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Space-time element method in structural dynamics 

CZ. BAJER (WARSZAWA) and A. PODHORECKI (BYDGOSZCZ) 

THE PAPER deals with recent developments of the space-time element method in vibration analysis. 
Discrete methods applied to date in structural dynamics make use of spatial discretization 
independently of the time integration procedure. It limits applications of such an approach. 
The full space-time approximation can be considered as an extension of the finite element 
method over the time domain and it allows to treat spatial variables in the same way as the 
time variable. Nonstationary discretization, adaptive techniques, directly obtained joint-by-joint 
procedure are not the only positive features of the space time finite element approach. Although 
the additional time variable in the shape functions is considered and the resulting element ma
trices are greater than static stiffness and mass matrices, the cost of the solution algorithm is 
comparable with other numerical methods. Some testing examples prove the efficiency of the 
method. 

Om6wiono ostatnie osi(lgni~cia w dziedzinie zastosowania metody element6w czasoprzestrzen
nych w analizie drgan. Stosowane dot(ld dyskretne metody analizy dynamicznej konstrukcji 
zaldadaj(l przestrzenn(l dyskretyzacj~ niezalem(l od procedury calkowania r6wnania r6micz
kowego ruchu w czasie. Takie przyj~cie znacznie ogranicza zastosowania. Pelna czasoprzes
trzenna aproksymacja rozumiana jest jako rozszerzenie na zmienn(l czasow(l metody element6w 
skonczonych i umoi:liwia rozpatrywanie czasu w taki sam spos6b, jak zmiennych przestrzennych. 
Niestacjonarna dyskretyzacja, techniki adaptacyjne, bezposrednio uzyskana procedura oblicze
niowa ,w~zel po w~Zle" nie S'l jedynymi zaletami podejscia czasoprzestrzennego. Chociaz 
uwzgl~dnia si~ dodatkow(l zmienn(l czasow(l w fun.kcjach ksztaltu i otrzymuje si~ wi~kszy wymiar 
wynikowych macierzy elementu od wymiar6w statycznych macierzy sztywnosci czy mas, to 
koszt algorytmu obliczeniowego jest por6wnywalny z kosztem innych metod numerycznych. 
Zamieszczone przyklady obliczeniowe wykazuj(l skutecznosc przedstawionej metody. 

Pa6oTa o6cy~aeT rrocJie~Hlie ~ocriDKeHHH B o6JiaCTli rrpliMeHeHHH MeTo~a BpeMeHH- rrpocr
paHCTBeHI-IhiX :meMeHTOB B aHaJIH3e I<OJie6aHHH. IlpliMeHHeMhie ~0 CHX IIOp ~HCI<peTHbie 
MeTo~hi ~liHaMJNeci<oro aHaJili3a I<oHcTpyi<~liH npe~oJiaraiOT npocrpaHCTBeHHyro ~liCI<pe
Tli3a~HIO He3aBliCHMYJO OT npo~e~ypbl liHTerplipOBaHliH ~H<l><l>epeHlU{aJibHOro ypaBHeHHH 
~mi>KeHliH so BpeMeHli . Tai<oii no~o~ 3HaqJiTeJibHo orpaHJiqJiBaeT npHcMeHeHHH. IloJIHaH 
BpeMeHH-npocrpaHCTBeHHaH annpoi<CliMa~HH IIOHHMaeTCH I<aK paCIIIHpeHHe Ha BpeMeHHyro 
nepeMeHHYJO MeTo~a I<OHe~IX :meMeHTOB H ~aeT B03MO>KHOCTb paCCMaTpHBaTb BpeMH Tai<HM 
caMbiM o6pa3oM I<ai< npocTpaHCTBeHHhie nepeMeHHbie. Hecra~HoHapHa.R: ~HCI<peTH3a~, 
a~anTa~HOHHbie TeXHHKH, Henocpe~CTBeHHo noJiyqeHHaH pacqeTHaH npo~e~pa ,y3eJI 3a 
y3JioM" He HBJIHIOTCH e~HHCTBeHHhiMH ~OCTOHHCTBaMH speMeHH-npoCTpaHCTBeHHoro no~
xo~a. XoTH yqHTbiBaeTCH ~onoJIHHTeJI&HaH BpeMeHHaH rrep MeHHaH B <l>YHK~x <l>opMbi H no
JiyqaeTcH pa3Mep pe3yJI&THpYJO~HX MaTpH~ 3JieMeHTa 6oJibrne qeM pa3Mepbi craT~NeCI<HX 
MaTpH~ >KeCTI<OCTli liJIH Mace, TO CTOHMOCTb pacqeTHOrO aJiropHTMa CpaBHHTeJieH CO CTOH
MOCThiO ~pyrHX qJicJieHHbiX MeTo~oB. IloMe~eHHbie pacqeTHbie npHMephi noKa3biBaiOT 3<l>

<l>ei<THBHOCTh npe~cTaBJieHHoro MeTo~a. 

l. Introduction 

STUDIES in the field of the space-time element method (STEM) have been carried out for 
several years. In this time considerable progress in direct time integration methods has 
been made. Time integration has been applied both to linear and nonlinear problems. 
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868 Cz. BAIER AND A. PODHORECKI 

The elliptic part of the differential motion equation is treated in spatial domain by any 
discrete method (finite element, finite difference or other) while the time derivative is 
approximated by the difference rule. Such an approach was commonly used since all the 
algorithms applied to statics could be directly adapted for dynamics. The domain of 
research was split into two: exclusively the spatial approximation, new models of finite 
elements, new methods for static solutions, was in the scope of the first group while time 
marching schemes, their accuracy and efficiency were developed in the second group. 
The separate approach to spatial and time variable could be considered as a simplification 
with natural limitations that make it impossible to solve some problems in a natural way. 
The example of the problem that could not be treated with sufficient simplicity is the 
movable mesh case in elastodynamics. 

The first attempts of a complex treatment of vibrating structures in space and time did 
not give either numerical savings or possibilities of new solutions. Even more, in classical 
problems the space-time element approach was time and memory consuming. This fact 
propagated the negative opinion on the STEM [1 ]. In spite of this, research was conducted 
by an increasing group of people. However, three general achievements must be pointed 
here. The first is the use of simplex-shaped elements that considerably reduces the cost 
of the method. The second is the nonstationary partition of the structure that enables to 
adapt the mesh to the local error value (r-adaptation). The third is the development of the 
method towards nonlinear problems. 

Besides the continuous in time approximation between two successive layers, the second, 
highly interesting approach of noncontinuous approximation has been recently published 
by HuGHES and HULBERT [2]. The Petrov-Galerkin method in a mean of least squares 
is the base of the solution. Discontinuity from layer to layer is admitted while the energy 
criterion must be balanced in each time layer. 

In the paper the recent achievements in the field of the STEM are presented. More 
detailed considerations exhibit state-of-the art in the field. 

2. Basic formulation of the method 

2.1. Fundamental research 

The possibility of generation of finite elements in space and time was noticed in early 
papers by FRIED, 0DEN, ARGYRIS, SHARPF and CHAN [3-7]. The subject can also be found 
in the monographic work by ZIENKIEWICZ [8] and [9]. These considerations influenced 
K,o\CZKOWSKI to work out the original method of the space-time finite elements [10, 11]. 
The discretization of the space-time continuum resulting in the one-stage path from the 
differential equations to the algebraic ones is the basic idea of the approach. The charac
teristic feature that differs the STEM from other time integration methods is the charac
teristic approximation of the displacement, strain and stress field in the whole considered 
space-time domain. For example, the displacement function in the space-time element 
is described with respect to the nodal parameters r 

(2.1) ue(x, t) = tP(x, t)re, 

http://rcin.org.pl
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where {/>(x, t) is the interpolation function (shape function) that depends on the spatial 
coordinates and time coordinate. In the classical time integration schemes, we use, for 
example, the finite element approximation to space: 

(2.2) 

It converts the system of the partial differential equations to the system of the ordinary 
differential equations depending on time which can be solved by different numerical meth
ods. The possibility of separate discretization of space and time is the advantage of the 
assumption (2.2). However, the basic disadvantage is that the initially-assumed spatial 
partition cannot be changed in time. In the full space-time approach such a restriction 
does not exist. The discretization is not limited and enables to adjust the spatial partition 
to the load function or varying boundary and to solve the nonlinear problems in which 
vibrations of the structure fulfil different equations in passing time. 

Studies on the space-time field are broad. The early works by Kt\CZKOWSKI [10-12] 
were devoted to the basic space-time terms. The equation of the time-work was formulated 
and the rules of the space-time element matrix generation were presented. In the following 
papers several problems of linear structural dynamics were solved [13-21]. In [22] Kt\CZ

KOWSKI and LANGER proved that if the rectangular space-time elements are in use, the 
STEM can be considered as a direct time integration method. The stability problem was 
discussed in [23-32]. In later works the non-rectangular elements were worked out [26, 
33-36]. They enabled nonstationary discretization of the structure and the solution of 
a new class of problems. Attempts to treat the geometrically nonlinear cases were described 
in [40, 41]. Thermal problems [42-46], thermoelasticity [47] and viscoelasticity [48-50] 
were also considered. 

2.2. The equation of virtual time-work 

We consider a continuous body in a domain V*, which is a subdomain of the Euclidean 
space £ 3

. v denotes the interior of the domain being considered and av- its boundary 
which is a sum of oVt and oVu (Fig. 1). The motion of the body will be considered in the 
time interval [0, T]. The dynamic variables that appear in the description, i.e., d~splacement 

FIG. 1. Notations in elastic body analysis. 
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vector field u and mass forces ef, symmetric tensor field of stresses a and strains e are 
described in the Cartesian product of the sets V x [0, T]. The vector field of the surface 
forces f is described in the product oV x [0, T]. All the functions are sufficiently con
tinuous. In the formulation of the equations we use the rules of the tensor calculus. 

The unstable, geometrically and physically linear problem is defined by the following 
set of equations [51] : 

a) geometric equations 

(2.3) 
1 

eu(x, t) = 2- (u;, 1 +u1, 1), x, t E Vx [0, T], 

b) physical equations 

(2.4) au(x, t) = Cuklek, x, t E Vx [0, T], 

c) dynamic equilibrium equations 

(2.5) ajt,j+e!t = eu, X, t E V X (0, T], 

d) boundary conditions 

(2.6) ai;-v1 = ~(x, t), x, t e avt x ro, TJ, 
(2.7) u1(x, t) = u, X, t E oVu X (0, T], 

e) initial conditions 

(2.8) U;(X, t) = U~, x, t E V* X {0 }, 

(2.9) il;(x, t) = v?, X, t E V* X {0}. 

The above equations describe the local formulation that bas the proof of existence and 
uniqueness of the solution [52]. We can pass to the global formulation by multiplication 
of Eqs. (2.5) by the virtual variation of the displacement function <5u(x, t): 

{
0, X, t E oVu X (0, T], 

(2.10) <5u(x, t) = * 
any, X, t E (V - oVu) X [0, T]. 

After integration over the space-time domain, we have 

'• lt 

(2.11) J J e(f,<5u,+u,<5u,)dVdt+ J J i,<5u,d(oV)dt 
o v o av, 

lt 

+ J eu,<5u,avl~1 
= f J au<5e;~Vdt, tl E [0, T]. 

v 0 v 

The above equation must fulfil the conditions (2.3), (2.4) and (2. 7). 

2.3. Discretization of the space-time domain 

We divide the space-time domain C(Q), ti: {V, 0 ~ t ~ T} into finite space-time 
elements Qe, e = 1, 2, .. . , E (Fig. 2). The shape and number of space-time elements can 
vary according to the problem to be solved. We assume that the elements are connected 
with each other in a finite number of points. The nodal parameters state the basic unknown 
vector. The quantities in Eq. (2.11) are described with the use of nodal displacements 
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(2.12) 

X 
FIG. 2. Example of the space-time mesh. 

u;(X, t) = <l>uiX, t)ra~, 

U;(X, t) = (p;m(X, t)ra~, 

cu(X, t) = B1m/X, t)ra~, 

aii(X, t) = CiJklBklm(X, t)ra~, 

out(X, t) = <~>ta~(X, ')orm, 

Ou1(X, t) = dJ1a~(X, t)Orcx, 

Ocu(X, t) = Bum(X, t)orm, 

i, j, k, I = 1' 2, 3, IX = 1' 2, ... ' N 

871 

(N- number of nodes in a space-time element multiplied by a nodal numbe( of degrees 
of freedom), where 

Bum= ~ (<I>ta,J+<PJ:,,). 

The interpolation functions (shape functions) are assumed in a way7typical'for the finite 
element method (for example [S]f'Apply.i;g-'ihe approximation rule (2.11) to Eq. (2.10), 
we have 

E 

(2.13) 2 {or~[K~1rp-~]} = o, 
e=l 

where 

K~p = J J [Cf1kzB;,pBfia.-r/<l>fm<l>fb]dQ, 

Re = f f r/ff<l>fcxdQ+ j j tftPiad(o!J)+ j (/il{tPiJdVI::ad 
a, aa, v, tall 

(2.14) 

denote the space-time element stiffness matrix and the nodal impulse vector, respectively. 
Equation (2.13) must be fulfilled for any variation of displacements 

E 

(2.15) 2 [K~prp-R~] = 0 
e=l 

and for the whole discretized time space. We obtain the system of N linear equations that 
should be solved for nodal displacements r. 
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3. Simplex-shaped elements 

OoEN in [4] presented the nonstationary partition of the structure. He used quadran
gular and tetrahedral forms for a uni-dimensional structure. However, he did not continue 
his research. 

Below we consider the topological properties of triangles, tetrahedrons and hyper
tetrahedrons, all of them generally called simplex-shaped forms. When we divide the time 
space into simplex-shaped elements only, we can obtain the triangular coefficient matrix 
directly during the global matrix assembly. It can also be gained by the row and column 
change or by special numbering of nodes before the calculation of element matrices. The 
arbitrary partition and node numbering as well as the special technique give us the expected 
savings although the second way makes programming easier. 

Let us see this on the basis of an example. Follow the steps: 
1. Divide the bar structure into finite elements with joint numbering (t = 0). 
2. Imagine the same partition in t = L1t; now we have the space-time layer. 
3. Consider the first joint (of any number, for example i), join the node in t = 0 and 

its image in t = L1 t by the line parallel to the time axis. 
4. Then consider the neighbouring nodes (let they be j). If i < j, then connect i/r=Ltr 

andj/r=o· If i > j, then connect i /r=o andj/r=Lft· 
5. Complete the loop over the neighbouring nodes (return to 4). 
6. Complete the loop over the nodes (return to 3). 
The above algorithm (illustrated in Fig. 3) is appropriate to any spatial dimensions. 

In the case of plane structures we only obtain tetrahedrons instead of triangles. More 
details can be found in [38]. 
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Fro. 3. Global matrix of coefficients for one-time layer. 

3.1. Step-by-step solution 

There are two possible ways of solving an equation system with variable coefficients. 
The first: we assemble the one-layer equation retaining the remaining matrices for use 

in the next step. We keep the following tables: 
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C,_1 D,_1 +A, B, 
C, D, 

Three of them are triangular and two- quandrangular. We obtain qi+ 1 from the equa
tion 

(3.1) 

that is rather fast since B, is triangular. 
The second: we keep only one triangular matrix B,, one quadrangular D1 and one 

temporary vector t1 which initially depends on the starting conditions. We solve for qi+ 1 

(3.2) 

preparing t, + 1 for the forthcoming step 

(3.3) tt+ 1 = C,q,+D,qt+1· 

The products C1 q, and A, qi can be computed during matrix element calculation. This 
two-step procedure is similar to the velocity formulation [28]. It is more efficient than the 
first way of solution considering the memory requirements but it needs more arithmetical 
operations (multiplications) per one step. 

One characteristic property of simplex-shaped elements must be mentioned here. 
That is the limited speed of wave propagation in the direction of slope edges. A regular 
mesh with slope sides directed identically shows the anisotropy in time, that is the infinite 
wave speed in one direction and finite speed in the other. It can be useful in some wave 
propagation problems, i.e., shocks placed to a point. Isotropic propagation can also be 
achieved by a special partition. 

3.2. Efficiency of one step path 

Presently the cost of random access memory decreases considerably so the size of the 
problem to be solved is rarely limited. However, the time of computations still really limits 
the size of the task. Usually the number of multiplications is used as a measure of the 
algorithm cost. When the mathematical coprocessor exists in computer hardware, multi
plications are executed with the same speed as additions. It is difficult to assume a good 
measure of computational effort. Since the total number of operation is proportional to 
the time consumed in calculations and multiplications are almost a constant percentage 
of them, we assume the number of multiplications as a measure of efficiency of an algorithm. 

Additional time dimension in the space-time element approach results in greater ele
ment matrices. For example, in the case of a triangular plane element we compute 36 
coefficients. The respective space-time layer filled by 3 tetrahedrons requires 192 coeffi
cients, that is 5.33 times more. This ratio decreases for uni-dimensional structures to 4.50 
and reaches 6.25 for the 3-D body. 

The question is what gives us the increased computational effort? First of all better 
space-time approximation of displacements, linear between two successive whiles, instead 
of the constant one as it is in classical time integration schemes. Adaptive t~chniques can 
be applied in a natural way then. 

However, the triangular coefficient global matrix requires a smaller number of opera
tions. The simplex space-time element method requires: 

6 Arch. Mecb. Stos. 6/89 
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I) in the case of the one-step solution scheme 

(3.4) M = 2sN(c+ 1); 

2) in the case of the two-step solution scheme 

(3.5) M = 3sN(c+ 1). 

Heres is a nodal number of degrees of freedom, N- the total number of degrees of freedom 
in a structure, c- the number of joints which neighbour any joint in the mesh. 

As a comparison (1) we can look at the estimation of the Newmark and Trujillo method. 
In the first one we have 

(3.6) 

where b- half band width, n - number of time steps. 
The Trujillo method (2) requires 

(3.7) 

multiplications. 

Memory requirements 

M = 2sN(c+ 1)+ ION 

Memory requirements are measured as the number of real values L stored m the 
memory to run the task. In the one-step procedure 

(3.8) L = 3.5sN(c+ 1)+ l.5sN 

and in the two-step procedure 

(3.9) K= 1.5sN(c+1). 

4. Stability restrictions 

Some important problems appear while solving the differential equations by numerical 
means. A fundamental one is the question how to pose the problem well, i.e., the existence 
of the unique solution and its continuous dependence on the right-hand side and the 
boundary conditions. The last property is the stability of the differential problem. 

The convergence is the approach of the estimated problem to the original one when 
, the step of integration or the finite element dimension goes to zero. The approximation 

error is the error caused by the numerical method related to one computational step, without 
the influence of the previous step error. The estimated problem is stable when small dis
turbance in right-hand side coefficients results also in small disturbance of the solution. 
The numerical method is stable when it ensures the solution with the avoidable error 

(I) R. Mullen, T. Belytschko, An analysis of an unconditionally stable explicit method, Comp. Struct., 
16, 691-696, 1983. 

(2) D. M. Trujillo, An unconditionally stable explicit algorithm for structural dynamics, Int. J. Num. 
Meth. Engng., 11, 1579-1592, 1977. 
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level resulting from the estimated representation of data and results. We can emphasize 
that the stability of the numerical algorithm is only the necessary condition for the correct
ness of the numerical method. 

There are two reasons for instability of the solution schemes in the STEM. The value 
of the time step in the integration of the motion equation is the first one. The time step 
is understood here as a time dimension of the space-time finite element. In the case of 
non-rectangular elements, it is difficult to express the influence of the time step on the 
stability. The second reason, the influence of the geometry of the space-time elements, 
is also difficult to show. Below we will exhibit selected cases of non-rectangular meshes 
and restrictions imposed on the element geometry. 

4.1. General stability condition 

The stepping rule can be written with the use of the amplification matrix T [32] 

(4.1) X1+ 1 ~ T,X, + R, where X, ~ {;:}. 

The sufficient condition for the stability of the problem (6.1) is 

(4.2) e(T) ~ 1 + <XLlt, 

ex - any positive number, e(T) is the spectral radius of the matrix. We can also give the 
estimation for e(T) 

m 

e(T) ~ max}; ltul, e(T) ~ ytr(TT~), 
j=l 

e(T) ~ 
2
Vtr(T)2 m. 

In the investigations we use the system of two elements with end nodes fixed in which 
only the inner joint can move. The simplest mesh has been used to investigate the influence 
of only the movement d on the stability criterion. The selection of the type of mesh ge
ometry allows us to treat the worst case. In any other, even more complicated system with 
a nonstationary joint location, we can expect milder restrictions. Each second layer of 
nodes was eliminated and in this way reproducible superelements were obtained. The 
matrix of the system of equations can be written in a block form: 

[

F A B l CD E 
FA B . 

CD E 

The transfer matrix T now has the form 

[
(BD- 1 E)- 1 (A-FD- 1 E-BD- 1C) - (BD- 1 E)- 1 FD- 1C] 

(4.3) T = I O . 

4.2. Sample mesh investigations 

Below we consider some chosen problems and their stability properties. First we men
tion the multiplex form of space-time elements. In this case shape functions can b~ uncoup-

6* 
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led and only the time variable for one degree of freedom can be considered. Then a bar 
in axial vibrations solved with quadrangular and triangular elements are investigated. 
At the end, beam and plane elements are described. 

Multiplex elements 

Only the time-dependent term of the shape function is modified by the third-order 
term scaled by a parameter a [28]: 

- 1 
(4.4) <P1(r) = 2 (1 +rr1)+ar1(r3

- r). 

The unconditionally stable scheme can be obtained for a ~ 1.25. 

Quadrangular elements 

Shape functions are expressed in a local coordinate system. In this case the element 
domain becomes a square {~, r: -1 ~ ~ ~ 1, -1 ~ T ~ I}. Shape functions for real 
displacements are assumed in the form 

(4.5) 

For virtual displacement we modify the time-dependent part of a shape function ,Pi 

(4.6) 

The coefficient a modifies the shape function and flows into the element's properties. 
The influence of the coefficient a on the stability and accuracy of the solution is determined 
below. 

Let us consider an element of a parallelogram shape and lenght b, fixed on one joint's 
line to eliminate the lower modal frequency. We remember that only the highest frequency 
determines the stability restrictions. Coefficients of stiffness and mass matrices can be 
derived analytically. They are such: 

1 h ( 5-4a ) 
EA Kt} = 4b ~~~} I +-1-5- TtTJ , 

(4.7) 
1 d ( ~t;Jd2 

TtTJb ~~~JTtTJ 2 2 2 
eA Mtj = -% ~~r1 +rt~1)-~-4h- 180bh (I5b +15d -I2ad ). 

The transient matrix can be formed considering only free joints. The stability condition 
for the differential stepping scheme leads to the inequality 

(4.8) 

where 

_
1 
~ 2K2 (5-a)-10(1-k2)+2<Xk2 ~ 

1 
(K2 -k2)(5+2a)+l0 -..:: ' 

K=~ b , 
d 

k=b' 

c- wave speed, c2 = E/e. We also introduce the dimensionless parameters = dfhc. 
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The coefficient K is the Courant number and can be considered as a shape measure 
related to the wave speed c. The dimensionless parameter k is a measure of the slope of 
the parallelogram. 

In Fig. 4 the stability areas for different parameters~ are depicted in terms of k and s. 
The first diagram shows the case of unmodified shape function. The time step limit for 
rectangular mesh is equal to 2bfc and decreases for slope mesh. The maximum dfb ratio 

5 
2.5 r-----..,----~-----r------, 

0 

d 
k=b 

0.5 

d 1 
5=-·-

h c 

10 1.5 2.0 
k 

FIG. 4. Stability condition - quadrangular bar elements. 

for the time step decreases to zero and dmax = 2/{3 b. When ~ is equal to 1.25, we have 
a stable scheme for any time step and the limit for d is equal to b and is independent of 
time. When the value of ~ increases, the maximum distance d is proportional to the time 
step. 

Triangular elements 

The properties of quadrangular element stability can be explained extensively after 
consideration of the system of triangular elements of a bar in axial vibration. Alternate 
space-time elements have oppositely-directed slope edges. The assumption of linear time 
and space distribution of displacements gives the values of coefficients: 

(4.9) 

(4.10) 

A= 32EAhb _ 4eA(4b2 +d2
) D =A, 

4b2 -d2 h(2b+d) ' 

B = 2eA(2b-d) 
h 

C = E = F = B, 
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The eigenvalue problem of the condition ( 4.2) leads to the inequalities 

(4.11) 
-.I s k2 

(I) -2~ k~ 0, s > Jl 2-k 4+k2' 

(2) 0 ~ k ~ 2, 
k 

(4.12) S> 
11(2-k) ' 

(3) -2~ k~ 2, 
2 

(4.13) s< 
y(2-k) 

The diagram of the relations (4.11)-(4.13) is shown in Fig. 5. It can be seen that for some 
values of the time step h the interval of the stability cannot be simply connected. The 
condition (3) of Eq. (4.13) describes the time step h for the stationary mesh (then k = 0): 

(4.14) !!!__ I = y2 
dk k=O 2 . 

K 
3.00 r----.----.----.-------, 

k=b/b 
K=bh/c 

aoo~----~----~~----~-------
- 2.00 -1.00 0.00 1.00 2.00 

K 

FIG. 5. Stability condition- triangular bar elements (first case). 

Finally we have the critical value 

(4.15) her= y2bjc. 

An identical condition is obtained for the central difference method. 
When the space-time layers are reproducible (considering the sense of slope edges), 

the result of numerical searching of the stability area is depicted in Fig. 6. The stable 
region is bounded by the inequality 

(4.16) 
l/2 .. ;-
-2- k ~ s ~ J' 2' 0~ k~ 2. 

However, the region of stability is not simply connected. Even small damping does not 
remove the instability inside the stable region. Moreover, the viscous damping does not 
change the critical time step although the upper limit of the parameter s slightly increases. 
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hE.. 
2.0 br----,..----,..----r-----

D 1.0 2.0 
k 

Fro. 6. Stability condition- triangular bar elements (second case). 

Let us consider now modified shape functions for the virtual displacements 

(4.17) iP, = L,+et.(-2Lr+3Lf-L,+2L1L2L3), 

(4.18) (/> LJ 3 z 3 
I= i --yL, +-yL,-LlL2LJ. 

8?9 

The parameter et. should be chosen to ensure the unconditional stability for the system 
built of such formulated elements. We have analyzed the sample mesh. The rectangle was 
divided into two triangular elements. The stepping scheme allows to determine the ampli
fication matrix. The stability condition can be written then as 

(4.19) 

The parameter et. can be easily determined: 

(4.20) 
for 0~ K~ y2, 
for K~ v2~ 

For comparison, the unconditionally stable case of the multiplex space-time element 
method was considered. We have the following recurrent formula: 

(4.21) 

Equation (4.21) is unconditionally stable for et. = 1.25. The amplitude error obtained for 
et. selected from the inequality ( 4.20) is significant in the case of greater time steps. The 
phase error, in contrary, is lower [31]. 
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If we shift the argument in the inequality (4.20) by 2, we can eliminate the conditional 
inequality ( 4.20) receiving the value for ex depending directly on k 

.30k2 

(4.22) a= 3kz+2. 

A comparison of the phase error for selected time integration methods can also be found 
in [31]. 

5. Nostrationary partition - adaptive technique 

Classical time integration methods cannot be successfully applied to some nonlinear 
problems. For example, standard time integration schemes applicable to viscoplasticity 
are unstable or inaccurate in the presence of cyclic loading and extremely fine meshes must 
be used in the finite element calculations in order to obtain reasonable representation of 
stress histories. The adaptation techniques based on the a posteriori error estimation have 
been intensively developed to increase the efficiency and accuracy of calculations [54-68]. 
There are two basic approaches of mesh refinement: 

successive division of the element into smaller elements, increasing the number of 
joints (h-refinement), 

moving the joints to regions of available rough partition (r-refinement). 
The first way is inconvenient in time-dependent problems. Such are contact problems 

in dynamics. The initial phase is important and each approximation accumulates the error. 
The addition of new joints whose nodal parameters are interpolated does not increase 
accuracy remarkably while coarsening of the mesh always makes the solution worse. 
Stress waves in transient problems enforce frequent and total mesh modification, therefore 
such a procedure seems to be costly. The hierarchical procedure is based on the same 
principle. 

The second way appears efficient. The refined zones are moved together with the stress 
field motion or other characteristic lines movement. 

The full space-time approximation gives a natural way of mesh modification with 
a constant pattern of the mesh and unvaried number of nodal points and spatial elements. 
We apply this method in our work. 

Error indicator 

Many different error estimators have been suggested in the literature. However, we 
should select those satisfying the following requirements: 

high speed of error estimation, 
dimensionless form and normalized value, bounded 0 ~ e ~ 1, 
possibility of changing the feature that is to be tested; error estimation without necessity 

of stress calculation, based on the displacement may tum out to be efficient in motion 
investigation of the structure. 

In our case we must optimize the distribution for a fixed number of elements. Let us 
denote li as a mesh size. The distribution of the error is given by the integral over the 
spatial domain (for example [61]). 

http://rcin.org.pl



SPACE-TIME ELEMENT METHOD IN STRUCTURAL DYNAMICS 

(5.1) J h(u;x + u;y)dxdy = constant. 
A 

881 

Modifying the relation (5.1) due to the interpolation formulas, we obtain the error 
measure for a joint i: 

(5.2) 

j denotes joint numbers in an element m to which the node i belongs. ut is the displacement 
k of the joint j. Since the shape functions N are linear, the derivatives N, i are constant and 
the form (5.2) can be given explicitly what considerably increases the efficiency. 

A /gorithm of mesh modification 

The following steps describe the mesh geometry modification: 1. Calculation of the 
nodal values of the error. 2. Normalization of nodal errors. 3. Calculation of movement 
components for a joint. New coordinates are computed as a position of the center of 
gravity of all joints being in direct connection with the considered joint. The distance of 
a joint translation in one step counted in Sect. 3 is always shorter than the average element 
spatial size h in surrounding elements. To avoid loss of stability, we must correlate the 
joint movement distanced with the time step L1t, wave speed c and element edge b (Fig. 6). 

6. Nonlinear problems 

We consider the continuous body that occupies the domain P-10 in the initial configu
ration. ao ia a subdomain of E3 • By P-10 we denote the interior of this domain and by oflo 
its boundary which is the sum of oelor and of-lou (Fig. 7). We use the total Lagrangian 
formulation X to define deformation and motion of the material in the theory of finite 
deformations. Dynamic variables applied in the formulation, i.e., the vector displacement 
field u, body forces e0 f 0 , symmetric Fiola-Kirchhoff stress tensor field T and Green-

Xz 

FIG. 7. Projection of the material point after deformation. 
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Lagrange strain tensor E are defined in the Cartesian product P-10 x [0, T]. The vector 
field of surface forces ta are defined in oP-10 x [0, T]. The actual configuration is defined 

by the coordinate system X, domains P-1, oP-1, oPJU, body forces ef and surface forces t. 
All the functions are sufficiently smooth. If we use the same Cartesian coordinates (straight
line and orthogonal) in the description of initial and actual configuration, then the strain 
is represented by the Green tensor in the form [53] 

1 
Eu(X, t) = 2 (ut. 1 +u1• 1+uk,tuk.1), 

(6.1) 

u1(X, t) = x1-Xh X, t E f!J x [0, T]. 
Stresses in the actual configuration related to the initial one are defined by the II Piola
Kirchhoff tensor that is coupled with the Cauchy strain tensor a: 

(} 
au(X, t) =eo (b,a+u1,a)(b1p+u1 ,p)Tpa, 

(6.2) 
(} e;; = detlbu+u1, 1l. 

The relation between the symmetric strain and stress tensor can be written as 

(6.3) Tu(X, t) = Duk1(X, t, E, T, E, .. . )Ek, X, t E f!40 x [0, T], 

where D describes the material properties. Constitutive equations are described in numer
ous references (for example [51, 53]). The coefficients are given explicitly in [48]. The 
equilibrium equation in the Lagrange coordinates based on the second Piola-Kirchhoff 
tensor is written in a known form: 

(6.4) 

The unique solution requires the boundary conditions: 
static conditions 

(6.5) fot = TJk(b,k+u,,k}voJ, X, t E: Of!Jor X [0, T], 

displacement condition 

(6.6) u1 = U,, X, t E BPA0 x [0, T], 

the initial conditions 

(6.7) u1 = uf, X, t E f!J0 x {0} 

(v0 is the outward normal to the element surface oP40 r). 
We can pass to the global formulation. Let us multiply Eq. (6.4) by the virtual variation 

of the displacement function 

{
any, X, t E oP40 u x [0, T], 

(6.8) bu(X, t) = O, (- ~ ) X, t E f!Ao- ufflou X [0, T] 

and integrate over the space-time domain. Then we have 
It It 

(6.9) J J eo(fo,bu,+u,bu)df!lodt+ J J t01 bu,d(of!J0 )dt 
0 ~o 0 o~o 

It 

+ J eubu,df!41:
1 

= f f TubE11df!40 dt, t1 E [0, T]. 
~0 0 ~0 
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After discretization of the space-time domain the static and geometrical quantities are 
described according to the nodal parameters of the space-time element: 

(6.10) 

where 

(6.11) 

u1(X, t) = <J>,,x(X, t)r a.' <5u1(X, t) = <1>1a.(X, t)<5r a., 

u1(X, t) = (pia.(X, t)ra., <5u1(X, t) = <i>ia.(X, t)<5ra., 

Eu(X, t) = ['Bu:+"Bua.(rp)]ra., 

<5Eu(X, t) = ['Bucx+2"B11a.(,-;)]<5ra., 

Tu(X, t) = D11k1['Bkla.+"Bk1a.(rp)]ra., i,j, k, I= 1, 2, 3, a= 1, 2, ... , N, 

Applying the approximation formulas (6.10) to Eq. (6.9) we have 

E 

(6.12) ,, {[(con)Ke +(u)Ke +(a)Ke -Me ]r -Re} _ 0 
~ ~ ~ ~ ~ ~ p a. - ' 
e=l 

where 

(con)Ke -If De Be Be d'~ a.p - IJk" iJa., kiP ~~, 
De 

(u)Ke JJ De "Be "Be d'n a.p = iJkl iJa. kiP ~t:, 

De 

(6.13) (a>K;.p = 2 f f Dfjki('Bfc,a.+"Bfcla.)"BfJpd!J = f I Tfcl<J>fa..k<J>t{J,IdQ, 
De De 

M~p = f f eoii>ra.ci>Tpd!J, 
D 

R~ = f f e8fot<1>Ta.d!J+ f f t8i<I>ia.d(o!J) + f e~ut<1>ia.d.14ol:~:~t. 
De oDte ffloe 

In analogy to the terminology used in the classical finite element method [51], the matrices 
<con> K~p, <"> K;.p, <a> K;.p and M;.p are called the constitutive stiffness matrix, displacement 
stiffness matrix, stress stiffness (geometrical) matrix and mass matrix, respectively. The 
expression 

( 6.14) K;.p = (con) K~p + (u) K;.p +(a) K;.p- M~p 

is the space-time element stiffness matrix. 

6.1. Incremental procedure 

Let us consider a space-time layer tn ~ t ~ tn+Lit. We can write the work equilibrium 
equation at time t: 

(6.15) J GnTu<5tEu+te!"iit<5 tut)'d.14 = t[JI/, 
1fi1 
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where 
tTii- II Piola-Kirchhoff stress tensor in time t related to the configuration in t,, 
:.Eil- Green-Lagrange strain tensor, 
'e- mass density, 
'fJt - virtual work of external loads 

(6.16) '{)f = J 'f1 du/d~+ J;'t1 du,'d(o~), 
1 91 1a91 ~ 

'fi, 'ti - body and surface force coefficients at time t. 
Further we apply the incremental decomposition 

(6.17) 

(6.18) 

(6.19) 

and the constitutive relation 

:.Tli = !:Tu+LITu = '"Tli+LITil, 

t Eu = L1Eil, 

~" u, = !~ui + L1ui 

(6.20) LITli = r, CtiktL1Ekl. 

Now we can integrate Eq. (6.15) over the time interval [tm t,+ 1]. Further we use the matrix 
notation since it is applicable in computational procedures. As a result we have 

(6.21) [~/ (DlP?CD<Pdf.l,+ ~/ (DN,P)T-rDN<PdQ,- ~/ [ ~~rea:; d.Q,]Llq 

= F- ~~ (D<P)'Td!.l,+ l~J [ aa~ r e a:; d.O}, 
where D and D N are the differential operators for the linear and nonlinear part of consi
derations, respectively, T is the Stress matrix and r is the streSS VeCtOr Or, in the ShOrt 
form, 

(6.22) 

7. Examples of applications 

Numerical examples prove the efficiency of the STEM. Problems are modelled by 
simple space-time elements. Linear shape functions, however, allow to obtain an accuracy 
comparative with FEM solutions. Adaptive techniques applied to simple test problems 
enhance the accuracy, especially increasing the higher mode vibrations. In further examples 
nonlinear material properties are included. 

Cantilever plate 

We solved the plate of dimensions L x L/2, firmly supported at one end, subjected to 
a Heaviside point force placed in the middle of the free end. A successively condensed 
triangular mesh, starting from 2 x 1 squares subdivided into triangles, enables to obtain 
higher accuracy. The results are compared with the FEM solutions and modal analysis 
(Table 1). It should be emphasized that tetrahedral space-time elements of constant strain 
were used. 
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Table 1. 

Partition 

2x1 
4x2 
8x4 

experiment 
Ritz method 

wD 
No. of joints 

QL2 

6 0.564 
15 0.953 
45 1.277 

2 x 1 (4 triangles)- modal FEM analysis 
4 x 2 (16 triangles)- modal FEM analysis 
double static deflection 1.472 

* [8] second edition 

(l) 

4.84 
3.97 
3.36 
3.42* 
3.47* 
3.39* 
3.44* 

Fla. 10. Mesh adaptation under moving load- three stages after 1 em, 2 em and 3 em path of total 
dimension = 32 em. 
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Vibrating bar self-adaptive mesh 

The bar divided into 40 spatial elements is supported at the end. The impulse force 
is placed to the free end. The partition in space is adapted due to the assumed error criterion. 
The spatial partition as a function of time is depicted in Fig. 8. We can notice the joint 
movement at the moment of a passing wave. Below we have the diagram of displacements 
in time of the subjected joint. In Fig. 9 the identical task is depicted with the only differ
ence that the Heaviside force is applied to the end joint. 

Plane starin structure - adaptive mesh 

We treated the plane strain rectangular domain subjected to a travelling point force. 
Joints go to the vertical band of much higher stress gradients. An initially regular mesh 
of 8 x I6 squares is deformed and three stages are presented in Fig. IO. 

Visco-elastic :bar 

Longitudinal vibrations of a bar were investigated but the material was a viscoelastic 
one. In Fig. · 11 (a) the sample bar is depicted together with all the necessary material 
data. Figure II (b) presents displacements in time in the case of the Kelvin-Voigt material 
and Fig. II (c) deals with the Maxwell material. Displacement ub strain c1 , speed of strain 
£1 , stress a 1 and the subjecting force P for different material models are presented in 
Fig. 11 (d). 

8. Future directions 

In the present work we did not broadly discuss the paper by HuGHES and HuLBERT [2]. 
The discontinuous in time method of approximation allows to obtain unconditionally 
stable schemes resulting from the least squares analysis. The portion of accumulated 
energy is distributed on joints in each time layer. However, the accuracy has not been 
proved in the paper. In the case of large time steps we can expect divergency. In any case 
the proposed method should be verified with the use of simplex-shaped elements. Then 
the best features of both approaches would be joined. 

The unconditional st~bility is still the main disadvantage of the method. Each improve
ment to overcome this inconvenience would be precious. 

The deficiency of the commercial computer codes makes widespread use by engineers 
impossible. For the same reason the experiments and practical results are still poor. 
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