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Gauss principle of least constraint for the solution 
of heat conduction problem in an infinite circular solid cylinder 

Y. Z. BOUTROS, M. B. ABD-EL-MALEK and M.A. EL ATTAR 
(ALEXANDRIA) 

THE GAuss principle of least constraint has been extended to solve both linear and nonlinear 
heat conduction problems in an infinite circular solid cylinder. The approximate solutions 
obtained have been compared with those of other authors, whenever available. Simplicity of 
the method and favourable agreement with the results of other authors suggest that this method 
is effective in dealing with nonlinear heat conduction problems. 

Zasadct Gaussa zastosowano do rozwi'lZClnia problemu liniowego i nieliniowego przeplywu ciepla 
w nieskonczonym walcu kolowym. Otrzymane wyniki przyblii:one por6wnano z osi~tgalnymi 
rezultatami otrzymanymi przez innych autor6w. Zbiei:nosc tych wynik6w i prostota zapropono
wanej tu metody pozwalaj~t przewidywat, i:e be(dzie ona efektywna w zastosowaniu do nie
liniowych problem6w przewodnictwa cieplnego. 

llpHHI.Um raycca npHMeHeH K pewemuo JIHHeHHOH H HeJIHHeHHOH 3a~aq TeDJIOnpoBO,nHOCTH 
B 6eCKOHe'tiHOM KpyroBOM lUIJI~pe. lloJiyqeHHLie DpH6JIIDKeHHbie pe3y.JILT8Tbl cpaBHeHbi 
c ~oCTHI'HYTbiMH pe3yJihTaTaMH ~PYI'HX aBTopoB. Cxo~oCTL 3THX pesyJihTaToB H npOCTOTa 
npe~o>KeHHOI'O 3~eCL MeTO~a D03BO.IDIIOT npe~CKa3aTL, \:ITO OH s<P<PeKTHBeH B DpHMeHeiDIH 
K HeJIHHeHHbiM ~aqaM TeDJIODpOBO~OCTH. 

1. Introduction 

THE HEAT conduction equation when expressed in the cylindrical coordinates is given by 

ar 1 a ( ar) I a ( ar) a ( ar) 
(I. I) Sat= r Tr Kr----a; + f:2 a8 K a8 + oz K az ' 
where Tis the temperature at time t of a point of the solid whose position coordinates are 
(r, (}, z), K is the thermal conductivity which is a function of the temperature and/or 
coordinates, and S = ec, where e is the density and c is the specific heat at constant press
ure. The two quantities S and K are termed the "thermal parameters". If a circular solid 
cylinder, Fig. I, whose axis coincides with the axis of z, is heated, and the initial and bounda
ry conditions are independent of the coordinates (} and z, the temperature will be a function 
of r and t only and Eq. (1.1) reduces to 

(1.2) s ar = _!_ ~ (Kr ar). at r ar or 
Equation (1.2) is linear when the thermal parameters Sand K are considered constants 
as in most of the reported works. However, in this paper 'we are going to illustrate the., 
solution of Eq. (1.2) when K varies linearly with temperature. 
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FIG. 1. Flow of heat through an infinite circular solid cylinder. 

Section 2 shows how the Gauss principle of least constraint is applied to the solution 
of Eq. (1.2). In Sect. 3, the problem of linear flow of heat through an infinite solid cyl
inder is considered, and the results obtained are plotted and compared with those given 
in [3]. The problem of flow of heat with radiation at the surface is treated in Sect. 4, the 
results obtained · are compared With those given in [4]. Also in this section the black body 
radiation problem is solved. In Sect. 5, the problem of nonlinear heat conduction along 
an infinite circular solid cylinder, which is more practical, is considered and the results 
are plotted. Finally, Sect. 6 contains the general discussion and some remarks. 

2. Gauss principle of least constraint 

Gauss principle of least constraint is a minimum principle originally applied to prob
lems of dynamics. However, VuJANOVIC and BACLIC [1] proved that this principle can be 
applied to treat heat conduction problems. Let us explain how the Gauss principle is 
applied to the solution of Eq. (1.2). 

Let us consider the quantity 

(2.1) z = f [X-Y] 2dv, 

" 
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where Vis the volume which is engaged in the process of heat transfer, and 

(2.2) 

(2.3) 

X= s ar 
at ' 

Y = __!__ ~ (xr aT) 
r ar ar ' 
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are the temporal and the ·spatial parts, respectively. Then, according to Gauss principle, 
the quantity z. assumes its minimum value in either of the following cases: 

(2.4) (i) fJX :1= 0 and fJ Y = 0 

or 

(2.5) (ii) ()X= 0 and bY:/= 0, 

where fJX and ()Y refer to the variations in X and Y, respectively. This principle differs 
from the usual variational principles of ordinary mechanics since it applies the technique 
that all components of the field are held fixed or specified, except one with respect to which 
the minimization of the integral is carried out. Due to this fact the above variational 
principle is called a restricted or partial variational principle [2]. The principle may be 
formulated by means of the generalized coordinates instead ·of the components of the field 
itself. In each particular case we must be able to identify the characteristic set of parame
ters which represents X or Y and then the minimization of z has to be carried out with 
respect to this set holding all other proper quantities fixed. 

3. Linear flow of heat in an infinite circular solid cylinder 

In this case S = S0 and K = K 0 are considered to be constants, then Eq. (1.2) redu
ces to 

(3.1) ar =~-a_ (r ar) at r ar ar ' 
where lX = Ko/So. 

The boundary and initial conditions are 

T( a, t) = Ts, t > 0; 

T(r, 0) = 0, 0 < r < a; 
(3.2) 

where a is the radius of the cylinder and Ts is a constant. Now if we apply the transfor
mation 

(3.3) rxt 
7:=7, 

then T(u, r) should satisfy the equation 

r 
u=a, 

(3.4) ~~ = ! :u (u ~~). 
5* 
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and the conditions 

T(l , t) = Ts, T > 0, 
(3.5) T(u, 0) = 0, 0 < u < 1. 

Now consider the trial solution 

(3.6) T(u, T) = T5 [1-F(u)G(r)], 

where F(u) is a specified function of the position which has to be chosen in accordance 
with the shape of the cross-section of the body. The function F(u) has the following prop
erties: ·F(I) = 0, and F(u) > 0 for every u inside the region bounded by the surface of 
the cylinder. 

Hence, the problem is reduced to the determination of the unknown function G( T) 
using the Gauss principle. The temporal part of (3.4) is given by 

(3.7) 
ar . 

X=-= -T.FG= -FW OT s ' 

where W = T5 G is the temporal part which represents X, while the spatial part of (3.4) 
is given by 

(3.8) 

Let us suppose that 

(3.9) 

Then from (3. 7) and (3.8) we have 

Now, introducing the quantity 

we get 

X= -(l-u3)w, 

Y = 9uT5 G. 

1 

z = J [X-Y] 2du, 
0 

where a term free from W has been omitted. According to Gauss principle, let us mini
mize z with respect to the temporal part W, i.e. 

oz 
aw = o, 

and using W = T~~G we get the following first-order differential equation 

(3.10) 
. 21 

G= - - G 5 ' 
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where the initial condition G(O) will be determined by minimizing the initial square re
sidual of the form 

1 

(3.11) J = J {Ts[l-F((u)Go]Fdu, 
0 

where G0 = G(O). 
Integrating (3.11) and using oJfoG0 = 0 we get 

7 
G(O) = 6 . 

Then the solution of the initial value problem of the linear differential equation (3.10) 
is given by 

Hence the temperature distribution is 

(3.12) 

TITS 

0 

----- Solution given in [3) 

Present . solut;on 

0.2 Q4 0.6 0.8 1.0 r/a 
FIG. 2. Temperature distribution at various times in a cylinder of ·radius a with zero initial temperature 

and constant surface temperature Ts. The numbers on curves are the values of (T.t/a2
• 

The temperature distribution at various times is given in Fig. 2. Comparison with the 
solution obtained by CARSLAW and JAGER .[3] is also illustrated in Fig. 2. 
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4. Flow of heat with radiation at surface 

In this case we are going to consider the problem 

(4.1) ar ex a ( ar) Tt = r:ar ra, , 
where cx = K0 / S0 is a constant, with the initial and boundary conditions 

T(r, 0) = T0 , 0 < r < a; 

(4.2) ar Tr = -f(I's), t > 0, r =a, 

where T0 is a constant and T.,(t) is the temperature at the surface of the cylinder, r = a. 
Moreover f = f(x) is a given function. Let us assume a trial solution of the form 

T(r, t) = T8(t)[1 +F(r)G(t)], 
where 

F(r) = I - ( J, 
Clearly 

F(a) = 0, 

F(r) > 0 for 0 < r < a. 

Then from the given boundary condition we get 

(4.3) 
a 

G(t) 1's(t) = 2 f(Ts). 

Differentiating (4.3) with respect to t we have 

(4.4) 

where 

Now, consider the quantity 

(4.5) 

• aTs 
G = 2T2 (fsTs-f), 

s 

df 
Is= dT. . 

s 

a 

z = J [X-Y] 2dr, 
0 

where X, Yare the temporal and spatial parts of Eq. (4.1), respectively. According to Gauss 
principle, z is to be minimized with respect to either X or Y. Since we have 

(4.6) X= ~~ = T,fii+ i',(l +FG) = w{I + ; f. [ 1- ( ~ rn. 
where W = Ts is the temporal part which represents X, while the spatial part is given by 

(4.7) y = ~ ~ (r oT) = _ 2cx f. 
. r or or a 
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Substituting from Eqs. (4.6) and (4.7) into Eq. (4.5), integrating and keeping only terms 
having W we get 

(4.8) 

From Eq. (4.8) using ozjoW = 0 and W = t, we get 

(4.9) t. = _ IO!X ( 3+afs )r 
' a 15 + l0a/,+2a2fi) · 

In the following we are going to consider two possible cases for the shape of the function 
/(T,). 

CASE I. f(T,) = hT,, where h is a constant. 
Then Eq. (4.9) gives 

(4.10) • I O!Xh ( 3 + ah ) 
T, = --a- 15+ 10ah+2a2h2_ T, 

which is a first-order differential equation with the initial condition 

T,(O) = Ts
0

, 

determined from the minimization of the initial residual error function J given by 

(4.11) 

a 2 

J= f[r,,+; !oF-To] dr, 
0 

where / 0 = f(T,
0
). 

Integrating ( 4.11) and applying oJ I aT.o = 0 we get 

(4.12) ( 
3+b ) 

T,o = S 15+ 10b+2b2) To, 

where b = ah. Solving Eq. (4.10) we get 

(4.13) T,(l) = 5 ( IS+ ~;bb+2b' ) Toexp [-
1~:1 L5~1~:~2b')]. 

Hence the temperature distribution is 

(4.14) T(r, 1) = 5 ( IS+ ~~~2b.) To{'+ [ ,_ ( :J] ~ }exp(- '~:~. 

( 
(3+b)b )] 

15+10b+2b2 • 

Results are illustrated in F(g. 3 to Fig. 6 together in comparison with results given by 
EcKERT and DRAKE [4] at different values of b and rja. 

CASE 2. f(T,) = hT:, where h is a constant. 
In this case the cylinder of initial temperature T0 is suddenly immersed in a medium 

having zero temperature and black body property. Then from Eq. (4.9) we have 
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T/T0 
r/a=O 

Present solution 

Solution by Eckert & ])rake 

0.8 

0.6 

OA 

0.2 

FIG. 3. Transient heat conduction through a cylinder with radiation at its surface. Numbers on curves 
are the values of b. 

T/T0 ! 
r/a= 0.2 

Preserrf solution 

Solution by £exert 8. Drake 

0.8 

0.6 

0.4 

0.2 

0.4 0.6 0.8 1.0 1.2 

Flo. 4. Transient heat conduction through a cylinder with radiation at its surface. Numbers on curves 
are the values of b. 

(240] 
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T/T0 
r/a= 0.6 

Present solution 

Solution by Eckert & Drake 

a a 

a5 

0.4 

0. 1~----J_-----L----~~~--~-----L----~~----~----

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 atja2 

FIG. 5. Transient heat conduction through a cylinder with radiation at its surface. Numbers on curves 
are the values of b. 

T/To 
r/a= 1.0 

Present solution 

Solution by Eckert & Drake 1.0 

0.8 

0.6 

0.4 

az 

FIG. 6. Transient heat conduction through a cylinder with radiation at its surface. Numbers on curves 
are the values of b. 

[241] 
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(4.15) . IOab ( 3+4bT; ) 4 

Ts = -~ 15+40bT;+32b2T: Ts' 

with 

T.(O) = To. 

The solution of the nonlinear initial value differential Eq. (4.15) is obtained using Run
ge-Kutta fourth-order method for various values of b and the results are illustrated in 
Fig. 7. 

0.4 

0 0.2 OA 0.6 1.0 cxt/az 
Fro. 7. Transient heat conduction through a cylinder with black-body radiation property at surface. 

Numbers on curves are the values of b. 

5. Flow of beat .!~ougb an infinite circular solid cylinder whose thermal conductivity varies 
linearly with temperature 

Consider the nonlinear problem 

(5.1) 8 ar = _!_~(xr ar) 
0 at r ar ar ' 

where the thermal conductivity K is a function of the temperature T and S0 is a constant. 
It does not seem possible to solve this equation in general, and empirical expression for 
K as a function of T must therefore be introduced. 

Let us assume 

where K0 and A are constants. 
Hence, Eq. (5.1) takes the form 

(5.2) _!T = ~ _!_ [(1 +A~) r ar] at r ar Ts ar ' 
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----- --------------------------------------------------------

where ~ = K0 /S0 is a constant, with the initial and boundary conditions 

(5.3) 
T(r, 0) = 0, 0 < r < a, 

T(a, t) = T:, t > 0, 

where Ts is constant. 
Now if we apply the transformation 

(5.4) 
r 

U= - , 
a 

then O(u, -r) should satisfy the equation 

(5.5) ao = _!_ ~ [o + AO)u ao ] , 
a-r u au au 

and the conditions 

(5.6) 
0(1 , t) = 1 , T > 0, 

O(u, 0) = 0, 0 < u < 1. 

Now, consider the trial solution 

(5.7) 

and let 

Then 

and 

O(u, r) = 1-F(u)G(r), 

F(I) = 0, 

F(u) > 0 for 0 < u < 1 . 

Hence, the problem is reduced to the determination of the unknown function G( r) using 
the Gauss principle. The temporal part of Eq. (5.5) is given by 

(5.8) 
ao 

X=-= - W{/-u3
), ar 

where W = G is the temporal set which represents X, while the spatial part of Eq. (5.5) 
is given by 

(5.9) Y = ~ :u [(/+AO)u ~~] = 9G[(l +A)-AG(!-2u3)}u. 

Introducing the quantity 
t 

Z = J [X- Y]ldu, 
0 

and using Eqs. (5.8) and (5.9), we get 

(5.10) _ 9 2 27 . ( . ) 27 G2 W 
Z-l4W+s-1+AGW-10A ' 
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0 0.2 0.4 0.6 0.8 10 r/a 

Flo. 8 Temperature distribution curves. Numbers on curves are the values of A. 

TITs 
1.0 

0.8 

06 

0.2 

a 0.2 0.4 0.6 0.8 1.0 r/a 
FIG. 9. Temperature distribution curves. Numbers on curves are the values of A. 

(244] 
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T/Ts 
1.0 

0.8 

0.4 

0.2 

0 

75 

5.0 

cxt/a2 =0.1 

0.2 0.4 0.6 0.8 1.0 r/a 
FIG. 10. Temperature distribution curves. Numbers on curves are the values of A. 

T/Ts 

0 0.2 0.4 0.6 0.8 1.0 r/a 
Flo. 11. Temperature distribution curves. Numbers on curves are the values of A. 
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where terms free from W have been omitted. Minimizing Eq. (5.10) with respect to W, 
i.e. az 1 a w = o, and using w = G we get the following first-order differential equation 

(5.11) 
• 21 21 2 
G+T(l+A)G =WAG, 

where the initial condition G(O) will be determined by minimizing the initial square re
sidual of the form 

1 

(5.12) J = J (1-F(u)G0 ]2du, 
0 

where G0 = G(O). 
Integrating Eq. (5.12) and using BJfBG0 = 0 we get 

7 
G(O) = 6 . 
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Then the solution of the initial value problem of the differential equation (5.11) is given by 

(5.13) G(t) = 14(1 +Ail exp [- 2; (I +A)T l 
2-7A[l-exp (- T(I+A)T)] 

Hence the temperature distribution is 

(5.14) 
14(1+A) 

The temperature distribution at various times are given in Fig. 8 to Fig. 11. 

6. Conclusion and discussion 

In this paper the Gauss principle of least constraint was successfully extended to solve 
both linear and nonlinear heat conduction problems. Favourable agreement with the 
results obtained by other methods as well as simplicity of the method suggest that this 
method is effective in dealing with nonlinear heat conduction problems. It should be no
ticed that in the case of black body radiation, the solution was found at the surface since 
T8 (t) is most .frequently the quantity of greatest physical interest on account of this extre
mum character [5]. Also the solution, given here, of the flow of heat when the thermal con
ductivity depends Jinearly on temperature, appears to be satisfactory since it is consis
tent with the linear case when putting A = 0. 
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