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Finite-part singular integro-differential equations 
arising in two-dimensional aerodynamics 

E. G. LADOPOULOS (ATHENS) 

A NEW METHOD is considered for the solution of the finite-part singular integro-differential 
equations, applied in many problems of Mathematical Physics and especially in elasticity and 
aerodynamic problems. This is obtained by reduction to a system of linear equations, by 
applying the singular integro-differential equation at properly selected collocation points. An 
application is given to the determination and solution of the generalized airfoil equation, which 
presents the pressure acting on a planar airfoil undergoing simple amplitude oscillations about 
the central plane of a two-dimensional ventilated wind tunnel. 

Przedstawiono now(!, numeryczn(l metod~ rozwi(lzywania osobliwych r6wnan r6i:niczkowo­
calkowych w zastosowaniu do wielu zagadnien fizyki matematycznej, a w szczeg61nosci do 
teorii spr~i:ystosci i aerodynamiki. Problem sprowadza si~ do ukladu r6wnan Jiniowych spelniaj(lc 
r6wnania r6i:niczkowo-calkowe w stosownie dobranych punktach kollokacji. Podano zastoso­
wanie metody do analizy drgan plata oplywanego i podlegaj'lcego drganiom w tunelu aero­
dynamicznym. 

IlpeACT3BJieH HOBblli, 'tiHCJieHHbiH MeTOA pemeJm.H OC06biX AH<l><l>epeH~HaJihHO-HHTerpanh­
HbiX ypaBHemm B npKMeHI{lf I< MHOrKM 3aA31.J3M M3TeM3TH1.JeCKOH <l>113HKH, a B l.JaCTHOCTH 
I< Teopi{J{ ynpyrocTH H a3pOAl{HaMHI<H. 3aAa1.Ja CBOAifTC.H I< CHCTeMe JIHHeHHbiX ypaBHeHllH, 
YAOBJieTaopHH AH<l><l>epe:mmam.Ho-mrrerpam.HbiM ypaaHeHJ{.HM a coorneTCTBeHHo noAo6-
paHHbiX T01.Jl<aM I<OJIJIOKai.llfH. IlpeACTaaneHo npHMeHerme MeToAa 1< aHa.JIH3y Kone6amm Kpbr­
na, o6TeKaeMoro noToi<oM H noAJie>I<~ero r<one6ammM B a3pOA1fHaMHtJecr<oM TYHHeJie. 

1. Introduction 

MANY IMPORTANT problems of applied mathematics and physics can be reduced 
to the solution of a finite-part singular integro-differential equation. 

Hence it is of interest to solve numerically these systems of singular integro-differential 
equations of the respective boundary value problem, instead of the problem itself. 

The most effective method of solving numerically this type of singular integral equations 
is the direct method which consists in reducing such an equation (or system of equations) 
to a system of linear algebraic equations, by using an appropriate numerical integration 
rule on a properly selected set of collocation points. 

Some studies of the generalized two-dimensional airfoil equation began in the 1930. 
Theories for general aerodynamic problems have been obtained by V. V. GoLUBEV [1], 
T. VON KARMAN and J. M. BURGERS [2], H. SCHMIDT [3] and K. ScHRODER [4, 5]. 

In the 1940 the two-dimensional aerodynamic problems were advanced by the work 
of J. WEISSINGER [6], H. KUSSNER and L. SCHWARZ [7], L. G. MAGNARADZE [8-10], I. N. 
VEKUA [11], [12] and H. SCHONGEN [13]. 

N. I. MusKHELISHVILI [14] has given an extended study of the integro-differential 
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926 E. G. LADOPOUI.OS 

equation of the aircraft wings of finite span, while V. V. IVANOV [15] has obtained some 
approximate methods to the numerical solution of integro-differential equations. 

Over the last years some papers have been published on the application of the integro­
differential equations in aerodynamics. Among them we shall mention the following 
authors: S. R. BLAND [16, 17], J. BLACKWELL and G. POUNDS [18], J. A. FROMME and 
M. A. GoLBERG [19-24], M. A. GOLBERG, M. LEA and G. MIEL [25], M. A. GoLBERG [26], 
W. F. Moss [27, 28], D. J. SALMOND [29], M. H. WILLIAMS [30], E. KRAFr and C. Lo [31], 
M. MOKRY [32] and E. NISSIN and I. LoTTATI [33]. 

In the present report a new technique is proposed for the numerical evaluation of the 
general type of the finite-part singular integro-differential equation. An application is 
given of the numerical solution of the airfoil equation, as a rising interest in the general 
problem of high subsonic and transonic aeroelasticity has made the need for improved 
methods of aerodynamic analysis and testing greater. Hence, the method presented in 
this communication. is a generalization of the finite-part singular integral equations 
methods introduced and investigated by E. G. LADOPOULOS [34-40], and used in elasticity, 
plasticity and fracture mechanics problems. 

In the present report the new method shall be extended to aerodynamic problems as 
well. 

2. Finite-part singular integral equations 

Let us consider the finite-part singular integral: [34, 38-40] 

(2.1) (/J(z ) = rr ") f w(t)tp(t) dt 
'~-' VA' (t-z'f ' 

L 

ft = 1, 2, 3, . . .• 

where L denotes the interval [a, b] of the real axis, w(t) a given weight function defined 
for every t E [a, b], tp(t) an analytic function oft in any plane domain S, containing the 
interval L and F(p) the Gamma function. 

Furthermore we consider the finite-part singular integral equation of the second kind 
with variable coefficients: 

(2.2) A(x)tp(x)+F(p) f B(t) (;~tlr dt 
L 

+ J K(t, x)tp(t)dt = f(x, !-'), x E L, !-' = 1, 2, 3, ... , 
L 

where A(x), B(t) and f(x, p,) are known functions, F(p) is the Gamma function, K(t, x) 
the Fredholm kernel, tp(x) the unknown function and L the integration interval which 
may be a closed contour, a curvilinear arc, or simply a part of the real axis. 

Another system of finite-part singular 

Integral equations encountered in boundary value problems of two-dimensional 
elasticity can be written in the form 
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FINITE-PART SINGULAR INTEGRQ-DIFFERENTIAL EQUATIONS 927 

n "' I {/}j(t) (2.3) ft(x, p,) = .L..; Cu(x)F(p) (t-xf dt 
1=1 L 

N 

+ 2 I Kf)(t, X)qJ/t)dt (i = 1, 2, 3, .. . , N) 
1=1 L 

in which the functions C11(x), KiJ(t, x) and .fi(x, ,u) (i,j = 1, 2, 3, ... , N) are known. 
A general form of a system of finite-part singular integral equations, in which the 

dominant part has a generalized kernel, is as follows: 

k 

(2.4) AqJ(x)+T(p)_I BqJ(t) (t~txr +F(p) J 2 C1cp(t)(x-a)k :; (t-z1 )-~Jdt 
L L 0 

j 

+F(p) J 2 D1cp(t)(b-x)i ::1 (t-z2)-~Jdt + J K(x, t)qJ(t)dt = f(x, p,), x E L, 
L o L 

where A, B, C~c and D 1 are (N x N) matrices which are generally constant, the matrix 
K(x, t) consists of Fredholm kernels K 11(x, t) (i,j = 1, ... , N) and/= f(x, tJ), (i = 1, ... 
. . . , N) is the input vector which satisfies a Holder-condition in L. 

Also, the variables z 1 and z 2 are given by: 

z1 =a+ (x-a)e'€\ 
(2.5) 

where el' e2 are known constants with 0 < el < 2n and -n < e2 < n. 
Moreover, let us consider the finite-part singular integral equation of the first kind: 

(2.6) T(p) I /:~~~r dt + I K(x, t)qJ(t)dt = f(x, p,), p, = 1, 2, 3, ... , 
L L 

where qJ{x) is unknown, T(p) is the Gamma function and f(x, ,u), K(x, t) are known 
functions which are H-continuous in the closed interval L. 

From Eq. (2.2) we obtain the finite-part singular integral equation of the second kind, 
with constant coefficients: 

(2.7) acp(x)+bT(p) I /:~~~)~I dt+K(x, t)cplf)dt = f(x, p,), p, = 1, 2, 3, ... , 
L L 

where the interval is again normalized to be L without any loss in generality. It will also 
be assumed that a, b are constants and the known functions f and K are H-continuous. 

The functions qJ, k,fand the constants a, b may be real or complex. 
Some aerodynamic problems are solved by using the equations discussed in this chapter. 

The same equations are used for the solution of elasticity and plasticity problems of iso· 
tropic and anisotropic solids [34-40]. 
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928 E. G. LADOPOULOS 

3. Finite-part singular integro-differential equations 

A large class of problems, in mathematical physics particularly, can be reduced to the 
solution of a singular integro-differential equation of the form: 

m 

(3.1) 2 ( ( a1(t )q,U>(t) + T(p) J KJ(t, ( ~~~~( r)dr ) = f( t), p = I, 2, 3, ... , 
)=0 L 

tEL, and at, Ki,f(t) are given functions and q;<i> denotes the j-th derivative of q;. 
Assuming that a1, K1 and fare sufficiently differentiable and that L is a simple, closed, 

sufficiently smooth contour, we can reduce Eq. (3.1) to an equivalent singular or regular 
integral equation. 

Thus, let us give a method for the reduction of Eq. (3.1) to a singular integral equation. 
Let L = (a, b) an open smooth curve. By writing 

(3.2) q;<m>(t) = g(t), 

we obtain 

m-k-1 

(3.3) q;<k>(t) = J Wm-k-1(1, f1)g(t1)dt1 + 2 Cm-k-t ;; 
L i=O 

fork = 0, I, ... , m-1, where 

w 0 (t, 11) = 1, if 11 E (a, t;, 

w 0 (t, It) = 0, if It ¢ (a, 1), 

wk_ 1 (t, 11) = J w 0 (t, t2 )wk_ 2 (t2 , t1 )dt2 , k = 2. 3, . .. , m 
(3.4) 

L 

and C 1 , C 2 , ... , Cm are arbitrary constants. 
Substituting into Eq. (3.1) we obtain a finite-part singular integral equation for p, = 1 

of the form 

m 

(3.5) am(t)g(t)+F(p,) J Km(t;~;('t") dt+ J K(t, T)g(T)d't" = .f(t)- 2 CkXk(t), 
L L k=1 

where 
m-1 

( 6) ( ~-, ( ) r J Kit, u)wm-j-1 (u, T) d ) 3. Kt,T)= L.J aitwm_1_ 1(t , T)+ (p,) u-t u 
)=0 L 

and 

It follows that if for any values of the constants C 1 , C 2 , ••• , Cm, the function g is the 
solution of Eq. (3.5), then the function q; as given by Eq. (3.3) will be a solution of the 
original Eq. (3.1). 
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Consequently, it is obvious that if q; is the solution of Eq. (3.1), then q;<"'> (t) = g(t) 
gives the solution of Eq. (3.5) for the specific values of C1 , C2 , ••. , Cm. 

Moreover, it is also possible to apply this method to the case where Lis a closed smooth 
curve. 

Thus, it is necessary to consider the function q;<k>, k = 0, 1 , ... , m- 1 as defined by 
Eq. (3.3), since in general they will not be unique. 

It can also be seen that for the Cauchy problem, when the values of q;<k>(a), k = 0, 1, ... 
. . . , m- 1 are given, we obtain 

k-l 

(3.8) Ck = _27 ( -1)lq;<m-l>(a)fj! for k = I, 2, ... , m. 
}=0 

In the same way for the case where I' > 1, we have the following finite-part singular 
integral equation: 

m 

J
, Km(t, -r)g( T)dt I "'-, 

(3.9) am(t)g(t)+F(p,) L (-r-t) + K(t, -r)g(-r)d-r = f(t)- L,; CkXk(t), 
L L k=l 

where 

m-1 

(3.10) '0 ( () ( ) F( ) I Kit, u)wm-J-l (u, -r) ) K(t, -r) = L,.; aJ t Wm-J-t t, T + I' (u-t)P du 
}=0 L 

and also 

(3.11) 

Equation (3.9) gives the general use of the reduction of a finite-part singular integra­
differential equation to a singular integral equation. 

4. Application to the determination of the two-diemesnional airfoil equation in a wind tunnel 

Let us consider a planar airfoil undergoing simple amplitude oscillations about the 
center plane of a two-dimensional ventilated wind tunnel (Fig. I). By removing the walls 
to infinity, a very important special case exists which gives free air conditions. 

---
FIG. 1. A planar airfoil in a two-dimensional ventilated wind tunnel. 
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930 E. G. LADOPOULOS 

The flow is assumed to be inviscid and strictly subsonic, thus the following unsteady 

wave equation is valid: [21] 

(4.1) 

where ~ denotes the perturbation velocity potential, M the freestream Mach number and 

k the reduced frequency: 

(4.2) k = wd 
u 

in which w is the frequency of the simple harmonic motion of the airfoil, d its semi-chord 

and u the free stream velocity. 
Furthermore the nondimensional pertubation pressure p is given by the following 

relation: 

(4.3) 

with the boundary conditions: 

(4.4) {
0, 

p(x, O) = -1/2L1p(x), 
lxl ~ 1, 

lxl < 1, 

where Llp denotes the lifting pressure jump across the airfoil. The relation between the 

downwash velocity w and the pressure potential ~ is valid as 

(4.5) {}~ I w(x) = -{} , 
Y Y=O 

lxl < 1. 

Thus, the down wash velocity w is related to the potential ~ as follows: [ 16] 

(4.6) 1 Jx ( x-p,) w(x, y, t) = u ~' p,, y, t-du- dp, 
-oo 

in which t denotes the time and p, the ventilation coefficient. 
By using the Fourier transforms 

00 

E(s, YJ = J e-ixt~(x,y)dx, 
-oo 

(4.7) 00 

~(x, y) = 2~ J e'"•E(s, y)ds, 
-oo 

the pressure potential will be given by the following relation: 

(4.8) 

where 

(4.9) 

00 1 

~(x, y) = -
1

- J e'"•f(s) J e-'''Llp(C)dCds, 
4neo 

- 00 -1 

f(s) = sinha(B/2-y)+cacosha(B/2-y) 
sinh(aB/2)+ cacosh (a B/2) 
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in which c denotes the porosity coefficient, B the tunnel height and eo the free stream 
density. 

In Eq. (4.9) the parameter a is valid as 

(4.10) a(s) = ({J2s2 -2M2gs-M2g2) 112 , 

where g is the complex reduced frequency and {3 = y 1-M2 • 

By combining Eqs. (4.6) and (4.8), one has 

u 

X 00 1 

f e-tg(x-~t> ~ f e'Ptf(s) f e-''C.Jp(C)dCdsdp,. 
- 00 -00 -1 

(4.11) 
w(x, y) 

By taking the derivative and interchanging the orders of integration, one obtains 
;1 

(4.12) w(x, y) = -
2
- J .Jp(C)K(M, g, x- C, y, B, c)dC, 

(!oU -t 

where the kernel function K is given by the formula 

(4.13) K = _ _ I_ Joo ae-tg(x-C> cosha(B/2- y)+casinha(B/2- y) Jx-~ e;<,+g)p dp,d'i. 
8n sinh(aB/2)+cacosh(aB/2) 

-00 - 00 

For steady (g = 0), incompressible (M = 0) flow and in free air (no tunnel walls 
B = oo ), the kernel K takes the simple form 

(4.14) K(x) = lfx. 

For this case, with y = 0, Eq. (4.12) yields the following singular integral equation: 
1 

w(x) = _1_ J Llp(C) dC. 
2neo e-x 

-I 

(4.15) 

By using the Kutta boundary condition of a smooth flow at the airfoil trailing edge 

(4.16) lim 2L1p(x~ t) = 0, 
x-.1 (!oU 

Eq. (4.15) has the following closed form solution: 

( )

1/2 
1 

L1 (C) = _ 2e0 u 1-C . J w*(x)w(x) dx 
p n 1 +C x-C 

-1 

(4.17) 

with the weight function w*(x) = (1 +x)112 (1-x)- 1' 2 • 

Thus, by putting the pressure factor 
1 

(4.18) p(C) =- _i_ J w*(x) w(x) ~' 
n u x-C 

-1 

Eq. (4.17) can be written as follows: 

(4.19) 1 ( 1-c )112 

Lip( C) = 2 eou2 

1 +C p(C). 

- The pressure factor p(C) in Eq. (4.18) is continuous on [ -1, 1] if w(x)fu is also continuous. 
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932 E. G. LADOPOULOS 

5. Numerical evaluation of the airfoil equation 

In order to solve numerically the airfoil equation (4.18) we shall use the Gauss-Cheby­
shev numerical integration rule, while solving the same problem, S. R. BLAND [I6] has 
used the Gauss-Jacobi rule. 

Let us consider the following singular integra]: 
1 

f/>(C) = _ I_. J w*(x)<p(x) dx, 
2nz x- C 

-1 

(5.I) 

where w*(x) is the weight function defined in the interval [-I, I], <p(x) is an analytic 
function without poles in a domain Q containing the interval [- I, I] and f/>( C) is a sec­
tionally analytic function in the whole complex plane except [-I, 1]. 

In order to evaluate numerically the singular integral (5.I), we consider the following 
contour integral on a curve C surrounding the interval [- I, I]: [4I, 42]. 

(5.2) 
I f <p(C') , 

fl>o = 2ni (C'- x)(C'- C)m,.(C') dC' 
c 

where 
n 

(5.3) m,.(C) = n (C -x") 
k=1 

in which Xk are the abscissae. 
By applying the Cauchy residue theorem to the integral (5.2), one obtains 

where the error function E,. is valid as 

(5.5) E = _I_ f <p(C') d,.(C') d'"' 
,. ni C'-C m,.(C') "'' 

c 

Ak are the weights and d,.(C) is given by the relation 
1 

(5.6) d,.(C) = - --}- J w*(x) :~i dx. 
-1 

By using the Gauss-Chebyshev numerical integration rule with the weight function 
w*(x) = (I+ x)± 112(1- x)± 112, the relation (5.4) can be written as 

I n 

(5.7) J w*~~~(x) dx ~ 2 A, :.<~~ -2<p(C)R.(C)+E. 
-1 k=1 

for C =I= Xm, m = 1 , 2, ... , n, and 

1 n 

(5.8) _/ w•;x2~(x) dx = 6 A, :.~~ +Am'1''(C)-2<p(C)G.(C)+E. 

k¢m 
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for C = Xm, m = 1 , 2, ... , n, where 

(5.9) C =I= Xm, m = 1, 2, ... , n 

and 

7t Un-2(C) 2n-1 C 
(5.10) Gn(C) = -2 Tn-t(C) + -4- Am 1-C2, c = Xm, m = 1, 2 •... , n, 

where Tn(C) and Un(C) denote the Chebyshev polynomials of the first and the second kind 
and degree n, respectively, expressible in terms of trigonometric functions as follows 

(5.11) 

Tn(C) = cosn1J, 

sinnD 
u"_l(C) = ~{)- , 

sm 
C =cosO. 

In Eqs. (5.7) and (5.8) C is not permitted to coincide with the endpoints -1 or 1 of the 
integration interval. 

As an application of the airfoil equation (4.18), let us consider the case where the down­
wash is valid as 

(5.12) w(x) = {0, 
U X, 

X~ 0, 

X> 0. 

Thus, by using the Gauss-Chebyshev numerical integration rule given by Eqs. (5.7) 
and (5.8), it is possible to compute the airfoil equation (4.18). The same equation was 
computed by S. R. BLAND [16] who used the Gauss-Jacobi rule. 

Figure 2 shows the pressure distribution p(C) for downwash given by Eq. (5.12). 

J 

I 1- [16] 

~-x-x I 
X Gauss-Chebyshev x.....,x...... 

I "~I 
-2 

' 
""""' ·x'-

'x 

-4 

-6 ,, 
"" -8 

-1 -0.5 1 0.5 

FIG. 2. Pressure distribution p(C) for downwash 

w(x)fu = for the planar airfoil of Fig. 1. {
0, X~ 0 . . . 

X, X> 0 

1 
~ 
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934 E. G. LADOPOUWS 

As a second application of the airfoil equation, we consider the following downwash 
function: 

(5.13) w(x) = 
u _1_+_2_5_x-=-2 • 

Figure 3 shows the pressure distribution p(C) for downwash given by Eq. (5.13). 

2 

P(?,) 

a 

- 1 

-2 

-3 
-1 

--
X 

x ... 

I 

[16] 

~~ Gauss- Chebtjshev ~. j 

4 ~ 

J 
l 

>1 

1 r 

~"' 
( 

J 
X'- l 

x,x-f 

- OS 0 as 1 

' · FIG. 3. Pressure distribution p(C) for downwash w(x)/u = 1/(1+25 x2 ) for the planar airfoil of Fig. 1. 

Finally, as it is easily seen from Figs. 2 and 3, the two different numerical rules, the 

Gauss-Chebyshev and the Gauss-Jacobi numerical integration rules coincide very well. 

6. Conclusions 

An effective method of numerical evaluation of the finite-part singular integro­

differential equation consists in reducing such an equation to a system of linear equations 

after the integrals occurring in this equation are approximated by sums and the equation 

is applied at the abscissae used in the numerical integration rule. 
In the case of finite-part singular integro-differential equations with complex singular­

ities, it is possible, for sufficiently broad class of equations of this type, that the points of 

their application used lie, in general, outside the integration interval. In this case, the 

methods used for finite-part singular integro-differential equations with real singularities 

can be extended, without any modifications, to the case of finite-part singular integro­

differential equations with complex singularities. 
A simple form of the finite-part singular integro-differential equation has been numeri­

cally evaluated by using the Gauss-Chebyshev rule. This equation presents the pressure 

factor of a planar airfoil undergoing simple amplitude oscillations about the centre plane 

of a two-dimensional ventilated wind tunnel. 
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