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Asymptotic analysis of surface waves due to oscillatory wave maker 

M.S. FALTAS (ALEXANDRIA) 

THE INmAL value problem of surface waves generated by a harmonically oscillating vertical 
wave-maker immersed in an infinite incompressible fluid of finite constant depth is presented. 
The resulting motion is investigated using the method of generalized function , and an asympto
tic analysis for large times and distances is given for the free surface elevation. 

Przedstawiono zagadnienie pOCl.Cltkowe dla fal powierzchniowych wytworzonych przez harmo
nicznie drgaj~cy generator fal zanurzony w nieograniczonym zbiomiku cieczy nie5cisliwej 
o skonczonej, stalej glf(bokosci. Powstaly w ten spos6b ruch cieczy bada sif( za porn~ metody 
funkcji uog6lnionych stosuj~c przy analizie ruchu powierzchni swobodnej metody asympto
tyczne dla duzych wartosci czasu i odleglo8ci. 

Tipe~CTaBJieHa HatJaJibHaH 3a~aqa ~H IIOBCpXHOCTHblX BOJIH, o6pa30BaHHbiX rapMOHHlJCCKH 
KOJie6JIIOIIlHMCH reHepaTOpOM BOJIH, rrorpy)I{CHHbiM B HCOrpaHHtJCHHbiM pe3epayape HCC)I{It
MaeMOH )I{H,l(KOCTH c KoHetJHoH:, rroCToHHHOH rny6HHoH:. Bo3HHKarom;ee TaKHM o6pa3oM ~BH
)I{eHHe )I{H~KOCTH HCCJie~yeTCH IIpH IIOMOill;H MCTO~a o6o6m;eHHblX <i>YHKI.{HH, IIpHMCHHH, 
rrpH aHaJIH3e ~BH)I{CHHH cao6o~HOH noaepXHoCTH, acHMIITOTHtJeCKHe MCTO~hi ~H 6oJII>WHX 
3HatJCHHH BpeMCHH H paCCTOHHHH. 

1. Introduction 

THE SOLUTION to the classical problem of forced two-dimensional wave motion with out
going surface waves at infinity generated by a harmonically oscillating vertical wave-maker 
immersed in water was solved by HAVELOK [1]. Recently, RHODEs-RoBINSON [2] reinvesti
gated the same problem, making allowance for the presence of surface tension. PRAMA
NIK [3] considered the initial value problem of waves generated by a moving oscillatory 
surface pressure against a vetical cliff and a uniform asymptotic analysis was given for the 
unsteady case. DEBNATH and BAsu [4] treated the same problem taking into account the 
effect of surface tension. 

In this paper we consider the transient development of two-dimensional linearized 
gravity waves generated by a harmonically oscillating vertical wave-maker immersed in 
a homogeneous incompressible inviscid fluid. With the help of an initial-value formula
tion, the integral representation of the surface elevation is obtained through an applica
tion of the Laplace and the generalized cosine Fourier transforms of the equations of 
motion. These integrals are then analysed asymptotically for large time and distance. 
The transient waves are determined by the stationary phase method combined with the 
contour integration method. 
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2. Formulation 

We are concerned with the transient development of two-dimensional surface waves 
produced by a harmonically oscillating wave-maker in a non-viscous incompressible fluid 
neglecting any effect due to surface tension at the free surface of the fluid. If the motion 
is generated originally from rest by the oscillations of the wave-maker, it will be irro
tational throughout all time and we may describe the motion in terms of a velocity po
tential ¢(x, y; t). Take the origin 0 at the mean level of the free surface and the axis, 
Oy pointing vertically downwards along the wave-maker. Thus the region of the fluid is 
of semi-infinite horizontal extent. Let the fluid be bounded at some fixed finite constant 
depth h. The unsteady motions are generated in the fluid by the continuous oscillations 
of the wave-maker, let it oscillates horizontally with velocity U(y; t) which is given by 

(2.1) U(y; t) = u(y)eiwtH(t), 

where u(y) is an arbitrary function of y, ro is the frequency and H(t) is the unit step func
tion. 

The velocity potential satisfies an initial boundary value problem in which 

(2.2) 
()2¢ ()2¢ 

V2¢ = ()x2 + ()y2 = 0, 

in the fluid region, 0 ~ x < oo, 0 ~ y ~ h, t > 0, with the bottom condition 

(2.3) o¢ = 0 on y = h' t > 0. oy 
The linearized dynamic and kinematic conditions are 

(2.4) 
~~ = gf}, I 

on y = 0, t > 0, 
o¢ _ arJ 
ay- Tt 

where fJ = rJ(X; t) is the elevation of the free surface above its mean level and g is the 
acceleration due to gravity. 

At the wave-maker, 

(2.5) _!j_ = U(y · t) on x = 0, t > 0 ox ' 
and the initial conditions are 

(2.6) 4> = fJ = 0, when t = 0. 

Also we suppose that ¢, fJ are defined in the generalized sense. 

3. Solution of the problem 

We introduce the Fourier cosine transform with respect to x and the Laplace transform 
with respect to t as 
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C() C() 

(3.1) F,(k, y; s) = ·v ~ J coskxdx J e-"F(x,y; t)dt, 
0 0 

where the subscript c and the bar in the transformed function refer to the cosine Fourier 
and Laplace transforms, respectively. 

Application of (3.1) to the system (2.2)-(2.6) gives: 

(3.2) 

(3.3) 

(3.4) 

The solution of Eq. 

- g -l <Pc = s'Y}c 

d- -
dy </Jc = S'Y}c 

(3.2) is 

on y = 0, 

- y 

s > 0. 

(3.5) ;j,·,(k, y; s) = A(k; s)e'' + B(k; s)e-•' + V ~ J k-1sinhk(y-~) V(~; s)d~, 
0 

where A(k; s) and B(k; s) are functions to be determined. 
The transformed boundary conditions (3.4) are satisfied if 

(3.6) 
gk+s2 _ 

A(k; s) = 2ks 'Y)c, 
gk-s2 

B(k; s) = 'YJc, 
2ks 

From Eqs. (3.3), (3.5) and (3.6) we get, 

(3.7) 
... ;-n_ s fh 
V 2 'YJc = - s2 + oc2 

coshk(h-~) -
coshkh U(~, s)d~, 

where 

0 

gcoshk(h-y) 
(s 2 + oc2)coshkh 

oc2 = ~ktanhkh. 

h 

f coshk(h-~) -
coshkh U(~; s)d~, 

0 

The inverse Laplace and cosine Fourier transforms together with the convolution 
theorem for Laplace transform give 

C() h t 

2 J J coshk(h-~) J rJ(x; t) = - n coskxdk - coshkh d~ U(~; r)coscx(t-T)d-r, 
0 0 0 
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CX> y 

t/J(x, y; t) = ! [ coskxdk [[ k-'sinhk(y-~)U(~, t)d~ 

, 
-k- 1 J coshk(h-~) U(~ t)d~] 

coshkh ' 
0 

CX> h t 

- :: J coskxdkJ coshk(h-y)coshk(h-~) dt:J -1 . (- )U(t )d't 
"" cosh2kh ~ ~ sm rx t r ~' r ~ · 

0 0 0 

Now using the particular form of U(y, t) as given in (2.1), we have 

CX> t 

'YJ(x; t) = -! J {J(k)coskxdk J eiwrcosrx(t-r)dr, 
0 0 

CX> 

l/J(x, y; t) = ~ eiwt J [y(k, y)-{J(k)k- 1sinhky]coskxdk 

where 

i.e. 

(3.9) 

0 

CX> t 

- ~ J c!~ih coshk(h- y)coskxdk J rx- 1eiwtsina(t- r)dr, 
0 0 

h y 

{J(k) = Ju(t) coshk(h-~) d't 
~ coshkh ~ ' 

y(k, y) = J k- 1sinhk(y- ~)u(~)d~, 
0 

CX> 

'YJ(X, t) = -! f 
0 

0 

{J(k) [iw cos rxt- a sin at- iweiwt] cos kx dk, 
a2-w2 

CX> 

(3.10) </J(x, y; t) = ~ e1wt J [y(k, y)-{J(k)k- 1sinhky]coskxdk 
0 

CX> 

2g f +n 
0 

4. Asymptotic behaviour of 'YJ (x; t) for large values of x and t 

We are interested in the waves after a large time at a large distance. To see the feature 
of this wave motion, it suffices to work only with the free surface elevation. 
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Write 

'YJ = l+J, 

where 
00 

(4.1) 2 . f I= - --;:r: iwe•wt {J(k) coskxdk, 
rx2 _ 002 

0 

(4.2) 

The first integral represents the steady state while the second represents the transient 
wave. It is convenient to rewrite Eqs. (4.1) and (4.2) as follows 

2 

1= - e'wt 1 i . ~ 
2n · "' 

n=l 

where 

The main contribution to the asymptotic value of the above integrals for large t and x 
comes from the poles and stationary points of the integrands. It is noted that each of the 
integrals / 1 , J1 and J2 contains one pole a k = k0 where k0 is the only real positive root 
of the equation 

(4.3) 

In addition, the integrals J2 and J3 contain one stationary point, at k = k1 which is the 
root of the equation 

(4.4) 
X 

t 

It may be observed that the function drxfdk decreases monotonically from y gh to 0 as k 
varies from 0 to oo. Hence Eq. (4.4) has a real root k 1 • On the other hand, the integrals 
12 and J4 contain neither poles nor stationary points in the range of integration. 

· Now the contribution from the pole of the integral / 1 can be evaluated using the for
mula for the asymptotic expansion of the generalized Fourier transform developed by. 

6* 
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LIGHTHILL [5], that is, if /(k) has a simple pole at k = k 0 in a < k 0 < b, then as 
lxl--+ oo, 

b 

(4.5) f f(k)e;••dk- insgnxe;•·•(residue of f(k) at k = ko)+O { 
1
!

1 
) . 

Using this formula, it is easy to see that as x--+ oo 

(4.6) I "' eiwt {3(ko) ( eikoX- eikoX) 

2rx'(k0 ) ' 

where a'(k0 ) is the derivative of a at k = k 0 • 

The method of stationary phase (COPSON [6]) can be used to evaluate the transient 
component of J (that is the contribution from the stationary points), 

(4.7) 

where l 1r denotes the transient part of J for large t. 
Finally we calculate the contribution to J from its polar singularity. This can easily 

be estimated by the formula (4.5), 

(4.8) 

Write 

'YJ = 'Y/st+'Y/tr' 

where 'Yist is the steady state solution and 'YJ 1r is the transient component. The first term 
in 'YJ is the polar contribution to I and J which is given by 

(4.9) 'Yl (x t) = - {3(ko) ei<wt-kox> + 0 (__!__) 
.,st ' rx' (ko) x ' 

and transient solution 'Yitr is given by Eq. (4. 7). 

5. Asymptotic solution in the case of infinite depth 

In case of an infinitely deep water, that is when h --+ oo, the functions {3(k), a(k), the 
pole k 0 and the stationary point k 1 are all simpler in form and they are given by 

C() 

{3(k) = J u(~) e-k;d~, rx(k) = V gk , 
0 

ko = w 2 /g, k 1 = gt 2 /4x2
. 

Therefore in this case, the asymptatic solution for 'Y}(x, t) can be obtained independently, 
or from Eqs. (4.7) and (4.9) by letting formally h --+ oo, 
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(5.1) 
-2w 'Y/st(x; t) "' _ _ {3(w2 /g)e-i[wt-(w2fg)xJ, 

g 

(5.2) 
i vg t { ei[gt2f4x2-nf4] 

'YJ 1r(x; t)"' -2 - ~12 {3(gt 2/4x2) /l 
n x ~ x-w 

e- i(gt ~/4X2- nf4) 

gt/2x+w 

6. Conclusions 

The above analysis reveals the fact that the transient solution 'Y/tr as given by Eqs. 
(4.7) and (5.2) for liquids of constant finite depth and of infinite depth, respectively, 
decays rapidly to zero as time t --+ oo. Thus the ultimate steady state is established in the 
limit and is given by Eqs. (4.9), (5.1). These solution represent outgoing progressive waves 
propagating with the phase velocity wjk0 and gjw, respectively. 

These results justify the use by previous authors as RHODES-ROBINSON in [2] of the 
condition at infinity known as the Sommerfeld radiation condition when investigating 
the steady state harmonic surface wave problems. Application of this condition instead 
of the boundedness condition at infinity was necessary to render the solution unique. 
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