oR - aR-

and once again we note that detF = detB = 1. Thus the motion is isochoric. 
The balance of linear momentum reduces to 

(2.19) 
op op 

- oR- = - oO = o, 

(2.20) 

As before, we shall suppose that 

(2.21) 
op oZ = -e[P0 +Q0 coscxt]. 

Assuming a solution of the form 

(2.22) w(R, t) = W(R)coscxt+G(R) 

and carrying out an analysis similar to that for the layer problem yields exact solutions 
for G(R) and W(R). The appropriate equations of motion are 

(2.23) 

(2.24) d
2
W __!__ dW ( ecx2

) W = 
dR2 + R dR + f' 

eQo 
- --·-
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The appropriate boundary condition is 

(2.25) W(R0 , t) = 0, 

and we shall require that the velocity field be bounded. It immediately follows that 

(2.26) G(R) = - ePo (R2 -R~), 
4,u . 

and 

(2.27) W(R) = - :re
2
eQo RJ1 (mR)Y0 (mR) -[~;Q(o R -)- + :re

2
eQo RY1 (mR)lJ0 (mR), 

,um t-tm -'o m 0 ,um 

where / 0 , / 1 , Y0 and Y1 are Bessel functions of order 0 and I of the first and second kind, 
and 

(2.28) 

Thus 

(2.29) -neQo [ eQo W(R, t) = - -- RJ1(mR)Y0 (mR)cosat- --- ---
2,um ,um2 l 0 (mR0 ) 

neQo J eP o 2 2 + 
2

1-'m ·-RYt(mR) J0 (mR)cosat-
4

,u (R -R0 ). 

The examples discussed above are just a few of the many cases where it is possible to 
determine explicit exact solutions to elastodynamic problems involving neo-Hookean 
and Mooney-Rivlin materials. Such simple exact solutions would serve a very useful pur
pose in providing means for checking the complicated algorithm one develops in the 
numerical study of the elastodynamics of nonlinear materials. 
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