Asymptotic analysis of surface waves due to oscillatory wave maker

M. S. FALTAS (ALEXANDRIA)

The initial value problem of surface waves generated by a harmonically oscillating vertical wave-maker immersed in an infinite incompressible fluid of finite constant depth is presented. The resulting motion is investigated using the method of generalized function, and an asymptotic analysis for large times and distances is given for the free surface elevation.

Przedstawiono zagadnienie poczatkowe dla fal powierzchniowych wytworzonych przez harmonicznie drgający generator fal zanurzony w nieograniczonym zbiorniku cieczy nieściśliwej o skończonej, stałej głębokości. Powstały w ten sposób ruch cieczy bada się za pomocą metody funkcji uogólnionych stosując przy analizie ruchu powierzchni swobodnej metody asymptotyczne dla dużych wartości czasu i odleglości.

Представлена начальная задача для поверхностных волн, образованных гармонически колеблющимся генератором волн, погруженным в неограниченным резервуаре несжимаемой жидкости с конечной, постоянной глубиной. Возникающее таким образом движение жидкости исследуется при помощи метода обобщенных функций, применяя, при анализе движения свободной поверхности, асимптотические методы для больших значений времени и расстояний.

1. Introduction

The solution to the classical problem of forced two-dimensional wave motion with outgoing surface waves at infinity generated by a harmonically oscillating vertical wave-maker immersed in water was solved by Havelok [1]. Recently, Rhodes-Robinson [2] reinvestigated the same problem, making allowance for the presence of surface tension. PramaNIK [3] considered the initial value problem of waves generated by a moving oscillatory surface pressure against a vetical cliff and a uniform asymptotic analysis was given for the unsteady case. Debnath and Basu [4] treated the same problem taking into account the effect of surface tension.

In this paper we consider the transient development of two-dimensional linearized gravity waves generated by a harmonically oscillating vertical wave-maker immersed in a homogeneous incompressible inviscid fluid. With the help of an initial-value formulation, the integral representation of the surface elevation is obtained through an application of the Laplace and the generalized cosine Fourier transforms of the equations of motion. These integrals are then analysed asymptotically for large time and distance. The transient waves are determined by the stationary phase method combined with the contour integration method.

2. Formulation

We are concerned with the transient development of two-dimensional surface waves produced by a harmonically oscillating wave-maker in a non-viscous incompressible fluid neglecting any effect due to surface tension at the free surface of the fluid. If the motion is generated originally from rest by the oscillations of the wave-maker, it will be irrotational throughout all time and we may describe the motion in terms of a velocity potential $\phi(x, y ; t)$. Take the origin 0 at the mean level of the free surface and the axis, $O y$ pointing vertically downwards along the wave-maker. Thus the region of the fluid is of semi-infinite horizontal extent. Let the fluid be bounded at some fixed finite constant depth h. The unsteady motions are generated in the fluid by the continuous oscillations of the wave-maker, let it oscillates horizontally with velocity $U(y ; t)$ which is given by

$$
\begin{equation*}
U(y ; t)=u(y) e^{i \omega t} H(t) \tag{2.1}
\end{equation*}
$$

where $u(y)$ is an arbitrary function of y, ω is the frequency and $H(t)$ is the unit step function.

The velocity potential satisfies an initial boundary value problem in which

$$
\begin{equation*}
\nabla^{2} \phi=\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=0 \tag{2.2}
\end{equation*}
$$

in the fluid region, $0 \leqslant x<\infty, 0 \leqslant y \leqslant h, t>0$, with the bottom condition

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0 \quad \text { on } \quad y=h, \quad t>0 \tag{2.3}
\end{equation*}
$$

The linearized dynamic and kinematic conditions are

$$
\left.\begin{array}{l}
\frac{\partial \phi}{\partial t}=g \eta \tag{2.4}\\
\frac{\partial \phi}{\partial y}=\frac{\partial \eta}{\partial t}
\end{array}\right\} \quad \text { on } \quad y=0, \quad t>0
$$

where $\eta=\eta(x ; t)$ is the elevation of the free surface above its mean level and g is the acceleration due to gravity.

At the wave-maker,

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}=U(y ; t) \quad \text { on } \quad x=0, \quad t>0 \tag{2.5}
\end{equation*}
$$

and the initial conditions are

$$
\begin{equation*}
\phi=\eta=0, \quad \text { when } \quad t=0 \tag{2.6}
\end{equation*}
$$

Also we suppose that ϕ, η are defined in the generalized sense.

3. Solution of the problem

We introduce the Fourier cosine transform with respect to x and the Laplace transform with respect to t as

$$
\begin{equation*}
\bar{F}_{c}(k, y ; s)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \cos k x d x \int_{0}^{\infty} e^{-s t} F(x, y ; t) d t \tag{3.1}
\end{equation*}
$$

where the subscript c and the bar in the transformed function refer to the cosine Fourier and Laplace transforms, respectively.

Application of (3.1) to the system (2.2)-(2.6) gives:

$$
\left.\begin{array}{c}
\frac{d^{2}}{d y^{2}} \bar{\phi}_{c}-k^{2} \bar{\phi}_{c}=\sqrt{\frac{2}{\pi}} \bar{U} \\
\frac{d}{d y} \bar{\phi}_{c}=0 \quad \text { on } \quad y=h, \quad s>0 \\
\bar{\phi}_{c}=\frac{g}{s} \bar{\eta}_{c} \\
\frac{d}{d y} \bar{\phi}_{c}=s \bar{\eta}_{c} \tag{3.4}
\end{array}\right\} \quad \text { on } \quad y=0, \quad s>0 .
$$

The solution of Eq. (3.2) is

$$
\begin{equation*}
\bar{\phi}_{c}(k, y ; s)=A(k ; s) e^{k y}+B(k ; s) e^{-k y}+\sqrt{\frac{2}{\pi}} \int_{0}^{y} k^{-1} \sinh k(y-\xi) \bar{U}(\xi ; s) d \xi, \tag{3.5}
\end{equation*}
$$

where $A(k ; s)$ and $B(k ; s)$ are functions to be determined.
The transformed boundary conditions (3.4) are satisfied if

$$
\begin{equation*}
A(k ; s)=\frac{g k+s^{2}}{2 k s} \bar{\eta}_{c}, \quad B(k ; s)=\frac{g k-s^{2}}{2 k s} \bar{\eta}_{c}, \tag{3.6}
\end{equation*}
$$

From Eqs. (3.3), (3.5) and (3.6) we get,

$$
\begin{equation*}
\sqrt{\frac{\pi}{2}} \bar{\eta}_{c}=-\frac{s}{s^{2}+\alpha^{2}} \int_{0}^{h} \frac{\cosh k(h-\xi)}{\cosh k h} \bar{U}(\xi, s) d \xi \tag{3.7}
\end{equation*}
$$

$$
\begin{array}{r}
\sqrt{\frac{\pi}{2}} \bar{\phi}_{c}=\int_{0}^{y} k^{-1} \sinh k(y-\xi) \bar{U}(\xi ; s) d \xi-k^{-1} \sinh k y \int_{0}^{y} \frac{\cosh k(h-\xi)}{\cosh k h} \bar{U}(\xi ; s) d \xi \tag{3.8}\\
-\frac{g \cosh k(h-y)}{\left(s^{2}+\alpha^{2}\right) \cosh k h} \int_{0}^{h} \frac{\cosh k(h-\xi)}{\cosh k h} \bar{U}(\xi ; s) d \xi
\end{array}
$$

where

$$
\alpha^{2}=g k \tanh k h
$$

The inverse Laplace and cosine Fourier transforms together with the convolution theorem for Laplace transform give

$$
\eta(x ; t)=-\frac{2}{\pi} \int_{0}^{\infty} \cos k x d k \int_{0}^{h} \frac{\cosh k(h-\xi)}{\cosh k h} d \xi \int_{0}^{t} U(\xi ; \tau) \cos \alpha(t-\tau) d \tau
$$

$$
\left.\begin{array}{rl}
\phi(x, y ; t) & =\frac{2}{\pi} \int_{0}^{\infty} \cos k x d k\left[\int_{0}^{y} k^{-1} \sinh k(y-\xi) U(\xi, t) d \xi\right.
\end{array} \quad-k^{-1} \int_{0}^{h} \frac{\cosh k(h-\xi)}{\cosh k h} U(\xi, t) d \xi\right] .
$$

Now using the particular form of $U(y, t)$ as given in (2.1), we have

$$
\begin{aligned}
& \eta(x ; t)=-\frac{2}{\pi} \int_{0}^{\infty} \beta(k) \cos k x d k \int_{0}^{t} e^{i \omega \tau} \cos \alpha(t-\tau) d \tau \\
& \begin{aligned}
\phi(x, y ; t)= & \frac{2}{\pi} e^{i \omega t} \int_{0}^{\infty}\left[\gamma(k, y)-\beta(k) k^{-1} \sinh k y\right] \cos k x d k \\
& \quad-\frac{2 g}{\pi} \int_{0}^{\infty} \frac{\beta(k)}{\cosh k h} \cosh k(h-y) \cos k x d k \int_{0}^{t} \alpha^{-1} e^{i \omega t} \sin \alpha(t-\tau) d \tau
\end{aligned}
\end{aligned}
$$

where

$$
\beta(k)=\int_{0}^{h} u(\xi) \frac{\cosh k(h-\xi)}{\cosh k h} d \xi, \quad \gamma(k, y)=\int_{0}^{y} k^{-1} \sinh k(y-\xi) u(\xi) d \xi,
$$

i.e.

$$
\begin{equation*}
\eta(x, t)=\frac{2}{\pi} \int_{0}^{\infty} \frac{\beta(k)}{\alpha^{2}-w^{2}}\left[i \omega \cos \alpha t-\alpha \sin \alpha t-i \omega e^{i \omega t}\right] \cos k x d k \tag{3.9}
\end{equation*}
$$

$$
\begin{align*}
& \phi(x, y ; t)=\frac{2}{\pi} e^{i \omega t} \int_{0}^{\infty}\left[\gamma(k, y)-\beta(k) k^{-1} \sinh k y\right] \cos k x d k \tag{3.10}\\
&+\frac{2 g}{\pi} \int_{0}^{\infty} \frac{\beta(k)}{\alpha\left(\alpha^{2}-\omega^{2}\right) \cosh k h}\left[\alpha \cos \alpha t+i \omega \sin \alpha t-\alpha e^{i \omega t} \cos k x d k\right.
\end{align*}
$$

4. Asymptotic behaviour of $\eta(x ; t)$ for large values of x and t

We are interested in the waves after a large time at a large distance. To see the feature of this wave motion, it suffices to work only with the free surface elevation.

Write

$$
\eta=I+J
$$

where

$$
\begin{align*}
& I=-\frac{2}{\pi} i \omega e^{i \omega t} \int_{0}^{\infty} \frac{\beta(k)}{\alpha^{2}-\omega^{2}} \cos k x d k \tag{4.1}\\
& J=\frac{2}{\pi} \int_{0}^{\infty} \frac{\beta(k)}{\alpha^{2}-\omega^{2}}(i \omega \cos \alpha t-\alpha \sin \alpha t) \cos k x d k .
\end{align*}
$$

The first integral represents the steady state while the second represents the transient wave. It is convenient to rewrite Eqs. (4.1) and (4.2) as follows

$$
I=\frac{i}{2 \pi} e^{i \omega t} \sum_{n=1}^{2} I_{n}, \quad J=\frac{i}{2 \pi} \sum_{n=1}^{4} J_{n},
$$

where

$$
\begin{aligned}
& I_{1}, I_{2}=\mp \int_{0}^{\infty} \frac{\beta(k)}{\alpha \mp \omega}\left(e^{i k x}+e^{-i k x}\right) d k, \\
& J_{1}, J_{2}=\int_{0}^{\infty} \frac{\beta(k)}{\alpha-\omega} e^{i(\omega t \pm k x)} d k, \\
& J_{3}, J_{4}=-\int_{0}^{\infty} \frac{(k)}{\alpha+\omega} e^{-i(\omega t \mp k x)} d k .
\end{aligned}
$$

The main contribution to the asymptotic value of the above integrals for large t and x comes from the poles and stationary points of the integrands. It is noted that each of the integrals I_{1}, J_{1} and J_{2} contains one pole a $k=k_{0}$ where k_{0} is the only real positive root of the equation

$$
\begin{equation*}
\sqrt{g k_{0} \tanh k_{0} h}=\omega . \tag{4.3}
\end{equation*}
$$

In addition, the integrals J_{2} and J_{3} contain one stationary point, at $k=k_{1}$ which is the root of the equation

$$
\begin{equation*}
\frac{d \alpha}{d k}=\frac{x}{t} . \tag{4.4}
\end{equation*}
$$

It may be observed that the function $d \alpha / d k$ decreases monotonically from $\sqrt{g h}$ to 0 as k varies from 0 to ∞. Hence Eq. (4.4) has a real root k_{1}. On the other hand, the integrals I_{2} and J_{4} contain neither poles nor stationary points in the range of integration.

Now the contribution from the pole of the integral I_{1} can be evaluated using the formula for the asymptotic expansion of the generalized Fourier transform developed by

Lighthill [5], that is, if $f(k)$ has a simple pole at $k=k_{0}$ in $a<k_{0}<b$, then as $|x| \rightarrow \infty$,

$$
\begin{equation*}
\int_{a}^{b} f(k) e^{i k x} d k \sim i \pi \operatorname{sgn} x e^{i k_{0} x}\left(\text { residue of } f(k) \text { at } k=k_{0}\right)+0\left(\frac{1}{|x|}\right) \tag{4.5}
\end{equation*}
$$

Using this formula, it is easy to see that as $x \rightarrow \infty$

$$
\begin{equation*}
I \sim \frac{e^{i \omega t} \beta\left(k_{0}\right)}{2 \alpha^{\prime}\left(k_{0}\right)}\left(e^{i k_{0} x}-e^{i k_{0} x}\right) \tag{4.6}
\end{equation*}
$$

where $\alpha^{\prime}\left(k_{0}\right)$ is the derivative of α at $k=k_{0}$.
The method of stationary phase (Copson [6]) can be used to evaluate the transient component of J (that is the contribution from the stationary points),

$$
\begin{equation*}
J_{\mathrm{tr}} \sim \frac{i \beta\left(k_{1}\right)}{2 \pi} \sqrt{\frac{2 \pi}{t\left|\alpha^{\prime \prime}\left(k_{1}\right)\right|}}\left\{\frac{e^{i\left[t \alpha\left(k_{1}\right)-k_{1} x-\frac{\pi}{4}\right]}}{\alpha\left(k_{1}\right)-\omega}-\frac{e^{-i\left[t \alpha\left(k_{1}\right)-k_{1} x-\frac{\pi}{4}\right]}}{\alpha\left(k_{1}\right)+\omega}\right\}+0\left(\frac{1}{t}\right), \tag{4.7}
\end{equation*}
$$

where J_{tr} denotes the transient part of J for large t.
Finally we calculate the contribution to J from its polar singularity. This can easily be estimated by the formula (4.5),

$$
\begin{equation*}
J_{\text {polar }} \sim-\frac{e^{i \omega t} \beta\left(k_{0}\right)}{2 \alpha^{\prime}\left(k_{0}\right)}\left(e^{i k_{0} x}+e^{-i k_{0} x}\right) \tag{4.8}
\end{equation*}
$$

Write

$$
\eta=\eta_{\mathrm{st}}+\eta_{\mathrm{tr}}
$$

where η_{st} is the steady state solution and η_{tr} is the transient component. The first term in η is the polar contribution to I and J which is given by

$$
\begin{equation*}
\eta_{\mathrm{st}}(x, t)=\frac{-\beta\left(k_{0}\right)}{\alpha^{\prime}\left(k_{0}\right)} e^{i\left(\omega t-k_{0} x\right)}+0\left(\frac{1}{x}\right) \tag{4.9}
\end{equation*}
$$

and transient solution η_{tr} is given by Eq. (4.7).

5. Asymptotic solution in the case of infinite depth

In case of an infinitely deep water, that is when $h \rightarrow \infty$, the functions $\beta(k), \alpha(k)$, the pole k_{0} and the stationary point k_{1} are all simpler in form and they are given by

$$
\begin{gathered}
\beta(k)=\int_{0}^{\infty} u(\xi) e^{-k \xi} d \xi, \quad \alpha(k)=\sqrt{g k} \\
k_{0}=\omega^{2} / g, \quad k_{1}=g t^{2} / 4 x^{2}
\end{gathered}
$$

Therefore in this case, the asymptatic solution for $\eta(x, t)$ can be obtained independently, or from Eqs. (4.7) and (4.9) by letting formally $h \rightarrow \infty$,

$$
\begin{align*}
& \eta_{\mathrm{st}}(x ; t) \sim \frac{-2 \omega}{g} \beta\left(\omega^{2} / g\right) e^{-i\left[\omega t-\left(\omega^{2} / g\right) x\right]} \tag{5.1}\\
& \eta_{\mathrm{tr}}(x ; t) \sim \frac{i}{2} \sqrt{\frac{g}{\pi}} \frac{t}{x^{3 / 2}} \beta\left(g t^{2} / 4 x^{2}\right)\left\{\frac{e^{i\left[g t / 2 x^{2}-\pi / 4\right]}}{g t / 2 x-\omega}-\frac{e^{-i\left[g z^{2} / 4 x^{2}-\pi / 4\right]}}{g t / 2 x+\omega}\right. \tag{5.2}
\end{align*}
$$

6. Conclusions

The above analysis reveals the fact that the transient solution η_{tr} as given by Eqs. (4.7) and (5.2) for liquids of constant finite depth and of infinite depth, respectively, decays rapidly to zero as time $t \rightarrow \infty$. Thus the ultimate steady state is established in the limit and is given by Eqs. (4.9), (5.1). These solution represent outgoing progressive waves propagating with the phase velocity ω / k_{0} and g / ω, respectively.

These results justify the use by previous authors as Rhodes-Robinson in [2] of the condition at infinity known as the Sommerfeld radiation condition when investigating the steady state harmonic surface wave problems. Application of this condition instead of the boundedness condition at infinity was necessary to render the solution unique.

References

1. T. H. Havelock, Forced surface waves on water, Phil. Mag., 8, 569, 1929.
2. P. F. Rhodes-Robinson, On the forced surface waves due to a vertical wave maker in the presence of surface tension, Proc-camb. Phil. Soc., 70, 323, 1971.
3. A. K. Pramanik, Waves created against a vertical cliff-a uniform asymptotic solution, Math. Proc. Comb. Phil. Soc., 83, 321, 1978.
4. L. Debnath and U. Basu, Capillary-gravity waves against a vertical cliff, Indian J. Mathematics, 26, 49, 1984.
5. M. J. Lighthill, Fourier analysis and generalized functions, Cambridge University Press, Cambridge 1962.
6. E. T. Copson, Asymptotic expansions, Cambridge University Press, 1965.

DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE, MOHARREM BAY, ALEXANDRIA, EGYPT.

Received May 27, 1987.

