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Uniqueness in the elastostatic problem of bending 
of micropolar plates 

P. SCHIAVONE and C. CONSTANDA (GLASGOW) 

CLASSES of functions are indicated for which Betti and Somigliana relations hold in the exterior 
of a bounded domain in the problem of bending of thin micropolar plates. A uniqueness theorem 
is derived, and an example is discussed to illustrate the theory. 

1. Introduction 

THE I'.:XISTENCE and uniqueness of the solution of the traction boundary value problem 
for a finite micropolar plate in the theory of bending proposed by ERI:'\GEN [1] were 
investigated in [2]. The other problems usually covered by the boundary integral equation 
method were not considered there because of the lack of adequate uniqueness results 
in exterior domains. This drawback is caused by the fact that the matrix of fundamental 
solutions corresponding to the equilibrium equations of bending exhibits a growth of 
O(lxl 2 ln lxl) as lxl --+ oo, which means that the Betti formula cannot be established in 
exterior domains. A similar obstacle encountered in the theory of classical plates with 
transverse shear deformation has meanwhile been removed by formulating the problems 
in special uniqueness classes of finite energy functions characterized by a certain behav
ioural pattern at infinity (see [3]-[5]). In this paper we construct similar classes for the 
micropolar case and prove the corresponding uniqueness theorems. The discussion is 
concluded with a simple illustrative example. 

2. Preliminaries 

Unless stated otherwise, throughout what follows Latin and Greek suffixes take the 
values 1, 2, 3 and J ,2, respectively, and the convention of summation over repeated indices 
is understood. 

We consider a homogeneous and isotropic micropolar plate occupying a cylindrical 

region Q x [ -h0 j2, h0 j2] in R3 , where Q is a bounded domain in the (x 1 , x 2)-plane and 
h0 = const the plate thickness. We assume that the boundary 8Q of Q is a simple closed 
C2-curve. The equilibrium equations of the theory developed in [1], in the absence of body 
forces and couples and of forces and couples on the faces, can be written in the form [2] 

(2.1) L(ox)v(x) = 0, x eQ, 

where L(ox) = L(8j8xa.), 
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(2.2) L(~) = L(~a) 

LJ 3 + h2(A + ,u) ~i h2 (A+,u)~l ~2 -,u~. 0 

~ ) h2 (A+,u)~l ~2 LJJ +h2(A + ,u) ~i -,u~2 -u 0 

,U~t ,U~2 Lll -u~2 "~• , 
0 -u "~2 Ll2 +(a+ tJ)~I (a+ fJ)~t ~2 
X 0 -X~t (a+tJ)~. ~2 L12 + ( oc + {J) ~~ 

v = (v1 , ... , v5)T is a (5 x I)-matrix characterizing the displacements (v1 , v 2 , v3) and mi
crorotations (v4 , v5), A, p,, u, oc, {J, yare the elastic constants of the material, LJ = ~a~a. 

Ll 1 = (,u+u)Ll, L1 2 = yLJ-2u, L1 3 = (,u+u)(h2LJ-l), and h2 = h~/12. For the sake of 
simplicity, if the v1 , ... , v 5 are elements of a function space X, then we write vEX. 

We also consider the boundary integral operator T(ox) = T(ojoxa), where 

(2.3) T(~) = T(~a.) 

h2 (,ut ~ana.+ At ~1n1) h2 (,u~t n2 + A~2 n1) 0 0 0 
h2 (A~t n2 + ,U~2n1) h2 (,ut ~ana.+ At ~2 n2) 0 0 0 

,unt ,un2 ,Ut ~ana -un2 un 1 

0 0 0 Y~ana. + a1 ~~ n1 P~t n2 + oc~2n1 
0 0 0 a~1 n2 + P~2n1 Y~ana +OCt ~2 n2 

A1 = A+,u, ,u1 = ,u+x, oc 1 = \f.+{J, and n = (n 1 , n2)T is the unit vector of the outward 
normal to o!J. In view of the simplifying assumptions made in [1], Tv is the vector of re
sultant stress and couple on o!J. 

Throughout what follows we assume that 

2 A+ 2,u + X > 0, 2p, + U > 0, X > 0, 

2oc+fJ+y > 0, y+{J > 0, y-{J > 0, 

which ensures that the system (2.1) is elliptic and that the internal energy density £( v, ·v) 

[2] is a positive quadratic form. 

Let Din = fJ and De'K. = R 2""-Q1n. If u, v E C2 (!JJn)nC1 (!JJn), then we obtain [2] the 
reciprocity relation 

J (vTLu-uTLv)da = J (vTTu-uTTv)ds 
Dto. oD 

and the Betti formula 

(2.4) J vT Lvda+ J 2E(v, v)da = J vTTvds. 
D111 D1o. oD 

Also, E(v, v) = 0 if and only if v is a rigid displacement, that is, 

(2.5) 

where c1 , c2 and c3 are arbitrary constants. 
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Let B(~) be the matrix of cofactors of L(~). Then the matrix of fundamental solutions 
of Eq. (2.1) is [2] 

(2.6) D(x, y) = (B (ox) )T t(x, y). 

where 

(2.7) 

K0 is the modified Bessel function of order zero, and k, k 1 , ... , k 5 , and 11 are well-defined 
constants expressed in terms of the elastic coefficients. Introducing the matrix of singular 
solutions 

(2.8) P(x, y) = [T(oy)D(y, x)f, 

we can now show [2] that every solution v E C2(.Q1n)nC1 (l11n) of Eq. (2.1) admits the 
Somigliana representation 

(2.9) 

where 

X1(x)v(x) = J [D(x, y)(Tv)(y)-P(x, y)v(y)]dsy, 
au 

{ 

I, 
X1(x) = 1/2, 

0, 

X E.QI"' 

X E (}.Q, 

xe.Qex· 

3. Betti and Somigliana relations in the exterior domain 

Since, by Eqs. (2.2) and (2.6)-(2.8) for y E ().Q 

D(x, y) = O{JxJ 2lnJxl), P(x, y) = O(lnlxl) as Jxl -+ oo, 

the usual technique does not yield the analogues of Eqs. (2.4) and (2.9) in .Qex. To derive 
such formulae, we need to restrict the behaviour of the solution of Eq. (2.1) at infin
ity. 

Let .91 be the set of (5 x I)-matrices v in .Qex having an asymptotic expansion of the 
form [6] 

v1 (r, 0) = ,-t [a0 sin0+2a1cos0-a0 sin30 + (a2 -a1)cos30] 

+r- 2[(2b1 +dosin20 +d2 cos20- 2b1 sin40+2b2 cos40] 
+r- 3 (2et sin 30+ 2ft cos30 + 3(e2 - e1)sin 50+ ([2 - / 1)cos50] + O(r- 4 ), 

(3.1) v 2 (r, 0) = ,- 1 [2a2sin0+a0 cos0+(a2 -a1)sin30+a0 cos30]. 

+r- 2 [(2b2 +d2)sin20-d1 cos20 + 2b2 sin40 + 2b1 cos40] 
+r- 3 [2/2 sin30- 2e2 cos 30 + 3(!2 - ft )sin 50+ 3(e1 - e2)cos 50]+ O(r- 4 ), 

v3(r, 0) = - (a1 +a2)lnr- [a1 +a2 +a0sin20+ (a1 -a2)cos20] 

+r- 1 [(b1 +d1)sin0 + (b 2 +d2)cos0 -b1 sin 30 +b2 cos30] 
+ ,- 2 [g1 sin 20 + g 2 cos20+ (e2 - e1)sin40 + ([2 - ft)cos40] + O(r- 3), 
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(3.1) v 4 (r, 0) = - ,-t [2a_ sinO+ a0 cos0 + (a2- a 1)sin 30 + a0 cos 30] 
[cont.] 

-,- 2 [(2b2 +d2)sin20 -d1cos20 + 2b2 sin40 + 2b1cos40] 

-,-
3 [(2/2 + a 3)sin30- (2e2- a4 )cos30 + 3(f2- .h)sin 50+ 3(e1 - e2 )cos50] 

+ O(r- 4
), 

v5 (r, 0) = r- 1 [a0 sin0+2a1 cos0-a0 sin30+(a2 -a1)cos30] 

+ ,- 2 [(2b1 + d1) sin 20 + d2 cos 20- 2b1 sin 40 + 2b2 cos40] 

+ ,- 3 [(2e1 + a4)sin30 + (2/1 + a3)cos30 + 3(e2 -e1)sin 50+ 3(/2 - / 1)cos50] 

+ O(r- 4), 

where (r, 0) are polar coordinates and a0 , aa., aa.+ 2 ,ba., da,da., ea.,fa, and ga. arbitrary con
stants. Also, let .91* = {v*lv* = v+v0 , v E .91, v 0 is of the form (2.5)}. 

REMARK. Any solution v of Eq. (2.1) of class .91 or .sl* is a finite energy solu
tion [6]. 

THEOREM 1. rf v E C2 (Qex)nC1 (Qex)nd is a solution of Eq. (2.1) then 

where 

x2(x)v(x) = - J [D(x, y)(Tv)(y)-P(x, y)v(y)]dsy, 
an 

{

0, 

x2 (x) = 1/2, 
1, 

XEfJt0 , 

X EOfJ, 

X EfJex· 

Proof. Let KR be a circle with the centre at x E Qex and radius R sufficiently large 

so that Qin c KR. Applying Eq. (2.9) in Qex nKR, we find that 

(3.2) v(x) = - I [D(x, y)(Tv)(y)-P(x, y)v(y)]dsy 
an 

+ I [D(x,y)(Tv)(y)-P(x,y)v(y)]dsy. 
aKR 

Choosing the pole at x, from Eqs. (2.2), (2.3), (2.6)-(2.8) and (3.1) it follows [6] that, 
as R-+ oo, 

T3ivi = R- 3 {(fl+x)[(e1 +e2-2g1)sin20+(ft +!2-2g2)cos20] 

+ x(a3 cos20 + a4 sin40)} + O(R- 4
), 

(D3aTa.j+ D3kTki- P3i)vi = -;: -x 2(2fl + x)2ks R- 1 [(p -h2 J)(2lnR + 1) 

-h2(),+ !l) + y][a0 sin20 + (a 1 -a2)cos20] + O(R- 2 1nR), 

(DaiTii-Paj)vi = O(R- 2lnR), 

(Dki Tii- Pki) vi = O(R- 2lnR), i, j = I, ... , 5, k = 4,5. 

Hence, the second term on the right-hand side of Eq. (3.2) is O(R- 1 In R) and the desired 
relation is obtained by letting R -+ oo. 
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If x E il1n, then, by Eq. (2.9), the right-hand side of Eq. (3.2) is equal to zero, since x 
is in the exterior of ilexnKR. The proof is similar for X E oil. 

THEOREM 2. ff v E C 2 (ilex)nC1 (Qex)nd* is a solution of (2.1), . then 

2 J E(v, v)da = - J v~Tvds. 
llex em 

Proof. Let v* = v+v0 Ed*, with v Ed and v0 of the form (2.5). Then Tv*= Tv, 
and the desired formula is established by the method used in the proof of Theorem l after 
verifying [6] that, as R -+ oo, 

T31v1 = O(R- 3), 

Ta.1v1 = O(R- 2
), 

Tk1v1 = O(R- 2
), j = 1, ... , 5, k = 4, 5. 

4. Uniqueness of the solution 

Let A(x), B(x), R(x) and S(x) be (5 x I)-matrices defined and continuous on oil. We 

consider the following interior and exterior Dirichlet and Neumann-type problems: 

(D1n) Find v E C 2 (il10)nC1 (il1n) satisfying Eq. (2.1) in il10 and 

v(x) = A(x), X E oil. 

(Nin) Find v E C 2 (il10)nC1 (il1n) satisfying Eq. (2.1) in il10 and 

(Tv)(x) = B(x), x E oil. 

(Dex) Find v E C 2 (ilex)nC1 (ffex)nd* satisfying Eq. (2.1) in il~x and 

v(x) = R(x), X E oil. 

(Nex) Find v E C 2 (ilex)nC1 (ilex)nd satisfying Eq. (2.1) in ilex and 

(Tv)(x) = S(x), X E oil. 

THEOREM 3. (i) (D10), (Dex) and (Nex) have at the most one solution. 
(ii) Any two solutions of (N10) differ by a matrix of the form (2.5). 
Proof. The difference v of two solutions of (D10) satisfies Eq. (2.1) and v(x) = 0, 

X E oil. Then from Eq. (2.4) it follows that f E(v' v)da = 0, therefore, v is of the form 
ll1n 

(2.5), and the homogeneous boundary condition yields v(x) = 0, x E il10 • 

The proof for (Dn.) and (Nex) is similar, with Eq. (2.4) replaced by Theorem 2. In the 

case of (N10), the (5 x I)-matrix supplied by Eq. (2.4) remains arbitrary. · 

Since in the application of the boundary integral equation method to the above prob

lems the solution is sought in the form of single or double layer potentials, it is important 

to check the asymptotic behaviour of such ?bjects. They are defined, respectively, by 

V(x) = J D(x, y)z(y)ds>'' 
all · · 
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W(x) = J P(:>., y)z(y)ds7 , 

an 

where z is a density (5 X I)--matrix on an. 
THEOREM 4. If z E C( o!J), then . 

(i) Wed; 
(ii) V e d if and only if 

(4.1) 

M = J z3 ds = 0, 
(}!J 

Ma. = J (xa.z3 -za.- Ea.pf3zp+ 3)ds = 0, 
an 

where Ea.fJ is the alternating symbol. 
Proof. Using series expansions for lx-yj- 2 and In jx-yj with lx l large [4], it is 

easily seen that W fits the pattern (3.1), while for V we obtain [6] 

k2 
V3 (r, 0) = -8n [ks A 1 r(21nt + I)(M1 cosO+ M 2 sin 0)+4k5 A 2 M(Inr+ 1) 

-A, M(4k4 +k5 r2 )Inr]+ V3 (r, 0), 

V4 (r, 0) = - :: ksAd(21nr+ J)(Mrsin0-M2)-2M2 sin 20-M1 sin20]+ V4 (r, 0), 

where the Aa. are certain combinations of the elastic coefficients and V = (V1 , ••• , V5)T ed. 
It can be shown [7] that the conditions (4.1) are physically meaningful: 

5. Example 

We consider an infinite plate with a circular hole of radius q, whose lateral surface is 
acted upon by a normal force px3 , where p = const > 0, in the absence of body forces 
and couples and of forces and couples on the faces. Choosing the origin at the centre of 
the hole, we find that 

(5.1) 

http://rcin.org.pl



UNIQUENESS IN THE ELASTOSTATIC PROBLEM OF BENDING OF PLATES 

where <5cxi is the Kronecker delta. A solution of this problem is [8] 

v 1(r, 0) = [<11 r- 1 +<12 <13 K 1(c3r)]cos0, 

v2 (r, 0) = [<11 r- 1
<12<13 K1 (c3r)]sin0, 

v 3(r, 0) = -0'1 -<12 <14 K0 (c3 r), 

YJ4 (r, 0) = - [ <r1 ,-, + ~ k 1<r2 K1 (c3r) ]sinO, 

v5(r, 0) = [ <r1 ,-• +-} k 1 a2 K 1 (c, r)] cos 0, 

791 

where <11 , ..• , <14 are uniquely determined combinations of the elastic coefficients and K1 

is the modified Bessel function of first order. The solution of this (Nex) is not unique in 
general, since v+v0 also satisfies Eqs. (2.1) and (5.1) for any v0 of the form (2.5). However, 
we do have uniqueness in the sense of our definition of solution because v+v0 E .91 if 
and only if [6] v 0 = (0, 0, - a1 , 0, O)T. 
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