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On the thermodynamic behaviour of non-hyperelastic elastic materials 

A. PAGLIETII (CAGLIARI) 

ON THE BASIS · of a recently proposed way of exploiting the second principle of thermodyna­
mics, the behaviour of elastic dissipative materials is analysed. A mathematical model for these 
materials is considered in detail. It is shown how the functions representing internal energy and 
entropy can be experimentally determined once heating supply and stress during isothermal 
processes are measured. Conditions are given which, if met, assure that the limits of the elastic 
behaviour deduced on a thermodynamical basis can be actually reached by the material. 

Przeanalizowano zachowanie si~ spr~stych material6w dysypatywnych korzystaj~c z niedawno 
;r.aproponowanego nowego Si'Osobu wykorzystania drugiej zasady termodynamiki. Szczeg61owo 
rozpatrzono model matematyczny omawianych material6w. Przedstawiopo spos6b ekspery­
mentalnego wyznaczania energii wewn~trznej i entropii na podstawie pomiar6w przeplywu 
ciepla i napr~en wyst~puj~cych w procesie izoterm.icznym. Podano warunki, kt6rych spelnienie 
gwarantuje, ze material rzeczywi5cie osi~ga granice zachowania sp~stego okreslone w wy­
niku rozwai.an termodynamicznych. 

IIpoma.JmsnpoBaHo noBe~eiU{e ynpyrmc ,LUICCilllaTKBHbiX MaTep~taJIOB, ~tcnom.syx :He~aBHO 
npeWJO>KeHHbrli HOBbiH. CDocOO HCDOJII,30Bamvl BTOporo HatJ:aJia Tep~O,LUIHaMIIKH. IJo~OOHO 
paccMoTpeHa MaTeMaTill!ecKax Mo~em. o6cy>K.[{aeMbiX MaTep~taJIOB. IIpe~CTaBJieH 3Kcnepu­
MeHTaJILHbiH cnoco6 onpe,[{eJieHHH BHyTpeHHeH: 3Hepmu H 3HTPOIIIiH Ha OCHoBe ~tsMepeiUlH 
TetJ:eHHH TeiiJia H HanpJI>KeiU{H:, BbiCTynaiO~IlX B ll30TepMill!CCKOM npJn;ecce. IJpHBe~eHbi 
YCJIOBJtH, y.[{OBJieTBOpeHHe KOTOpbiM rapaHTJtpyeT, tiTO MaTepHaJI ,[{eHCTBilTeJibHO ,[{OCT~traeT 
npelleJIOB ynpyroro nose~eH~tH, onpe~eJieHHbiX B pesyJibTaTe TepMo~lll!eCKmc paccy>K­
~eiU{H:. 

l. Introduction 

MANY practical materials exhibit a springy or elastic behaviour in that they have a time­
-independent stress-strain response and, moreover, they recover their original stress-free 
configuration once the external loads are removed. In continuum mechanics, however, 
such properties are not usually considered as being the landmark of elastic behaviour. 
The latter is regarded as relevant to more particular classes of materials such as, for in­
stance, elastic materials, hyperelastic materials and thermoelastic materials. The definitions 
of these materials are given in many textbooks and will not be reported here (cf., e.g. [6) 
for a clear and concise accoun~). From these definitionsit follows t~at for isothermal and 
for isentropic deformation processes every thermoelastic material behaves as an elastic 
one. If, moreover, the inequality expressing the second principle of thermodynamics is 
regarded as setting restrictions on the constitutive equations of the material, a well-known 
procedure [2] leads to the conclusion. that every thermoelastic material must be hyperelas­
tic for isothermal and for isentropi~ processes [3]. 

This procedure, however, is no. t the only viable nor the only physically possible one. . . . . • . . . 

Its validity, moreover, is not free from crit~c,ism [8, 12]. An alternative procedure is that 
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4 A. PAGLIETII 

of exploiting the inequality expressing the second principle to find restrictions on the pro­
cesses of a material, rather than on its constitutive equations [7, 11]. If such an approach 
is adopted, however, one cannot exclude that there are materials which, while behaving 
as elastic materials for isothermal or for isentropic processes, are not hyperelastic for the 
same processes. With these materials the present paper will be concerned. 

By adopting the alternative thermodynamic procedure mentioned above, it has been 
shown in [11] that the range of processes where a material exhibits thermoelastic proper­
ties cannot, in general, be entirely described by one set of thermoelastic constitutive equa­
tions only. Different processes must be governed by different sets of thermoelastic con­
stitutive equations if the material has to conform to the requirements imposed by the se­
cond principle of thermodynamics. The path-dependent character of the material response 
appears, therefore, as being a consequence- generally an unavoidable one - of a phys­
ical principle; not as featuring a particular choice of the constitutive equations. 

Clearly, it is always possible to represent a path-dependent behaviour by means of 
a single set of history-dependent constitutive functions. However, if we adopt different 
sets of history-independent constitutive equations and exploit the second principle so 
as to determine which set holds in which process, we may obtain a simpler theoretical 
procedure. This is what has already been done in (9] and [11] and will be repeated in the 
present paper. 

The analysis which follows is suitable for representing a more general notion of elas­
ticity than the one usually considered in continuum mechanics. It applies to materials 
which possess a time-independent stress-strain response, recover their initial stress-free 
configuration once they are unloaded, and yet exhibit a dissipative behaviour. Dissipation 
arises both because the stress tensor does not derive from a potential (which may be due 
to the action of some sort of stress-dependent internal friction), and because the stress­
-strain response is process-dependent. It is worth emphasizing, actually, that the mere 
lack of a potential for the stress tensor does not entail by itself the fact that the stress­
-strain response should be path-dependent ( cfr., e.g. the class of materials considered in [9]). 
On the other hand, a process-dependent stress-strain response does necessarily lead to 
the phenomenon known as elastic hysteresis [4, p. 138], which while recognized for a long 
time [5, 1] and affecting many elastic materials -notably rubber and steel- has hitherto 
been neglected in continuum mechanics. 

In order to provide an easy theoretical model for dissipative materials enjoying ther­
moelastic properties, it was assumed in [11] that the behaviour of these materials could 
be describe<;~ by two different sets of constitutive equations of the thermoelastic type. Each 
set of constitutive equations was relevant to a different class of deformation processes: 
loading deformation processes and unloading deformation processes, respectively. Be­
cause of this, some constitutive quantities such as stress tensor, specific internal energy 
and specific entropy were allowed to be discontinuous in the passage from one class of 
processes to the other. Even if it seems unlikely that these discontinuities do really exist, 
the proposed theory may be regarded as a simple and yet reasonable approximation of 
the real behaviour of elastic materials (cf. the comments of [11] discussing the experi­
mental results of [1]). Moreover, at least for a certain kind of phenomena (e.g. vibration 
damping under is.othermal conditions in the elastic range) the proposed model is certainly 
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ON THE THEllMODYNAMIC BEHAVIOUR OF NON•HYPERELASTIC ELASTIC MATERIALS s 

better than the one in which the above discontinuities are ruled out simply by adopting the 
ordinary thermoelastic theory. 

In the present paper our attention will be confined to a particular subclass of materials 
in which the stress tensor is represented by two different constitutive equations of the ther­
moelastic type. It will be proved in Sect. 3 that under appropriate conditions both specific 
internal energy and specific entropy must be represented by the same functions in either 
set of constitutive equations. From this result some properties of the stress tensor will 
be deduced in Sect. 5. In Sect. 6 it will be shown how internal energy and entropy can be 
determined experimentally from measurable quantities. Since the materials considered 
in this paper can undergo irreversible deformation processes only (if we exclude the triv­
ially ,reversible ones represented by rigid-body motions), the results of Sect. 6 should 
confute the statement sometimes claimed that entropy is a quantity which cannot be de­
termined experimentally for states of deformation which can be reached through irrever­
sible processes only. 

Dealing with the same kind of materials as the ones considered here, it was shown 
in [11] that there may be limit states of deformation beyond which no deformation pro­
cess can be compatible with the laws of thermodynamics unless changes in the behaviour 
of the material occur. It was not excluded, however, that a material could leave off obeying 
the original constitutive equations before the above limit states were attained. In Sect. 7 
a class of materials exhibiting thermoelastic properties will be defined for which one 
can establish conditions assuring that the above limit states must actually be reached by 
the material before it could leave off obeying its original constitutive equations. These 
conditions do not seem too restrictive and appear to be in good agreement with the beha­
viour of many practical materials. When they are met, the limit to the elastic beha­
viour of a material can be predicted by thermodynamic arguments based on the consti­
tutive equations of the material in the elastic range. 

2. Defipition of thermoelastic material with hysteresis and summary of basic notati~n 

In what follows we shall keep as far as possible the same notation adopted in [11]. 
We shall make explicit reference to that paper when dealing with quantities or definitions 
not previously set forth in the present article. We shall indicate by X, () and t material 
coordinates, temperature and time, and by x, e, T, b, e, q, r and 'YJ the spatial coordinates 
of the particle represented by X, the mass density in the actual configuration, the Cauchy 
stress tensor, the external body force, the specific internal energy, the heating flux vector 
referred to the actual configuration, the heating supply and the specific entropy. Since we 
shall have to refer to two distinct sets of constitutive relations, we shall distinguish the 
quantities relevant to one or the other of these sets by appending to them the symbol" or' 
respectively. For easy reference we shall record here the expression of the stress working w: 

(2.1) w = tr(TFF- 1), (F = oxfoX), 

the local form of the law of balance of momentum: 

(2.2) ~x -divT = eb, 
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6 A. PAGLIETI1 

the local form of the first principle of thermodynamics: 

(2.3) es -w+divq = er 
and the reduced local form of the Clausius-Planck inequality here assumed as the second 
principle of thermodynamics [10]: 

(2.4) -e(oo~+17)0+tr{[F- 1T-e(op¥)r]:F} ~ o, 
where the function 1p = ~(F, 0) defined by 

(2.5) 1p = e -817 

is the specific free energy expressed taking F and 0 as independent variables. 
By introducing the second order tensor B defined by 

(2.6) B = (F- 1T)T -eoptp, 
we can write Eq. (2.4) in the form 

(2.7) -e(oo~+17)0+tr(BTF) ~ o, 
which for isothermal processes reads 

(2.8) 

We shall indicate by s the amount of total specific heating and we shall attribute to sapo­
sitive sign when it represents a quantity of heat which is absorbed by the body. It is clear 
that . 

(2.9) J sdm = J rdm- J q · ndA, 
ffl 91 i)ffl 

where fJI indicates the region occupied by the body, of!l its surface, dA an element of this 
surface and nits outward unit normal. By expressing Eq. (2.9) in local form we get 

(2.10) s = er-divq. 

It has been shown in paper [11] that the behaviour of a thermoelastic material 
which is not hyperelastic for isothermal or isentropic processes cannot be described in 
a consistent way by means of a single set of constitutive equations which express T, s, 17 
and q as single-valued functions of the actual values ofF, 0 and g = gradO. In the same 
paper a proposal has been made to describe such a material by means of two distinct sets 
of single-valued constitutive equations, namely: 

(2.11) T' = T'(F' 0), 

(2.12) e' = e' (F, 0), 

(2.13) 17' = ~' (F, 0), 

(2.14) q' = q'(qF, 0, g), 

and 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

T" = T" (F' 0)' 

e" = e" (F, 0) , 

17" = n" (F, o), 
q" = q"(F, 0, g). 
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ON THE THERMODYNAMIC BEHAVIOUR OF NON•HYPERELASTIC ELASTIC MATERIALS 7 

Moreover, an appropriate criterion to distinguish the processes in which the response of 
the material is represented by Eqs. (2.11)-(2.14) from those in which the response of the 
material is represented by ~qs. (2.15)-(2.18), has been given. 

Since, however, the constitutive equations (2.11 )-(2.18) can represent a material which 
does not exhibit any feature of what is commonly thought of elastic behaviour, we shall 
specify further the class of materials we are considering, by means of the following 

DEFINITION 2.1. We shall define a thermoelastic material with hysteresis as a material 
having the following properties: 

(i) For every state of uniform temperature 0 there exists and is unique (to within of ri­
gid-body motions) a stress-free state of deformation (natural state at the given temperature). 

(ii) If during a process the stress working w is greater than zero, then stress tensor, 
internal energy, entropy and heating flux are uniquely determined by F, 0 and g through the 
relations (2.11)-(2.14). If, however, during a process w < 0, the above quantities are uniquely 
determined by the values ofF, 0 and g through the relations (2.15)-(2.18). 

(iii) If during a process w = 0, then T, e, 'YJ and q are not, in general, uniquely determined 
by F, 0 and g, but their values (or the values of their components if they are vectors or ten­
sors) must be contained between the values which the corresponding quantities (2.11 )-(2.14) 
and (2.15)-(2.18) assume in correspondence to the same state of deformation and temperature. 

(iv) If the stress working for a deformation increment F dt is greater than zero, then the 
stress working for the deformation increment - F dt is less than zero. 

Observe that the cpndition iv of the previous definition is not a truism. Indeed, it is not 
trivially met when T' i: T". This condition has to be introduced if, according to what is 
commonly thought about elastic behaviour, we want the material to recover spontaneously 
(i.e. without absorbing work from the external forces) the state assumed before the appli­
cation of the external forces, once the latter have been slowly removed. In this paper we 
shall be concerned mainly with isothermal processes. We shall, therefore, admit that the 
reference configuration (F = 1) coincides with the natural state of the body at the consid­
ered temperature 0. We shall indicate by {F}o,o the set of deformation gradients which 
can be obtained from F = 1 by means of rigid-body motions at constant temperature 0. 

When w = 0, Definition 2.1 item iii tells us that the quantities T, e, 'YJ and q are not, 
in general, uniquely determined by F, 0 and g. It turns out that in the present model T, 
e, 'YJ and q are generally discontinuous in the passage from a process in which a set of 
constitutive equations holds to a process in which the other set of constitutive equations 
holds. We shall assume, henceforth, that T' and T" do not coincide (1) and we shall prove 
in the next section that under appropriate circumstances e' = e" and ~' = ~". Internal 
energy, entropy and free energy can, therefore, be represented by the single-valued func­
tions e == e(F, 0), 'YJ = ~(F, 0) and 1p = ~(F, 0) for every process. The question whether q' 
coincides with q" or not, is irrelevant for the analysis which follows and will not be con­
sidered here. 

We shall call a loading deformation increment an increment of deformation for which 
w > 0 and an unloading deformation increment an increment of deformation for which 
w < 0. For the sake of simplicity attention will be confined to the case of materials in 

(1) As far as the experimental basis for the admissibility of this hypothesis cf. [11, p. 238). 
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8 A. PAGLIETI'I 

which T' and T" have the same principal axes, no matter what the values of F and 0 are. 
This means that 

(2.19) T' = a(l, n, 111, orr", 

where a = a(l, 11, Ill, 0) is a scalar function of the strain invariants I, 11, Ill and of 0. 
We shall assume, moreover, that also the tensor F(op~)T has the same principal axes 
·as T' and T"; that is 

(2.20) 

werhe b = h(l, 11, Ill, 0) is another scalar function. Clearly, from Eqs. (2.19) and (2.20) 
it follows that 

(2.21) 

where 

(2.22) c(I, Il, Ill, 0) = a(l, 11, Ill, O)b(I, 11, Ill, 0). 

It will be shown in Sect. 5 that a (I, 11, Ill, 0) ~ 1, that c(l, II, Ill, 0) ~ 1 and that 
0 < b(I, II, Ill, 0) ~ 1. Under these circumstances it is an easy task to verify that when 
b =1= 1 and c =1= 1 the above definitions of loading and unloading deformation increments 
are completely equivalent to the more general ones given in [11, § 4]. However, when 
b = 1 or c = 1, a loading deformation increment or an unloading one, according to the 
previous definitions, turns out to be a neutral deformation increment as defined in [11, § 4]. 
As a consequence of this, when applying the Clausius-Planck inequality to a loading or 
to an unloading deformation increment, we shall be unable to exclude at the outset the 
equality sign from that relation. 

3. A condition implying e' = s" and ~, = ~". Relation between entropy and free energy 

We know from experience that there are states of deformation and temperature in 
which a material can absorb or lose an amount of heat at constant values ofF and 0. In 
these situations the material suffers changes in its molecular structure so that the amount of 
heat absorbed or lost balances the variation of internal energy due to the atomic rearrange­
ment. This is, for instance, what happens when a crystalline solid undergoes a transition 
from an allotropic state to another, or when, more generally, thermal actions produce 
changes in the state of aggregation of a body. In these cases, an observer who describes · 
the state of the body by means of the macroscopical variables F and 0 sees that it absorbs 
or loses heat without corresponding changes in its deformation and temperature. With­
out attempting to go into the details of this question, but only to exclude such a kind 
of phenomena from the rapge of processes which the materials we are considering can 
undergo, we shall lay down the following: 

DEFINITION 3.1. We shall say that at time t a material undergoes a change in its state 
of aggregation if s(t) =I= 0 while F(t) = 0 and O(t) = 0. 

The following proposition follows staightforwardly from the above definition: 
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PROPOSITION' 3.1. If in a thermoelastic material with hysteresis F and () are kept con-­
stant and if, moreover, the material does not undergo changes in its state of aggregation, 
then the total specific heating s vanishes identically. 

On the basis of the forthcoming analysis the following theorems can now be proved. 
THEOREM 3.1. If at any time t the relations F(t) = 0 and O(t) = 0 imply s(t) = 0 (that 

is if the material does not undergo changes in its state of aggregation), then e' = e". 
P r o o f. At a given state of deformation 0F and at a given temperature ()0 , consider 

a body element undergoing an isothermal loading-unloading transition and apply the 
first principle of thermodynamics to this process. If e and T are the values assumed by the 
internal energy and the stress tensor during this process-e), we have 

(3.1) f edt = f tr(TFF- 1)dt+ f sdt, 
Llt Llt Llt 

where LJt indicates the time interval in which the process takes place. Since we are consid-­
ering a transition process, F = 0F = const and, therefore, F = 0; moreover, since this 
process is an is-othermal one, we have from Proposition 3.1 that s = 0. Thus, 

(3.2) f edt = e"(0 F, 00)-e'(0 F, Oo) = 0. 
Llt 

Hence, since 0F and 00 are arbitrary, we get 

(3.3) e'(F, O) = e"(F, o). 

THEOREM 3.2. If at any time t the relations F(t) = 0 and O(t) = 0 imply s(t) = 0, then 

~' = ~". 
P r o o f. By applyi~g the second principle of thermodynamics to the same process 

considered in the previous theorem, we get 

(3.4) J () 0 ~ dt ~ J sdt, 
Llt Llt 

where 'rJ indicates the values assumed by entropy (3 ) in the interval LJt. From Eq. (3.4) 
and from Proposition 3.1, we obtain 

(3.5) 

Hence, since 00 ~ 0, 

(3.6) 

(2) As follows from Definition 2.1 item iii, during a transition process T, e and 11 can vary between 
the values defined by Eqs. (2.11)-(2.16) and Eqs. (2.15}-(2.17) for the considered values of 0F and Oo. 
It is assumed that the transition process considered here takes place in a continuous way from the loading 
process from which it starts, to the unloading process at which it ends. Moreover, the quantities T, e 
and 'YJ are supposed to vary in a continuous way between the values T', e', 11' and T", e", 'YJ", respective­
ly. These assumptions seem reasonable from the physical standpoint and do not introduce serious limi­
tations to the theory. 

(3) See footnote (2). 
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10 A. PAGUETil 

In a similar way, by considering an unloading-loading transition process inverse to the 
previous one, we get 

(3.7) 

Thus, since 0F and 00 are arbitrary, from (3.6) and (3.7) we get 

{3.8) ~'(F,O) = ~"(F,O). 
We shall henceforth use the notation e = e(F, 0) and 'YJ = ~(F, 0) for the functions (3.3) 

and (3.8), respectively. From Theorem 3.1 and Theorem 3.2 we can deduce: 
CoROLLARY 3.1. A thermoelastic material with hysteresis that does not undergo chan­

ges in its state of aggregation possesses a unique Helmholtz free energy function given 
by 

{3.9) ~(F, 0) = e(F, 0) -O~(F, 0); 

and 

CoROLLARY 3.2. If a thermoelastic material with hysteresis does not undergo changes 
in its state of aggregation, then r = 0 during homothermal loa ':ling-unloading (or unload­
ing-loading) transitions. 

The first of these corollaries is a consequence of Theorem 3.1 and Theorem 3.2. The 
second is a consequence of Proposition 3.1, of the definition of transition process and of 
the fact that on the mere basis of central symmetry properties (4 ) (that is without using 
thermodynamical arguments) it can be deduced that for homothermal processes q = 0; 
see [2, p. 173] and the work of Pip kin and Rivlin quoted there. 

If the hypothesis is made that for any given values ofF and 0 the quantity 0 can assume 
positive or negative values while F = 0, then by applying the Clausius-Planck inequality 
and by repeating the same procedure as that proposed by COLEMAN and NoLL (cf. [3, p. 
1122]) one can deduce that: 

THEOREM 3.3. If at any t the relations F(t) = 0 and O(t) = 0 imply s(t) = 0, then spe­
cific entropy and specific free energy are connected by the relation 

(3.10) ~(F, 0) = -o8~(F, 0). 

It should be observed, however, that Eq. (3.10) is a consequence of the hypothesis 
that 0 can be greater or less than zero when F = . 0 and F and 0 are arbitrary; not a ne­
cessary consequence of the second principle of thermodynamics (cf. the criticism expres­
sed in [12]). 

4, The structure of thermodynamically admissible processes 

Unless otherwise specified, we shall from now on consider isothermal processes and 
we shall exclude the occurrence of phase changes. As shown in [11], the tensors B' and B", 
defined according to Eq. (2.6) by 

(4.1) 

(4) Henceforth admitted. 
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and by 

(4.2) 

play a fundamental role as far as the determination of the thermodynamically admissible 
processes of a material are concerned. In this section we shall clarify the way in which 
a thermodynamically admissible process depends on B' and B". To begin with, we shall 
prove 

THEOREM 4.1. If B' =1= 0 and if an irreversible (5) increment of deformation Fdt is thermo­
dynamically compatible when the constitutive equations (2.11 )-(2.14) hold, then its opposite 
- Fdt is not compatible with the same constitutive equations. Reciprocally, if an increment 
of deformation is not compatible when Eqs. (2.11)-(2.14) hold, then its opposite is (6

). 

P r o o f. The condition of thermodynamical compatibility for an isothermal process 
is given by 

(4.3) 

Since this inequality is a linear relation in F and since the equality sign in Eq. ( 4.3) is exclud­
ed by the irreversibility hypothesis, the theorem follows straightforwardly. 

Consider now a deformation increment Fdt such that all the components of FF- 1· but 
one are equal to zero. The previous theorem tells us that either this deformation incre­
ment or its opposite is thermodynamically compatible when the constitutive equations 
(2.11 )-(2.14) hold. Hence: 

CoROLLARY 4.1. If B' =I= 0, there exists always a deformation increment which is both 
thermodynamically compatible when the constitutive equations (2.11)-(2.14) hold and 
such as all the components of FF- 1 but one vanish in the given reference system('). 

The following theorem gives us details on B' and B": 
THEOREM 4.2. If a thermoelastic material represented by (2.11)-(2.18) is in a state of 

deformation in which B' =I= 0 and B" =I= 0, and if starting from this state the material can 
suffer deformation increments in every direction, then B' and B" must be opposite tensors(8

). 

(
5

) An isothermal increment of deformation is said to be irreversible when the equality sign in Eq. (2.8) 
does not hold. Cf. [11, § 4]. 

(
6

) An analogous theorem holds true, of course, if we consider B" instead of B' and the constitutive 
equations (2.15)-(2.18) instead of Eqs. (2.11)-(2.14). 

(') Since tr(HK) = HIJKii = HiiKJ1 = H/K/, it should be clear that this corollary applies either 
if reference is made to the covariant components of 'FF- 1, or to the contra variant ones, or finally to the 
mixed ones. 

(
8

) By direction of a second order tensor S we mean the angle 

tr(STR) 
q; = are cos ---

iSiiRI 

which S form~ with a given reference tensor R in the nine-dimensional space of the second rank tensors. 
Two tensors S and Q are said to be of the same direction or opposite if the rehltion 

s = ±k2Q 

holds with positive or negative sign, respectively, k being a real number. Cf. [11, § 2]. 
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12 A. PAGLIETII 

Proof. Let F represent a loading deformation increment. The angle between B' and 
F is given by 

(4.4) 
tr(B'TF). 

f!J' = arccos . 
IB'IIFI ' 

n ' n 0 and from the second principle (2.8) we can deduce that - 2 ~ fP ~ 2 . n the other 

hand, in view of Theorem 4.1, the deformation increment represented by- F is not, in 
general, thermodynamically compatible when Eqs. (2.11)-(2.14) hold. Since by hypothe­
sis- F dt must be a deformation increment which the body can suffer, it follows that this 
deformation increment must be thermodynamically compatible when Eqs. (2.15)-(2.18) 
hold. Therefore the angle 

(4.5) 
tr( - B" TF). 

f!J" = arccos . 
IB"IIFI 

n n 
has to be greater than - 2 and less than 2 . Thus, both B' and - B" must be concor-

dant(9) with F. Since F can be any arbitrary tensor( provided that it forms an angle --f.; 
.; rp .; ; with s'), it follows that B' and -B" must have the same direction . Thus 

(4.6) 

From the previous theorem it follows: 
COROLLARY 4.2. Under the hypothesis Theorem of 4.2, the set of loading deformation 

increnents and that of unloading deformation increments constitute a set of pairwise 
opposite tensors. 

5. Restrictions on T' and T'' 

In this section we shall establish some properties which the functions T' (F, 0) and 
T"(F, 0) have to satisfy in order that the material they represent exhibits the behaviour 
set forth by Definition 2.1. We shall start with 

THEOREM 5.1. -If 0 = const, both T' and T" must vanish when and only when FE {F}0 , 6 • 

Moreover, for a given value ofF f: {F}o,th T[i and T[J(i,j E {I, 2, 3}) must have the same 
sign. 

P r o o f. The first part of the theorem is a consequence of Definition 2.1 point i. 
To prove the second part consider an element of the body in a generic state of deforma­
tion F and consider the expressions of w when the element undergoes a loading deform-

Tt Tt 
(

9
) Two tensors are said to be concordant when their angle is less than - and greater than - - . 

2 2 
Cf. [11, § 2]. 
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ation increment 1Fdt and an unloading deformation increment uFdt, respectively. In 
view of Definition 2.1 point iii, we have 

(5.1) 

and 

(5.2) 

w, = tr(T',FF- 1
) > 0 

As observed in Corollary 4.1, we can always choose ,:F as a tensor such that all contrava­
riant components of 1FF- 1 vanish, except one, say (1FF- 1)ii which is equal to a real num­
ber k. Moreover, since the deformation increment represented by a tensor uF whose com­
ponents are opposite to that of 1F is an unloading deformation increment as stated by 
Corollary 4.2, it turns out that with such a choice of 1F and uF the relations (5.1) and (5.2) 
become 

(5.3) 

and 

(5.4) 

Hence, 

(5.5) 

-T;jk < 0. 

T/1 T[j > 0 (no sum). 

We shall lay down the following: 
DEFINITION 5.1. We shall call internal stress the second order tensor defined by 

(5.6) 

From Corollary 3.1 we have that T* is uniquely determined when F and () are given. We 
can prove now 

THEoREM 5.2. If T' and T" are continuous and single valued functions ofF and 0, then 
for an isothermal process we have 

(5.7) IT!1 I ~ ITij I ~ IT!J 1. 
Moreover, in correspondence to each value ofF the components T(1, r;; and T;' must all 
have the same sign. 

P r o o f. Consider a body element in a state of deformation F and consider an incre­
ment of deformation F*dt such that the tensor F*F- 1 has all its contravariant components 
equal to zero except one, say (F*F- 1)ii which has a positive value. We know from Theo­
rem 5.1 that the homologous components ofT' and T" must be of the same sign. Suppose 
that both T!i and T;'j are positive. It follows from Definition 2.1 point ii that F* re­
presents a loading deformation increment. Consider, then, an infinitesimal cycle of de­
formation which takes the element from F to F+F*dt and again to F. In the second part 
of this cycle the increment of deformation is represented by - F* and, as stated by Co­
rollary 4.2, is an unloa:ling deformation increment. By applying the second principle 
of thermodynamics to the two parts of the cycle we obtain 

(5.8) tr(B'TF*) ~ 0 

and 
(5.9) tr(-B"F*) ~ 0. 
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14 A. PAOLIE'ITI 

The latter is valid to within small quantities which are negligible owing to the hypothesis 

that T" is a continuous and single valued function of F. From Eqs. (5.8) and (5.9) we 
obtain 

(5.10) tr[(B' -B")F*] ;;?; 0; 

hence, from Eqs. (4.1) and (4.2) we get 

(5.11) tr[(T' -T")F*F- 1] ~ o. 
Since the only contravariant component of F*F- 1 which is different from zero is (F*F-1)ii 

and since this component is assumed to be positive, we obtain from Eq. (5.11) 

(5.12) T!i-TiJ ~ 0, (Ti} > 0, Tij > 0). 

On the other ·hand, if we suppose that T;} and T;j' are both negative, the considered 
increment of deformation F*dt is an unloading one in view of Definition 2.1 point ii. Hence, 
by repeating the same reasoning as before and by substituting - F* to F*, we get 

(5.13) 

From Eqs. (5.12) and (5.13) we deduce 

(5.14) ITi}l;;?; IT;) I, [T!iT!j > O(no sum)]. 

To complete the proof of this theorem, suppose that T;j > 0 and T;'J > 0 for a certain 
value of F, and that, contrary to what is stated by the theorem, T;j < Ti'. In this case 
the process from F to F + F*dt is not thermodynamically compatible when the constitu­
tive equations (2.11)-(2.14) hold, as can be easily verified by means of Eqs. (5.8), (5.6) 
and (4.1). On the other hand, it follows from Eqs. (5.9), (5.6), (5.14) and (4.2) that the 
process from F+F*dt to F is thermodynamically compatible when Eqs. (2.15)-(2.18) 
hold. In the latter process, however, the deformation increment is represented by - F* 
and, therefore, according to Corollary 4.2, its opposite F* must represent a loading deform­
ation increment. Thus, we must have T;j > 1i1. In a similar way we can prove that 
T;j' < Ti~ when T;j > T;'j > 0, and that T;'J > 1i1 > Ti} when Ti) < 0 and T,'J < 0. 

An immediate consequence of this theorem is the following: 
CoROLLARY 5.1. Under the hypotheses of Theorem 5.1, if T' = T" for a certain value 

ofF then, for the same value ofF, the equalities T* = T' = T" hold true. 
Moreover, it is straightforward matter to argue from Theorem 5.1 and Theorem 5.2 

that the functions a and c which appear in Eqs. (2.19) and (2.21) must be such that 

(5.15) a(l, 11, Ill, 0) ~ 1 and c(l, 11, TII, 0) ;;?; 1. 

Also, it is immediate to deduce from Theorem 5.2 and from Eq. (5.6) that the func­

tion b appearing in Eq. (2.20) must be such that 

(5.16) 0 < b(I, 11, Ill,)~ 1. 

It should be observed, finally, that all the restrictions established in this section for 
the covariant components of T', T" and T* hold true also for the mixed or the con­
travariant components of the same tensors. This is a consequence of the fact that, as pre;. 
viously observed, Corollary 4.1 applies to any:kind of components of the tensor FF"'1

• 
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6. Determination of free energy and entropy from experimentally measurable quantities 

Let us consider an homothermal process ( q = 0) and let us call r;o> and r;~> the heating 
supplies which are to be provided to the body during a loading and during an unloading 
deformation increment, respectively. The index (J appended to the above quantities helps 
to remind us that they are relevant to· the constant temperature (J which is taken into con-­
sideration. We shall assume r;6> and r~~> to be positive when they represent an amount 
of heat which is absorbed by the body in the unit time. By means of the first principle 
of thermodynamics we can express r~8> and r~~> through F, (J and F. Indeed, if we consider 
a loading deformation process from F to F + Fdt and if we apply the first principle of 
thermodynamics, we get 

(6.1) • ' '. -1 Qe = er<8>+tr(T FF ). 

Hence, since in the present case 

(6.2) 

we obtain 

(6.3) 

Thus, if we call H' the second rank tensor given by 

(6.4) 

we can express r~8) in the form 

(6.5) r(6> = r;6>(F, (J, F) = tr(H'FJ. 

It should be clear that since Eq. (6.5) is valid for any loading deformation increment what­
soever, it allows us to determine H' once r~8> is known. Thus H' can be determined exper­
imentally from measurements of r~8>, even if 8 is not known. Similarly, if we consider 
a process from F to F- Fdt, which is an unloading process since we have assumed that 
Fdt is a loading deformation increment, we can obtain 

(6.6) r;:, = · + + tr(T"FF- 1
} = - tr \[ ( 8p8}T-+ F- 'T'}l 

Hence, 

(6.7) " "" (F (J F). '<o> = r<8> , , - = -tr(H"FJ, 

where H" is the second rank tensor given by 

(6.8) H" = H"(F, O) = (oF eY- __!__ F-1T". e 
It follows from Eq. (6.7) that H", analogously to H', can be determined once r~~> is known~ 
Equations (6.5) and (6.7) tell us that both ;.;6) and r~~) are odd functions of F. Care must 
be exercised, however, in noting that r;8> and r;~> are relevant only to loading and to un­
loading processes, respectively. So that, if F represents · a loading deformation increment, 
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16 A. PAGLIETTI 

it is not possible to measure r~0> for the increment -For r~~> for the increment F although 

:analytical expressions are meaningful both for F and -F. From Eqs. (6.4) and (6.8) 
we get 

'(6.9) 

which shows that one of the four quantities T', T", H' and H" can be determined 
once the other three are given. 

By means of Eqs. (3.9) and (3.10) we can express ope in the form 

,(6.10) ope= op~-Oo0 op~. 

From this and from Eq. (6.4) we get 

,(6.11) Ooo(op~)T -(op~y + _!__ F-1T' +H' = 0 
(! 

or, in component form, 

(6.12) 

This linear differential equation of the first order allows us to calculate the unknown func­
tion [(op~)T]ii after integration with respect to 0. Since Eq. (6.12) holds for each compo­
nent of (oP~)T and since T', T", r~0> and r~~> (and thus H' and H") are experimentally 
measurable quantities, Eqs. (6.12) provide the means to determine op1p from experimental 
data. Once op~ is determined in this way, a further integration with respect to F gives 
us ~' provided that the compatibility conditions for the existence of a unique function ~ 
.are met. After having determined ~' it is a straightforward matter to determine 1], e and 
T* from Eqs. (3.10), (3.9) and (5.6). It should be remarked that the function ~ so de­
termined is relevant to states of deformation which can be attained through irreversible 
processes only and that, moreover, this function can be determined from experimental 
data. It is assumed, of course, th1t the en~ropy of the materials we are dealing with tends 
to zero as temperature ten:ls to absolute zero. Th~s assumption holds true for materials 
·thlt can reach a complete thermodynamical equilibrium at low temperatures and it 
is known as the third law of thermodynamics or the Nernst-Simon theorem [13]. 

7. A subclass of elastic materials with hysteresis and thermodynamic derivation of the elastic 
Jimit 

In the previous section we h1ve seen how internal energy and entropy can be calcu­
lated through experimentally measurable quantities. Once entropy is known, we can· cal­
culate the function 

(7.1) '~> = ;~>(F, o, F) = o~ 
which can be interpreted as the heating supply which has to be provided during an iso­
thermal process to an imaginuy hyperelastic material which has the same free energy and 

http://rcin.org.pl



ON THE THERMODYNAMIC BEHAVIOUR OF NON•HYPERELASTIC ELASriC MATERIALS 17 

entropy of the material taken into consideration. If we apply the first principle of thermo­
dynamics to an isothermal process of the above hyperelastic material, we get 

(7.2) 

Similarly to what has been done for r~6> and r~~>, we shall express rto> in the form 

(7.3) '<~> = tr(H*F}, 

where the second rank tensor H* is given by 

(7.4) 

We now have all the ingredients to calculate the internal dissipation d' during a loading 
deformation increment Fdt in correspondence to given: values ofF and 0. This quantity 
is given clearly by 

(7.5) d' = d'(F, o, F)= r*(F, o, Ih-r'(F, o, F), 
which, remembering Eqs. (6.5) and (7.3), can be also expressed as 

(7.6) d' = tr[(H* -H')FJ. 

Analogously, in correspondence to the same values of F and 0 we can consider an unload­
ing deformation increment -Fdt opposite to the previous one and we can calculate 
the internal dissipation d" during this unloading deformation increment. 

We get 

(7.7) d" = i"(F, o, t> = r*(F, o, -F) -r"(F, o, -F) = -r*CF, o, F>+r"(F, o, F), 

where we have made use of the fact that r* and f" are odd functions of F. By means 
of Eqs. (6.7) and (7.3), we can express Eq. (7.7) in the form 

(7.8) d" = tr[(H" -H*)FJ. 

From Eqs. (7.6) and (7.8) we can deduce that the total dissipation dT = d~(F, 0, F) during 

an infinitesimal cycle F, F + Fdt, F, is given by 

(7.9) dT = d' +d" = tr[(H" -H')FJ. 

Since F and - F have been assumed to represent a loading and an unloading deforma­
tion increment, respectively, it follows from Theorem 5.1 and from Eqs. (6.4), (6.8) and 
(7.4) that 

(7.10) 

(7.11) 

and, as a consequence, 

(7.12) 

2 Arch. Mech. Stos. nr 1/80 

1 . 
d' =- tr[F- 1(T'-T*)F] ~ 0, 

e . 
1 . 

d" =- tr[F- 1(T*-T")F] ~ 0 
e 

1 . 
dT =- tr[F- 1(T' -T")F] ~ 0. 

e 
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18 A. PAGLIETII 

For the sake of simplicity attention will be confined to the subclass of materials for 
which 

(7.13) d' = &(F, O)d", 

where et is a positive scalar function ofF· and 0. In this subclass of materials the ratio 
between the amount of energy dissipated during a loading deformation increment and 
the amount of energy dissipated during an unloading deformation increment opposite 
to the previous one is given by et = &(F, 0) and, hence, depends only on F and 0. From 
Eqs. (7.9) and (7.13) we obtain 

(7.14) d' =_et_ dr = _a._tr[(H" -H')FJ 
l+a. l+a. 

and 

(7.15) d;' = -
1
-d = -

1
-tr[(H"-H')FJ. 

l+ct T l+ct 

We can now prove the following: 
THEOREM 7.1. In a material in which Eq. (7.13) holds, the quantities tp, T', T", H' and 

H" are connected by the relation(1°) 

(7.16) (0 ")r _ F-l T' +T" a -1 H" -H' 
e F'P - 2 +ea.+l 2 

Proof. From Eqs. (7.10) and (7.11) we obtain 

(7.17) d" -d' = _!_tr[F~ 1 (2T* -T' -T")F], 
e 

which by means of Eqs. (7.14) and (7.15) can be expressed as 

(7.18) e a-l tr[(H"-H')FJ = tr[F- 1(2T*-T'-T")FJ . 
et+l . 

Since F is is an arbitrary loading deformation increment, we can deduce from Eq. (7.18) 
that 

(7.19) 2T* -T' -T" = e et-l F(H" -H'). 
. et+l 

From this and from Eq. (5.6) we obtain Eq. (7.16). 
Consider an element of material for which Eq. (7.13) holds and suppose that this ele­

ment undergoes an isothermal deformation process at temperature 0. We shall indicate 
{F}e the set of all the states of deformation F which · represent the limit after which the 
behaviour of the material is no more represented by Eqs. (2.11)-(2.18) owing to the occur­
rence of phenomena such as failure, plastic yielding and so on. We shall call {F*}B the 
set of states of deformation for which T' = T*. The following theorem gives us suffi­
cient conditions in order that {F}0 = {F*}0 • 

('
0

) This formula generalises the well-known one T = eF(op~)T of the standard approach. 
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THEOREM 7.2. If the transition from the response described by Eqs. (2.11)-(2.18) to 
another kind of response occurs in such a way that: 

(i) in correspondence to each value ofF, every change in the stress tensor produces a chan­
ge in the deformation gradient of the body; 

(ii) IX =F 0 in the open interval(11) (0, F*); 
(iii) at the points F* the (hyper-)tangent to T* is differentfrom that to T' at the same 

point; 
then {F}8 = {F*}o. 
P r o o f. From (i) and (ii) it follows that F cannot be contained in the interval (0, F*). 

To prove this, observe that (i) requires that T'(F) = T"(F) and that, since IX =F 0 in (0, F*), 
T' and T" cannot coincide for FE (0, F*) as it follows from Eqs. (7.13), (7.10) and (7.11) 
and from the fact that T' =FT*. Thus F f: (0, F*). On the other hand we can deduce 
from [iii] that the curve T* intersects the curve T' at the point F*. Therefore, from 
a Lemma proved in [11 , § 6] we can infer that the material cannot reach a state of deform­
ation outside the interval (0, F*) when its constitutive equations are given by Eqs. 
(2.11)-(2.18). Hence {F}o = {F*}o. 
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