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Stability of a particular motion of a profile 
suspended by an elastic rod 

P. CAPODANNO (BESAN~ON) 

THE AUTHOR considers a system formed by a rigid profile carrying an elastic rod, moving in an 
inviscid incompressible fluid in irrotational motion, the forces exerted by the fluid on the rod 
being negligible. The elastic rod is suspended on a rigid horizontal string, this constraint being 
frictionless. In the first part of the paper, there are written the equations of motion by means 
of the theorems of momentum and of the moment of momentum and Hamilton-Ostrogradski's 
principle; the first integrals are obtained. In the second part, the author studies the existence 
and the stability of motions of horizontal uniform translation of the profile with relative equi­
librium of the rod in the undeformed state, the rod being directed vertically. The problem of 
stability is reduced to the problem of the minimum of a convenient functional; the author 
gives sufficient conditions of stability. 

Rozwai:a si~ uklad skladaj(lcy si~ ze sztywnego profilu zaopatrzonego w pr~t spr~i:ysty; uklad 
ten porusza si~ w plynie niescisliwym i nielepkim, zaniedbuje si~ sHy wywierane przez plyn na 
pr~t spr~i:ysty. Pr~t podwieszony jest na poziomej strunie i porusza si~ wzdlui: niej bez tarcia. 
W pierwszej cz~sci pracy wyprowadzono r6wnania ruchu ukladu, opieraj(lc si~ na zasadach 
zachowania ~du i momentu ~du oraz na twierdzeniu Hamiltona-Ostrogradskiego. W drugiej 
cz~sci zbadano problem istnienia i stateczno8ci ruchu profilu polegaj(!cego na jego r6wnomier­
nym Pt:zesuwaniu poziomym z zachowaniem pionowego kierunku pr~ta. Problem statecznosci 
sprowadzono do problemu minimalizacji pewnego funkcjonalu; podano r6wniei: warunki 
dostateczne statecznosci ruchu ukladu. 

PaccMaTpHBaeTcH cn:CTeMa cocrom.qaH H3 >KeCTKoro npocpHnH CHa6»<eHHoro B ynpyriiH crep­
>KeHh. 3Ta CHCTeMa ,WJH>KeTCH B HeC>KHMaeMOH H HeBH3KOH >KH~KOCTH; npeHe6peraeTCH 
cnnaMH ~e:Hcrayro~HMH co cropoHbi >KH~KOCTH ua ynpyrHH crep>KeHh. CTep>KeHh no~aerneH 
Ha ropH30HTaJibHOH CTpYHe H ~BH>KeTC.R: B~OJib HeM 6e3 TpeHHH. B nepBOH 'tlaCTH pa6oTbi Bbi­
Be~eHbi ypaBHeHH.R: ~BH>KeHHH CIICTeMbi, OnHpaHCh Ha 3aKOHbi COXpaHeHHH HMnyJibca H MO­
MeHTa HMnyJihCa, a TaK>Ke Ha TeopeMy raMHJlhTOHa-Ocrporpa~CKOro. Bo BTOpOH tiaCTH 
HCCJie~oBaHa 3a~a'tla ~eCTBOBaHH.R: H yCTOH'tiHBOCTH ~H>KeHH.R: npocpHJIH, 3aKJII0'1aiO~e­
roC.R: B ero paBHOMepHbiM ropH30HTaJibHbiM C~BHre C COXpaHeHHeM BepTHKaJibHOrO HanpaB­
JieHHH crep>KHH. 3~atia ycroHliHBoCTH cae~eHa K sa~atie MHHHMnsarum: HeKoToporo cpynK­
QllOHaJia; npHBe~eHbi To>Ke ~oCTaTo'tiHhie ycnoBHH ycro:HliHBOCTH ~BH>KeHIUI CHCTeMhi. 

1. Equations of motion 

1.1. Statement of the problem 

LET us CONSIDER the motion, with respect to a fixed coordinate system 0 1 x 1 y 1 , of an 
arbitrary rigid profile (c) without sharp edge, carrying a thin elastic rod PQ, in an in­
viscid incompressible fluid (density e), in irrotational motion, at rest at infinity. The rod 
is in extensible, homogeneous (length L, density e', mass p' = e' L, centre of inertia G', 
moment of inertia of the cross-section I, Young's modulus E); its end P is fixed to the 
profile; its end Q is moving on a rigid horizontal string 0 1 x1 and this constraint is fric-
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tionless. We assume that the forces exerted by the fluid on the rod are negligible. We shall 
use a particular coordinate system 0, x, y fixed rigidly to the profile [1]. The motion of 
the profile is described by the components l(t), m(t) of the velocity of the point 0 and 
by the angular velocity w(t) if [01 , x1 , Ox = O(t), w(t) = O(t)]. We denote by (xc, Yc) 
and (x6 , y 6 ) the coordinates of the centre C and the centre of inertia G of the profile, 
by p, its mass; a and b are the coordinates of P. 

In the undeformed state PQ0 , the rod is directed along an axis P~ (Ox, P~ = a:= 
= constant); the axis P'f} is perpendicular to P~ (Fig. 1). 

We denote by s (0 ~ s:;:;; L) the abscissa of a particle M 0 of the rod in the undeformed 
state, by u(s, t), v(s, t) the components on P~, P'f} of the elastic displacement vector 
M0 M of the particle M . 

The condition that the rod is inextensible leads to the relation [5] 

(1.1) , 1 '2 u = - 2 v (u' = ~~ )· 

-4--------------------~-7~-----------. 
X1 

Fro. 1. 

The boundary conditions at the end P are 

(1.2) v(O, t) = 0, v'(O, t) = 0 for t ~ t0 • 

1.2. Equations of motion 

l. Let us denote by X, Y the components on Ox, Oy of the resultant, and by N the moment 
about 0 of the forces exerted by the rod on the profile. The equation of motion of the 
profile are [1] 

Ai-Bwm = -eF(m+wc)-p,gsinO+X, 

(1.3) Bm +Awl = eF(I-wyc)- p,gcosO + Y, 

Cw+(B-A)lm = eF(lxc+myc)-p,g(x6 cos0+y6 sin0)+N, 

where A, B, C are positive constants depending on the profile and on e (B ~ A), p,g is the 
weight of the profile and r the circulation around the profile, constant by Helmholtz 
theorem. 
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2. It is easy to write the theorems of momentum and of the moment of momentum for 
the rod only. 

The components of the momentum on Ox, Oy are 

p,'(xa' +1-wya'), p,'(.Ya~+m+wxa') 

and the moment of momentum about 0 is 

g+ jw + p,' (xa'm-Ya'm), 

where x6 ,, y 6 , are the coordinates of G', j and g the moment of inertia and the relative 
moment of momentum of the rod about 0. 

Let us denote by R the reaction of the string 0 1 x 1 on the rod, parallel to 0 1 y 1 : 

We obtain 

p,'(x6 .-2wy6 ,)+ p,'(i-wm)- p,'(y6 ,w+x6 .w2 ) = -X+ (R- p,'g)sinO, 

(1.4) p,'(.Ya· +2wx6 ,)+ p,'(m+wl)+ p,'(x6 .w-y6 ,w2
) = - Y + (R- ,u'g)cosO, 

:t (g+lw)+ p,'x6 .(m+wl)- ,u'y6 .(i-wm) = N- p,'g(x6 ,cos0-y6 ,$in0) 

+R(xQcosO-yQsinO), 
where xQ, Ya are the coordinates of Q. 

3. Adding the equations (1.3) and (1.4), we obtain 

(A+ p,') i- (B + p,')wm + p,' (xG'- 2w.Ya·)- p,' (Ya·W + Xa.w 2
) = - eT(m + WXc) 

+ [R-(p,+p,')g]sinO, 

(1.5) (B + p,')m +(A+ ,u')wl + p,' (Ya· + 2wx6 .) + ,u' (xa,w- Ya·w2
) = eT(I-wyc) + [R 

- (p, + p,')g]cos 0, 

Cw+(B-A)lm+! (g+Jw)+p,'x6 .(m+wl)-p,'y6 ,(i-wm) 

= eF(lxc +my c)- (p, + ,u') g(x~cos 0-y~ sin 0) + R(x Q cos 0-y a sin 0), 

where XI§, Yt6 are the coordinates of the centre of inertia C§ of the system profile-rod. 

4. The equations of relative motion of the rod are the equation (1.1) and the equation 
obtained by applying Hamilton-Ostrogradski's principle to the motion of the rod with 
respect to the axes P ~'YJ. 

Let us consider the set "Y of functions v(x, t) four times continuously differentiable 
for t ~ t0 , 0 ~ s ~ L and satisfying 

v(O, t) = 0, v'(O, t) = 0 for t ~ t0 • 

The solution is the function v(s, t) E "Y for which vanishes the integral 

t2 

J (~T+ ~W)dt (t0 ~ t 1 ~ t 2), 

It 

where T is the relative kinetic energy of the rod and W the relative virtual work of all the 
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forces acting on the rod. The varied functions are v(s, t) + bv(s, t) where bv(s, t) is a twice 
continuously differentiable function satisfying 

bv(s, t 1 ) = bv(s, t2 ) = 0 (0 ~ s ~ L), bv(O, t) = bv'(O, t) = 0 (t ~ 10). 

The relative kinetic energy of the rod is 
L 

r = ~ e' J (u2 +v2)ds 
0 

but, since u is a term of the second order, we take 
L 

T = ~ e' J v2
ds. 

0 

The virtual work of the weight of the rod is 
L L 

-e'gsin(O+a) J ~uds-e'gcos(O+a) J ~vds. 
0 0 

Integrating the first integral by parts and taking into account ~u(O, t) = 0 and 
~u' = - v' bv', we obtain 

L 

e'g f {sin(O+a)[(s-L)v']'-cos(O+a)}bvds. 
0 

The virtual work of the reaction is 

Rsin(O +a) !5u(L, t) + Rcos(O +a) ~v(L, t). 
Since 

L L L 

~u(L, t) = J ~u'ds = - J v'~v'ds = -v'(L, t)~v(L , t)+ J v"~vds , 
0 0 0 

we obtain 
L 

R[cos(O+a)-v'(L, t)sin(O+a)]~v(L, t)+ J Rsin(O+a)v"~vds. 
0 

The resultant of the fictitious forces applied to the mass element dm = e' ds is 

( -ye-2w x V,.)dm 

where V,. is the relative velocity and Ye the acceleration of transport. 
We easily obtain the virtual work of the fictitious forces 

L L 

-2we'J uM!ds+e' J {r;((s-L)v']' -w2
[ 

32 ~V vJ -r'l+w2v-W(s+2n)-2wU} dvds, 
0 0 

where r~, 'Y'YJ are the components on P~'YJ of the acceleration of the point 0 

'Y~ = (i-bw-mw-aw 2)cosa+(m+aw+lw-bw2)sina, 

'Y'YJ = -(i-bw-mw-aw2)sina+(m+aw+lw-bw2)cosa. 
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L 

Last, the virtual work of the internal forces is ~[- ~ J Elv"2ds]. Consequently, Hamil­
o 

ton-Ostrogradski's principle gives 

l21 L L L J e' J v~vds+e'g J {sin(O+a)[(s-L)v']'-cos(O+a)}~vds-2we' J u~vds 
It 0 0 0 

L L 

+e' J { {rH(s-L)v']'-w2
[ 

82

;L
2 

v']'-r'1+w2v-W(s+2u)-2wu}.wds-El J v"<lv"ds 
0 0 

L 

+ R[cos(O+rx)-v'(L, 1)sin(8+ rx)] bv(L, I)+I Rsin(O + a)v" bvdsl dl = 0. 

Taking into account ~v(s, t1 = ~v(s, t2 ) = 0 and ~v(O, t) = ~v'(O, t) = 0, we have 

12 tl tl ll 

J v~vdt = - J v~vdt, J u~vdt = - J u~vdt, 
h It tl tl 

L L 

J v"~v"ds = v"(L, t)~v'(L, t)-v"'(L, t)~v(L, t)+ J v1v~vds, 
0 0 

so that we obtain finally 

f I ! { e'[-V + g [sin(O + rx) ( (s- L )v' )'-cos(O + rx)J] + R sin(O + rx )v" 
11 0 

+e'[rH(s-L)v')' -w 2
( 

82

;V v')'-r'1+w2v-W(s+2u)]-Elvtv}.was 

+ {Elv'"(L, 1)+ R[cos(O+ rx)-v'(L, l)sin(O+ rx)J} bv(L, t)- Elv"(L, 1) bv'(L, 1)1 dl = 0. 

Since ~v(s, t), ~v(L, t), ~v'(L, t) are arbitrary, we have the equations 

(1.6) - e'v + e'g {sin(()+ a)[(s- L)v']' -cos(()+ a)}+ Rsin(O + a)v" 

+e'{rms-L)v']'-w2
[ 

82

;L
2 

vJ -r'1+w2v-W(s+2u)}-Elvtv = 0, 

(1.7) Elv"'(L, t)+R[cos(O+a)-v'(L, t)sin(O+a)] = 0, v"(L, t) = 0. 

The motion of the system profile-rod and the reation of the string on the rod are deter­
mined by the equations (1.1), (1.5), (1.6), the boundary conditions (1.2), (1.7) and also 
u(O, t) = 0 and the initial conditions. 

1.3. The first integrals 

1. Let us denote by Tp and T, the absolute kinetic energies of the profile and of the rod. 
It is well-known [2, 3] that, if 9 is the power of the forces exerted by the fluid on the 

profile, we have 
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dTp - {!)' = !!_ [_!_(AJ2 + Bm2 + Cw2)] • 
dt dt 2 

Then, there is the energy integral for the system profile-rod 
L 

(1.8) ~(AP+Bm2 +Cw2)+Tr = -(u+,u')g[y0 +x~sin0+y~cos0]- ~ J Elv"2ds+Ct, 
0 

where y 0 is the absolute ordinate of 0. 

2. Multiplying the first two equations (1.5) by e16 and iei8 and adding them, we easily 
obtain 

~ {(A+ f<')/ + i(B + f<'}m + f<' (XG' + iYG') +if<' w(xG' + iyG,)]e''} 

= ~ [ieF(xtc + iYtc)] + i [R- (u + ,u')g], 

where x1c, Ytc are the absolute coordinates of the centre C of the profile. 
This equation can be obtained directly, remarking that AI and Bm are the components 

on Oxy of the quasi-momentum of the system profile-fluid [2, 3]. Taking the real part, 
we obtain the second first integral 

(1.9) (AI+ p,')/cosO- (B+ ,u')msinO+ ,u'[(.xG·-WYG·)cosO- <YG·+wxG,)sinO] 

= -eF(y0 +xcsin0+yccos0)+Ct. 

2. Stability of a particular motion of the system 

2.1. Existence of motions of uniform horizontal translation of the profile with relative equilibrium of the rod 
in the undeformed state 

1. If V is the velocity of this translation, the motion is defined by 

0 = 00 = const, w = 0, I= Vcos00 , m = -Vsin00 , u = v = 0. 

The Eq. (1.5) give 

(2.1) Ro = (u+p,')g-eFV, 

(2.2) (B- A) V2sin00 cos00 + [eFVxc- (u + ,u')gx91o + RoXQ0]cosOo 

- [eFVyc-(u+,u')gy~o+RoYQo]sin00 = 0 , 

where R 0 , (x~o, Y~0), (XQ0 , Yao) are the values of R and of the coordinates of rJ and Q 

in the motion of translation. 
The configuration of the rod is given by Eq. (1.6), we obtain the differential equation 

(2.3) e'g{sin(00 + et)[(s- L)v']' -cos(00 + et) }+ R0 sin(00 + et)v" -Elv1v = 0 

with the boundary conditions 

{1.2') 

(1.7') 

v(O) = v'(O) = 0, 

R 0 [cos(00 +et)-v'(L)sin(00 +et)]+Elv"'(L) = 0, 

v"(L) = 0. 
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2. It is possible to integrate the equation (2.3) with the boundary conditions (1.2'), (1. 7'). 
But we shall restrict ourselves to considering the case of the rod in the undeformed state. 

In this case, v(s) = 0 and cos{00 +cx) = 0. We shall take 00 = n/2-cx and the rod is 
directed vertically upwards. 

Using Eq. (2.1), we can replace Eq. (2.2) by 

{2.2') (B- A) V2sincxcos ex+ [eFV(xc -a)- pg(xG -a)] sin ex- [eFV(yc-b)- pg(yG -b)] 

X COSCX = 0. 

This equation gives values of the angle ex so that the motion is possible. It is easy to ob­
serve that Eq. (2.2') has at least two solutions; setting X = sin ex, Y = cos ex, it is obvious 
that the rectangular hyperbola 

(2.2") (B-A)V2XY+ [eFV(xc-a)-pg(xG-a)]X- (eFV(yc-b)-pg(yG-b)]y = 0 

which contains the point X = Y = 0 intersects the circle X 2 + Y 2 = 1 at least in two 
points. We remark that the roots of Eq. (2.2') do not depend on the rod. In the result, we 
shall assume that ex is a root of Eq. (2.2') and we shall denote by "motion Jt 0 " the motion 
of the uniform horizontal translation of the profile with the rod in the relative equilib­
rium in the undeformed state and directed vertically upwards. 

We are going to study the stability of the "motion vii 0 ". 

2.2. The functional permitting to solve the stability problem 

Let us set 

I = l+ VcosO, m = m- VsinO 

and, if U1 and V1 are the components on Oxy of the absolute velocity of a point of the rod, 

U1 = U1 + VcosO, V1 = V1 - VsinO. 

In the "motion Jt 0 ", 0 = 00 = (n/2)- ex and r; m, U1 , f\ vanish. It is easy to observe 
that if we set 

L 

~1 = ~ (AJ2 +Bm2 +Cw2)+ ~ f (U+V)ds, 
0 

the first integral (1.8) can be written in the form 

~1 - ~
2 

(Acos 20+ Bsin20) + V {(A+ p')lcosO- (B+ p')msinO+ p'[(.XG, -wyG,)cosO 

L 

-(.YG+wxG)sinO]} = -(fl+p')g[y0 +x~sin0+y~cos0]- ~I J v"2ds = Ct, 
0 

or, using the first integral (1.9), in the form 

Cl1 + W = Ct 
with 

W = - ~
2 

(Acos20+Bsin20)+(u+p')g(x~sin0+y~cosO)-eFV(xcsin0+yccosO) 
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We have 

Yo= -asinO-bcosO- [L+u(L, t)]sin(O+~)-v(L, t)cos(O+~) 

and we can replace (p + p')x<6 and (p + p')y, by px0 + p' x 0 and flY G + 11-' y G and use the 
formula 

L 

11-'(xG'+iyG') = ft'(a+ib)+e' J [(u+s)+iv]ei«ds. 
0 

We finally obtain the first integral 

(2.4) ~1 + W = Ct 

with 

(2.5) W = - ~
2 

(Acos20+Bsin20)+ [11-g(xG-a)-eFV(xc-a)]sinO+ [flg(y0 -b) 

L 

-eFV(yc-b)]cosO+e'g J [(u+s)sin(O+ ~)+vcos(O + ~)]ds- [(p+ 11-')g-eFV] 
0 

L 

x [(L+u(L , t))sin(O+~)+v(L, t)cos(O+~)]+ ~/ J v"2 ds. 
0 

~ 1 depends only on the velocities; it is a positive functional, vanishing only in the un­
disturbed motion. W is a functional depending on the angle 0 and on the cof!figuration of the 
rod. 

Consequently, we can apply the results concerning the stability of motion of a rigid 
body conta~ning elastic parts, obtained by V. V. RUMIANTSEV, V. N. RUBANOVSKII, 

V. M. MOROZOV [6, 7, 8]. 

2.3. Study of the stability of the ,motion .A 0 " 

The sufficient condition that the "motion vii 0 " is stable, is that W has a minimum for 
this motion. Let us set 

- II 
() = 0-00 = 0- 2+~. 

It is easy to observe that the terms of the first order in W vanish by virtue of the condition 
(2.2') (it is obvious a priori). 

The second variation cP W of W can be written in the form 
L 

cPW = {K+ [(u+f.'')g-eFVJL}02 +2{£(u+p')g-eFV]v(L, t)-e'g j vds}O 
0 

L L 

+2e'g J uds-2[(}t+f.'')g-eFVJu(L, t)+El J v"2ds, 
0 0 
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where 

'L 
x sin a- ,u ~ • 

We can transform <5 2 W by using the relations 

so that 

L 

u(L, t) = - ~ J v' 2ds and 
0 

L L 

J u(s, t)ds = - ~ J (L-s)v' 2ds, 
0 0 

L L 

~2 W = K(O- e; J vdsr- e;2 (f vdsr + [(.u+fL')g-eFV]40+ v(i t) r 
0 0 

L L L 

+ (.u + fL')_i- eFV [ L J v' 2 ds -v2(L, t)]- e' g J (L- s )v'2ds + El J v"2ds. 
0 0 0 

Using the Schwarz inequality, it is easy to observe that as (,u + ,u')g- eTV > 0, so we have 

Let us then consider the problem of the minimum of the functional 

L 

f v 2 ds 
0 

in the set of functions which are four times continuously differentiable and satisfy 
v(O) = v' (0) = 0. 

It is well-known that this problem is reduced to the determination of the smallest 
eigenvalue of the problem [4] 

v•v -A.v = 0, 

v(O) = v'(O) = 0, v"(L) = v"'(L) = 0. 

The eigenvalues A. = v4 are the roots of the equation 

1 +cosvLchvL = 0 

and the smallest root is given by 

v0 L = 1.875 .... 
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Then, we have 
L L 

J v"2 ds ~ ,~ J v 2ds 
0 0 

'P 
so that, if El- (! ; > 0, we can write 

Consequently, under the conditions 

(2.7) K > 0, (p,+p,')g-eFV > 0, 

cP W is the positive definite with respect to 

L 

0- e'g f vds 
K ' 

0 

0 v(L, t) 
+ K 

L )1/2 
and llvll = (f v2ds 

0 

L 

P. CAPODANNO 

Remarking that J vds < yLIIvll, it is easy to see (using of Rumiantsev's stability theorem 
0 

[8]) that under the conditions (2.7), the "motion.A0 " is stable with respect to (), llv ll, 
L 

v(L, t), I, m, w and e' f (Uf+ Vf)ds. 
0 

Let us study the condition K > 0, where K is given by the formula (2.6). 
Let us set again X = sin a:, Y = cos a: and consider the rectangular hyperbola 

p,'gL 
(B-A)V2 (Y2 -X2)+ [eFV(xc-a)-~Lg(xa-a)]Y+ [eFV(yc-b)-~LK(Ya-b)]X- -

2
- = 0. 

It is easy to construct this curve for L = 0, and to study its evolution when L increases. 
It can be shown that, for L sufficiently small, at least one point where the hyperbola (2.2") 
intersects the unit circle, belongs to the domain K > 0. 

Consequently, if Lis sufficiently small and if Joukowski's force is less than the weight 
of the system profile-rod, there is at least one "motion Jt 0 " stable. 
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