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Stability of a particular motion of a profile
suspended by an elastic rod

P. CAPODANNO (BESANCON)

THE AUTHOR considers a system formed by a rigid profile carrying an elastic rod, moving in an
inviscid incompressible fluid in irrotational motion, the forces exerted by the fluid on the rod
being negligible. The elastic rod is suspended on a rigid horizontal string, this constraint being
frictionless. In the first part of the paper, there are written the equations of motion by means
of the theorems of momentum and of the moment of momentum and Hamilton—-Ostrogradski’s
principle; the first integrals are obtained. In the second part, the author studies the existence
and the stability of motions of horizontal uniform translation of the profile with relative equi-
librium of the rod in the undeformed state, the rod being directed vertically. The problem of
stability is reduced to the problem of the minimum of a convenient functional; the author
gives sufficient conditions of stability.

Rozwaza si¢ ukiad skladajacy sie ze sztywnego profilu zaopatrzonego w pre¢t sprezysty; uklad
ten porusza si¢ w plynie niesciSliwym i nielepkim, zaniedbuje si¢ sily wywierane przez plyn na
pret sprezysty. Pret podwieszony jest na poziomej strunie i porusza si¢ wzdtuz niej bez tarcia.
W pierwszej czgsci pracy wyprowadzono rownania ruchu uktadu, opierajac si¢ na zasadach
zachowania pgdu i momentu pgdu oraz na twierdzeniu Hamiltona—Ostrogradskiego. W drugiej
czesci zbadano problem istnienia i statecznosci ruchu profilu polegajacego na jego réwnomier-
nym przesuwaniu poziomym z zachowaniem pionowego kierunku preta. Problem statecznosci
sprowadzono do problemu minimalizacji pewnego funkcjonalu; podano rowniez warunki
dostateczne stateczno$ci ruchu ukladu.

PaccmaTpuBaeTCsT CHCTEMa COCTOSIINAS K3 YKECTKoro npodusns cHa®)KeHHOTO B YNPYTHiE cTep-
JKeHb. DTa CHCTEMA IBIDKETCS B HEC)KHMaeMoil W HEBA3KON JYKUAKOCTH; mpeHeGperaercA
CHJIAMH [EHCTBYIOIIMMHA CO CTOPOHBI YKHAKOCTH HA VNpyruil creprkerb. CTeprKeHb 1I0ABEIICH
Ha TOPU3OHTANBHON CTPYHE K JBIDKETCA BAOJL Hell Ge3 TpeHus. B nepBoit yacT paboThl BbI-
BeJIeHbl YPAaBHEHUA ABHIKEHHA CHCTEMbI, ONMPAACh HA 3aKOHLI COXPAHEHHS HMITYJIBCA H MO-
MCHTa MMITYJIBCa, 2 TaKXKe Ha Teopemy Iamunsrona-Ocrporpaackoro. Bo BTopoii wacTh
MCCIIEIOBAHA 3a4a4a CYLUECTBOBAHMA M YCTOHYHMBOCTH ABIDKEHHT NPOdHIST, 3aKIIOYAOIe-
rocsa B €ro paBHOMEPHBHIM TFOPH30HTAJIBHBIM COBHIE C COXPAaHEHHEM BEPTHKAJIBHOTO HAMpPAaB-
JICHHA CTepXKHsI. 3aJaya YCTONYHMBOCTH CBEACHA K 3aflaye MHHHMH3aUUM HeKoToporo ¢ynk-
IIHOHAJIA ; MPHBEEHBI TOXKE JOCTATOUHBIE YCIOBHA YCTONUMBOCTH JABIIKEHUSI CHCTEMBI.

1. Equations of motion

1.1. Statement of the problem

LET US CONSIDER the motion, with respect to a fixed coordinate system O;x,y,, of an
arbitrary rigid profile (c¢) without sharp edge, carrying a thin elastic rod PQ, in an in-
viscid incompressible fluid (density p), in irrotational motion, at rest at infinity. The rod
is inextensible, homogeneous (length L, density p’, mass u’ = p'L, centre of inertia G',
moment of inertia of the cross-section 7, Young’s modulus F); its end P is fixed to the
profile; its end Q is moving on a rigid horizontal string O, x, and this constraint is fric-
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tionless. We assume that the forces exerted by the fluid on the rod are negligible. We shall
use a particular coordinate system O, x, y fixed rigidly to the profile [1]. The motion of
the profile is described by the components /(t), m(t) of the velocity of the point 0 and
by the angular velocity w(?) if [0y, x;, Ox = 0(2), w(t) = é(t)]. We denote by (xc, ye)
and (xg, y¢) the coordinates of the centre C and the centre of inertia G' of the profile,
by u its mass; a and b are the coordinates of P.

In the undeformed state PQ,, the rod is directed along an axis P& (Ox, P§ = o =
= constant); the axis Ppy is perpendicular to P& (Fig. 1).

We denote by s (0 < s < L) the abscissa of a particle M, of the rod in the undeformed
state, by u(s, t), v(s, t) the components on P&, Pn of the elastic displacement vector
MM of the particle M.

The condition that the rod is inextensible leads to the relation [3]

du
I T | ’ =
1.1 W= —50 (u Sk

Ys ‘\

FiG. 1.

The boundary conditions at the end P are

(1.2) 2(0,t) =0, o(0,t)=0 for ¢t>1t,.

1.2. Equations of motion

1. Let us denote by X, Y the components on Ox, Oy of the resultant, and by N the moment
about 0 of the forces exerted by the rod on the profile. The equation of motion of the

profile are [1]
Al—Bom = —ol'(m+w,)—pgsinf+X,
(1.3) B+ Awl = oI'(I—wy,)—pugcosf+Y,
Co+(B—A)lm = oI'(Ix,+my.)— pg(xscos0 + yssinb)+ N,
where A4, B, C are positive constants depending on the profile and on p (B > A), ug is the

weight of the profile and I" the circulation around the profile, constant by Helmholtz
theorem.
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2. It is easy to write the theorems of momentum and of the moment of momentum for
the rod only.
The components of the momentum on Ox, Oy are

wle+l-wye), p(e+m+wxe)
and the moment of momentum about 0 is
é‘*‘--]w'*“ﬂf(xc’m—J’c'm)s
where X, yg- are the coordinates of G’, J and g the moment of inertia and the relative
moment of momentum of the rod about 0.

Let us denote by R the reaction of the string O, x; on the rod, parallel to O,y;:
We obtain

W (o —2096) + ' (I—om) — ' (g, bo+ Xg.0?) = —X+(R—u'g)sin,
(1.4) W (G +2m¥%a)+p (n+ol)+ ' (xgo—yeow?t) = —Y+(R—u'g)cost,
d .. . , .
W(ngIw) +u'xg(m+owl)—u'ye(—wom) = N—u'g(xg cosd—yg.sinb)
+ R(xqoco86 —y,sinf),
where xq, yo are the coordinates of Q.

3. Adding the equations (1.3) and (1.4), we obtain
(A+p)i— (B+p)om+p (g —2076) — ' (Vo0 + Xg0%) = —ol(m+wx,)
+[R—(u+p)glsind,
(1.5)  (B+p)m+ (A +p)ol+p' Gg +20x6) + p' (xg.0 — ye.w?) = oI'(I—wy)+ [R
—(u+p)glcost,

Cao+ (B—A)Im +% (& + Jw) + p'xg. (M +ol) — 'y, (I — om)
= ol'(Ix,+my)— (u+ 1) g(xgc080 — ygsin@) + R(x,cos —y,sinb),

where xg, yg are the coordinates of the centre of inertia 4 of the system profile-rod.

4. The equations of relative motion of the rod are the equation (1.1) and the equation
obtained by applying Hamilton-Ostrogradski’s principle to the motion of the rod with
respect to the axes Pé7.

Let us consider the set ¥~ of functions v(x, t) four times continuously differentiable
for t > 1,,0 < s < L and satisfying

v(0,1) =0, 2'0,t)=0 for 1=1t,.

The solution is the function ©(s, ¢) € ¥~ for which vanishes the integral

i2
[ @T+emar (o<1, <),
[$1

where T is the relative kinetic energy of the rod and W the relative virtual work of all the
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forces acting on the rod. The varied functions are v(s, #)+ dv(s, t) where dv(s, ¢) is a twice
continuously differentiable function satisfying

dv(s, ty) = 0v(s, ;) =0 (O<s<L), d&v(0,1)=00'0,2)=0 (t=1t).

The relative kinetic energy of the rod is
L
T= o [ @+idds
0

but, since » is a term of the second order, we take

L

o f v3ds.

0

T=

B =

The virtual work of the weight of the rod is
L

L
—@'gsin(ﬂ-{-a)f duds—p'gcos(f+a) | dvds.
0 0

Integrating the first integral by parts and taking into account du(0,¢) = 0 and
ou' = —v'd07’', we obtain

L
o'g f {sin(0 + ) [(s — L)v'} —cos(0+ o) } dvds.
0

The virtual work of the reaction is

Rsin(0+a) du(L, t)+ Rcos(8 +a) dv(L, t).
Since
L

L L
du(L,t) = f ou'ds = -—fv’év’ds = —v'(L, t)dv(L, t)+.] o' dvds,
0 0 0
we obtain

L
Rlcos(0+ )~ (L, 1)sin(0+a)] 6o(L, 1)+ | Rsin(0+ o)v” dvds.
0

The resultant of the fictitious forces applied to the mass element dm = p’ds is
(—ye—2wxV,)dm

where V, is the relative velocity and vy, the acceleration of transport.
We easily obtain the virtual work of the fictitious forces

2

L j 2
—12 4
—2wg'fuéz';ds+Q’f{;}é‘[(.v——L)'.v’]’—wz[£ 2L v’] -—yn-}«wzv—cb(s—l—Zn)—Zwit} duds,
0 0

where y&, yn are the components on P&n of the acceleration of the point 0
y€ = (I—bi>—mw—aw?)cos o + (1 +am + o — bw?)sina,

yn = —([—bi»—mw—aw?)sino+ (+aw+lo —bo?)cos .
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L
. . . 1 .
Last, the virtual work of the internal forces is 6[ ——Z—fEIw”zds]. Consequently, Hamil-
0

ton-Ostrogradski’s principle gives

t L L L
f lg’f%}éi)ds+g’gf {sin(6+oc)[(s-—L)v’]’—cos(0+a)}é'vds-ZwQ’f udyds
‘ 0 0 0

2 2

L , L
+Q’f {{yé’[(s—L)v’]’—mz[s ;L-v'] —yn+mlv—(b(s+2u)—2wit} 6vds-—E[fv“Bv”d.y
0 b

L
+R[cos(0+x)—v'(L, )sin(6+ )] (L, )+ f Rsin(0+u)w”6vds}dt =0.
0

Taking into account dv(s, ¢, = de(s,7,) =0 and (0, ) = &2'(0,¢) = 0, we have
1 l_; 12 t2
[vdodr = — [Govar, [ uoidr = — [ asvar,
151 51 t i
L L
f v dv"ds = ¢" (L, t)év' (L, t)—v"""(L, t) dv(L, t) + f vVouds,
0 0

so that we obtain finally

t L
f If{e’[—'z'*+g[sin(9+a) (s—L)v") —cos(6+ o)]]+ Rsin(0 + ) 2"
fy 0

2

2 ’
+Q'[}’§((S—L)v')’—w2 ( o -—Z—L—- 'v’) —yn+w?v —d)(s+2u)] —EI‘UW} dvds

+ {EIT)'”(L, t)+ R[cos(0+ x)—2' (L, t)sin(6+a)]} do(L,t)—ER"(L, t)év' (L, t)ldt =0.

Since dv(s, t), dv(L, t), dv'(L, t) are arbitrary, we have the equations
(1.6) —o'v+p'g{sin(@+a)[(s—L)v'] —cos(0+ ) }+ Rsin(0 + a)v"”

2 2

+9’{7$[(S—L)v’]’—w2[s 3 v’] —}’77+w2v—d)(s+2u)}——EIv“’ =0,

(1.7 ER'" (L, t)+ R[cos(0+a)—2'(L, t)sin(0+«)] =0, o"(L.t) =0.

The motion of the system profile-rod and the reation of the string on the rod are deter-
mined by the equations (1.1), (1.5), (1.6), the boundary conditions (1.2), (1.7) and also
u(0,1) = 0 and the initial conditions.

1.3. The first integrals

1. Let us denote by T, and T, the absolute kinetic energies of the profile and of the rod.
It is well-known [2, 3] that, if 2 is the power of the forces exerted by the fluid on the
profile, we have
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df, . d11... 3 2

Then, there is the energy integral for the system profile-rod

L
3 1 r
(1.8) %(Alz+15‘m2+Cco”)+Tr = —(lu+‘u')g[y0+xgs1n6+ygcosﬂ]—5f ER'*ds+Ct,
0

where y, is the absolute ordinate of 0.

2. Multiplying the first two equations (1.5) by ¢* and ie"® and adding them, we easily
obtain

d . , e e N s g
71;{(A +u N+ iB+pYm+p' (Xe +iye) +ip' w(xXe +iyg)le "}

= o Gorc+ i IR (et )],

where x;¢, yic are the absolute coordinates of the centre C of the profile.

This equation can be obtained directly, remarking that 4/ and Bm are the components
on Oxy of the quasi-momentum of the system profile-fluid [2, 3]. Taking the real part,
we obtain the second first integral

(1.9) (Al+u)cosO—(B+pu)ymsind+ pu' [(Xg—wye)cos 0 — (g +wxg.)sinb]
= —ol'(yo+x,8in6 + y.cos )+ Ct.

2. Stability of a particular motion of the system

2.1. Existence of motions of uniform horizontal translation of the profile with relative equilibrium of the rod
in the undeformed state

1. If V is the velocity of this translation, the motion is defined by
0=0,=const, w=0, [=Vcosb,, m= —Vsinl,, u=12=0.
The Eq. (1.5) give
2.1 Ry = (u+u)g—olV,
(22) (B—A)V3sinbycosly+ [oIVx.— (u+ u')gxg,+ Roxg,)cos b
— [0l Vy.—(u+p)gys,+ Royg,)sinby = 0,

where Ry, (xg,, ¥g,), (X0, Yo,) are the values of R and of the coordinates of ¥ and Q
in the motion of translation.

The configuration of the rod is given by Eq. (1.6), we obtain the differential equation
2.3) 0'g {sin(0y+ @) [(s— L)v']’ —cos(0y + ) } + Rosin(@p + 2)v”' —ERY™ = 0
with the boundary conditions
(1.2% 2(0) = 2'(0) = 0,
Ry[cos(fy+ o) —v'(L)sin(8, + o))+ ElR''(L) = 0,

(1.7) v”(L) = 0.
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2. It is possible to integrate the equation (2.3) with the boundary conditions (1.2), (1.7).
But we shall restrict ourselves to considering the case of the rod in the undeformed state.
In this case, v(s) = 0 and cos(f,+«) = 0. We shall take 0, = n/2—a and the rod is
directed vertically upwards.
Using Eq. (2.1), we can replace Eq. (2.2) by
(22) (B—A)V3sinacosa+ [oI'V(x.—a)—pug(xs—a)lsina— [oI'V(y.—b)— pg(ys—b)]
xcoso = 0.

This equation gives values of the angle « so that the motion is possible. It is easy to ob-
serve that Eq. (2.2°) has at least two solutions; setting X = sina, ¥ = cosa, it is obvious
that the rectangular hyperbola

22") (B-AV?XY+[ol'V(x.—a)— pug(x—a))X— [eIV(y.—b)—ug(ys—b)ly = 0

which contains the point X = ¥ = 0 intersects the circle X2+ Y2 = 1 at least in two
points. We remark that the roots of Eq. (2.2") do not depend on the rod. In the result, we
shall assume that « is a root of Eq. (2.2") and we shall denote by “motion .#,” the motion
of the uniform horizontal translation of the profile with the rod in the relative equilib-
rium in the undeformed state and directed vertically upwards.

We are going to study the stability of the “motion #,”.

2.2. The functional permitting to solve the stability problem
Let us set

I =1+Vcos, m=m—Vsinb

and, if U; and ¥, are the components on Oxy of the absolute velocity of a point of the rod,
U1 = l_jl+ VCOSB, Vl — 171_ VS“J.B.

In the “motion #,”, 0 = 0, = (7/2)—o and I, m, U, V, vanish. It is easy to observe
that if we set

1 C

%, = 5(A72+Br712+6'w2)+97 f (U+V)ds,
0

the first integral (1.8) can be written in the form

V2 . . .
%, —-2—(A cos?0 + Bsin26) + V {(A+ p') lcos O — (B+ p'ymsinf + p'[(Xs. —wyg.)cosO

L
. . . EI
— (g +wxg)sinb]} = —(y-{-‘u’)g[yo+x,s1n6+ygcosﬁ]—Tf v'"2ds = Ct,
]

or, using the first integral (1.9), in the form

E.+W = Ct
with

2
W= — VT(A cos?0+ Bsin?6) + (u+ u') g(xgsin 0 + ygycos6) — oI 'V(x,sinb + y.cosb)
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L
EI )
Y= f v"2ds+ [(u+p)g—el'V]yo.
0
We have
Yo = —asinf—bcosO— [L+u(L, t)]sin(f+ o) —v(L, t)cos(0 + «)

and we can replace (u+pu')xg and (u+pu")yeg by pxe+u'xs and uys+pu'ys and use the
formula
L

Wxo+ive) = w(a+ib)+o [ [(uts)+ivleds.
0

We finally obtain the first integral
(2-4) %1 + W = Ct
with

25 W=- -VZ—Z(A cos20 + Bsin?0) + [ug(xc —a)— oI V(x,—a)]sin6 + [ug(yc —b)
L
—oI'V(y.~b)cost+¢g [ [(u+5)sin(0+a)+vcos(+o)]ds— [(u+p)g—oIV]
(V]

L
x [(L+u(L, 1))sin(0 + o) +ov(L, t)cos(6 + )] + £21— f v'"%ds.
0
@, depends only on the velocities; it is a positive functional, vanishing only in the un-
disturbed motion. W is a functional depending on the angle 6 and on the configuration of the
rod.

Consequently, we can apply the results concerning the stability of motion of a rigid

body containing elastic parts, obtained by V.V. RUMIANTSEV, V. N. RUBANOVSKII,
V. M. Morozov [6, 7, 8].

2.3. Study of the stability of the ,,motion .#,”

The sufficient condition that the “motion .#,” is stable, is that W has a minimum for
this motion. Let us set

6 == 0_60 = G_ITI'FG.

It is easy to observe that the terms of the first order in W vanish by virtue of the condition
(2.2) (it is obvious a priori).
The second variation 62W of W can be written in the form

L
8W = {K+[(u+p)g—eIVILY* +2{[(u+u)g—el V1o, N—¢'g [ vds}O
1]

L L
+2¢'g [ uds—2[(u+p)g~olVIu(L, )+ EI [ v"ds,
0 L]
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where
(2.6) K = (B—A)V?3cos2a+ [oI'V(x.—a)—ug(xc—a)lcosa+ [0l 'V(y.—b) — ug(ys—b)]
x sino— ,ugL .
We can transform 62W by using the relations
L L L
u(L, 1) = —%fﬂ'zds and fu(s, £)ds = —%f (L—$)v'2ds,
0 0 0

so that

L 2 gz 5 2 2
_ol7_cg o'’g A 5, v(L, 1)
62W—K(6— L ofmts) ——K—(of vds) T gFV]L[6+—L ]

L L L
+ wtp)g—olV )Lg—QFV I:Lf v"2ds—v?(L, t)] —0'g f (L—s)'v'zds+EIf v"'2ds.

0 0 0
Using the Schwarz inequality, it is easy to observe that as (u+px')g— ol V > 0, so we have

L

_ z o,
W > K(@-EKE m) +[(p+y')g—QFV]L[B+ - -]
0

L " 2L L
0'’g
f v"2ds — f v3ds.
)0 K V]

Let us then consider the problem of the minimum of the functional

o'gL?
(-

L
[ v""%ds
0

L
| v2ds
0

in the set of functions which are four times continuously differentiable and satisfy
2(0) = 2'(0) = 0.

It is well-known that this problem is reduced to the determination of the smallest
eigenvalue of the problem [4]

oWV—4v =0,
2(0) =2'(0) =0, o"(L)=19o"(L)=0.
The eigenvalues A = »* are the roots of the equation
1+cosvLchyL =0
and the smallest root is given by
voL = 1.875....
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Then, we have

i L
fv”zds = vﬁf v2ds
0 0
113
so that, if ET— 9'31 > 0, we can write
R — oL, D)
W = K(B— glgfvds) +[(,u+,u’)g—QTV]L(0+ K,' )
0

L
o'gl®) . eo%g’L 2
+[(E[_ )vo-— et v2ds.
2 K],

Consequently, under the conditions

‘o] 3 2,2
2.7) K>0, (ut+p)g—olV >0, (EI— “;L )vgmé’_f(L > 0,
%W is the positive definite with respect to
’ L L 12
5_ QK"gf'vdS: 6-{-1)_(1‘2 t) and ll2]] = (f ‘Z)zdf) .
0 h
L

Remarking that | wds < J/L|[v|l, it is easy to see (using of Rumiantsev’s stability theorem
0

[8]) that under the conditions (2.7), the “motion.#,” is stable with respect to 0, ||v|,

L
o(L, 1), I, m, and o' [ (U+V3)ds.
(V]

Let us study the condition X > 0, where K is given by the formula (2.6).
Let us set again X = sina, ¥ = cosa and consider the rectangular hyperbola
'gL
(B— V¥~ X2)+ [oI V(5. — ) - pg g — DY + [l V(e — b) - pg(e— B X~ E5= = 0.
It is easy to construct this curve for L = 0, and to study its evolution when L increases.
It can be shown that, for L sufficiently small, at least one point where the hyperbola (2.2")
intersects the unit circle, belongs to the domain K > 0.

Consequently, if L is sufficiently small and if Joukowski’s force is less than the weight
of the system profile-rod, there is at least one “motion .#,” stable.
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