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On work-hardening adaptation of discrete structures 
under dynamic loadings* 

C. POLIZZOTTO (PALERMO) 

THE PRESENT paper deals with problems of work-hardening adaptation of discrete structures 
subjected to dynamic loadings in the hypothesis of infinitesimal displacements. The behaviour 
of structural elements is assumed to be rigid-plastic with piecewise linear yield surface, piecewise 
linear work-hardening and strain rate sensitivity. An adaptation criterion is given and bounds 
on strain parameters are formulated. These bounds can be made the most stringent by solving 
a problem of finite plasticity which may be considered as the holonomic formulation of the 
adaptation problem suitably perturbed. The holonomic solution is directly utilized to form 
the bounding quantities. A minimum principle similar to Haar-Karman's is shown to play a role 
in characterizing the adaptability of the structure and the optimality of the bounds. A simple 
appli.cation is presented. 

Rozpatruje si~ problemy przystosowania konstrukcji dyskretnych obci(\Zonych dynamicznie 
w procesie wzmocnienia plastycznego, przyjmuje si~ przy tym hipotez~ przemieszczen infinite· 
zymalnych. Przyjmuje si~, ze zachowanie si~ element6w konstrukcyjnych jest sztywna.plasty
czne z odcinkowo liniow(\ powierzchni'l przeplywu, z odcinkowo liniow(\ czuloSci'l na wzmo· 
cnienie i pr~dkosc deformacji. Podano kryterium adaptacyjne oraz sformulowano ogranicze
nia na parametry odksztalcenia. Ograniczenia te mog(\ zostac maksymalnie uSc:islone drog(\ 
rozwi(\zania problemu skonczonej plastycznoSc:i, kt6ry to problem moze bye rozwai:any jako 
holonomiczne sformulowanie odpowiednio zaburzonego problemu adaptacji. Rozwi(\Zanie 
holonomiczne jest bezposrednio wykorzystane do utworzenia odpowiednich wielko8ci ogra
niczaj(\cych. Wykazano, ze pewna zasada minimum, podobna do zasady Haara-Karmana, gra 
istotn(\ rol~ przy charakteryzacji przystosowania konstrukcji i optymalnoSc:i ograniczen. Przed· 
stawiono proste zastosowanie teorii. 

PaccMaTpHBaroTca npo6neMbi aAanTal.lHH ,zmcKpeTHbiX crpyKTyp, Harpy>KeHHbiX MHaMJt
qecKH, B IIpOl.lCCCe ItJiaCTHqeCKoro ynpO'IHCHWI, IIpH HC~OJib30BaHHH rHOOTe3bl' llH<i>HHHTH-
3HMaJibHbiX nepeMell.lemtii. TipeAQOJiaraeTCH, trrO llOBeAeHHe KOHCTpYKI.lROHHbiX :.meMCHTOB 
>KeCTKo-nnaCTu;qecKoe c Kycot~HO-JlllHeiiHoU: nosepXHOCTbiO Tet~eHHH, H c Kyco11Ho-JlllHeitHoU: 
'!yBCTBU:TCJibHOCTbiO Ha yrrpO'IHCHHe H CKOpOCTb Ae<i>opMal.lHH. Tipu;BOAUTCH KpH.Tepu;ii aAa• 
OTaQHH H <J:>opMyJIH.pOBKa orpaHHqeHH.R Ha napaMeTpbl Ae<t>opMal.lHH. 3TH orpaHHt{el[WI MO· 
ryT 6biTb MaKCU:MaJibHO yTO'IHCHbl IIyTeM peWeHHH 3aAa'IH KOHe'IHOH IDiaCTI{t{HOCTH, pac• 
CMOTpeHHOH B KaqecTBe rOJIOHOMHOH <J:>op~yJIHpOBKH COOTBeTCTBeHHO H3MYll.lCHHOH 3aAa'll{. 
roJIOHOMI{'IeCKOe peWeHu;e HCllOJlb30BaHO AJUI HaxO>KACHHH COOTBeTCTByJOll.lHX orpaHil'IH:Ba
BCJIJl'II{H. TioKa3aHo, trro npllHI.lnn MHHH:MyMa, noA06Hbm npmnumy Xaapa-Kap.'laHa, Hrpa
eT cyll.leCTBCHHyiO pOJib npH OIIpCACJICHilH KOHCTPYKl.lHH H OIITHMaJibHOCTil Orpa.HH'Iemtii. 
TipeACTaBJieHo npoCToe npHMeHeHH:e Teopu;u;. 

1. Introduction 

THE "WORKHARDBNING ADAPTATION" concept was introduced by PRAGER (1, 2] not long 
a~o. A~cording to this concept, a structure adapts to loads which vary arbitrarily within 

* The results presented in this paper were obtained in the course of a research project sponsored by 
the National (Italian) Research Council, C. N. R., PAIS Committee. The paper was presented at the 
20-th Polish Solid Mechanics Conference, held at Por(\bka-Kozubnik (Poland), 3-11 Sept. 1978. 
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a given domain when, after an initial phase during which a limited amount of plastic de
formation may be produced, it finally behaves like a purely rigid body in the sense that 
no further strains occur. Work-hardening adaptation, therefore, may be considered as 
a limit case of classical sh:tkedown, obtained by making the elastic constitutive compo
nent tend to vanish. This leads to two consequences: i) since self-stresses, as a response to 
plastic strains, cannot exist, adaptation may occur only as a _result of the work-hardening 
behaviour; ii) since a straightforward passage from the classical shakedown theory to the 
work-hardening adaptation theory could present difficulties, a specific treatment of the 
latter subject is useful and desirable. 

After Prager's work, further contributions were made. Pouzzorro [3, 4] formulated 
"static" and "kinematic" adaptation criteria considering a rather broad class of work-hard
ening laws and quasi-static as well as dynamic loadings. Second-order geometrice ffects were 
considered by KoNIG and MAIER [5] and by Pouzzorro et al. [6]. The work-hardening 
adaptation concept was assumed as a design criterion first by PRAGER [7] for truss-like 
structures, then by Pouzzorro et al. [8] for more general discrete structures. Bound tech
niques were also given in the paper quoted [5]. 

In spite of this research work, the practical utility of the work-hardening adaptation 
theory in structural engineering is not yet fully understood, in particular as regards dy
namics. 

On the other hand, we know how widespread the use of the rigid-plastic model is in 
structural engineering, not only within the classical limit analysis and design, but also in 
the field of dynamic plasticity where a great amount of research work has been done and 
very useful results have been given (see, e.g. [9-13]). Elementary rigid-plastic theories pro
vide, often simply and quickly, an estimate of major deformation caused by large dynamic 
loadings, and this estimate then constitutes a useful basis for more refined analyses. 

Along this line of reasoning there is a sufficient motivation for a work-hardening adap
tation theory, provided questions about its inherent limitations are better understood in 
the future. This theory is an approximation on the unsafe side of the elastic-plastic shake
down theory [14], so a study on the order of magnitude of the safety factors for adapta
tion provided by the two theories is to be hoped for. A crucial point of the work-hardening 
adaptation theory is the evaluation of the greatest deformation we must expect in the adap
ted structure. For this purpose, as is known, bounding techniques are the only practicable 
way, but only in one paper [5] has this subject been treated so far. 

The present paper is devoted to work-hardening adaptation criteria and bounds on de
formation for discrete structures subject to dynamic loads in the hypothesis of infinitesi
mal displacements. For the sake of a greater generality,_ viscous forces are also considered. 
The plastic behaviour of a typical element is described by a piecewise linear yield surface 
and is supposed to show a piecewise linear work-hardening and a linear strain rate sen
sitivity. 

A method recently given by Pouzzorro [15, 16], based on a perturbation procedure, 
is here reformulated for rigid-plastic structures. In this way, after some preliminaries 
and definitions, a general inequality is given. From this inequality, by specializing the 
applied perturbances, an adaptation criterion or bounds on plastic strains can be deduced. 
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ON WORKHARDENING ADAPTATION OF DISCRETE STRUCTURES UNDER DYNAMIC LOADINGS 83 

Then these bounds are made the most stringent by solving a minimization problem which 
can be viewed as a minimum principle in finite plasticity. A simple application and some 
final remarks conclude the paper. 

The matrix notation will be adopted. Capital bold letters will be used to indicate ma
trices, small bold letters to indicate vectors. The symbol T as an exponent indicates trans
position. The other symbols will be defined where they first appear. 

2. Basic relations 

Let a discrete (or discretized) structure, made up of rigid-plastic finite elements, be 
in a known geometrical configuration, characterized by zero displacements, at time t = 0. 
Then, Ioadings f are applied at the nodes of the structure. f is variable with time t, but 
the real time sequence is unknown. We only know that as t varies the load takes values 
within a given bounded region, which is equivalent to saying it can be thought of as a one
-to-one and homogeneous function of a vector variable, "t', ranging within a given r-dimen
sional loading domain ll. Thus 

(2.1) f = f('t'), V"t' ell. 

Any admissible loading history is obtained as soon as a time function "t' = "t'(t) is chosen, 
provided "t'(t) ell for any t ~ 0. 

Considering the displacements as infinitesimal, the compatibility equations are 

E = Cu, Vt ~ 0, 
(2.2) 

u = u0 , for t = 0, 

where C is the compatibility matrix and u0 is assigned. Denoting by a the element 
stresses at time t ~ 0, the equilibrium equations are 

(2.3) 

where Vu is the vector of the viscous forces and Mii the vector of the inertia forces. As is 
known [17], the viscous matrix V and the mass matrix M are both symmetric and po
sitive definite. 

The plastic behaviour of the structural elements is characterized by the following m 
simultaneous inequalities: 

(2.4) NTa-y ~ 0, 

which define the domain of the stress space_ within which the stress vector a can range. 
This domain is a polyhedron of m faces having external unit normals collected in the (con
stant) matrix Nand distances from the origin collected in the vector y. Therefore, intro
ducing the plastic potential vector cp as in the following 

(2.5) cp = NTa-y, 

we can express (plastic) strain rates by the usual flow rule, that is 

(2.6) 
. acp . . 
e =ecrA = NA, 

6* 
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to which the following side conditions must be added (18]: 

(2.7) cp ~ 0, ~ ~ 0, cpTi = 0, cpTi = 0. 

Let us observe that Eq. (2.6) expresses the strain rate vector£ as a non-negative linear 
combination of the unit normals of the yield polyhedron, while Eqs. (2.7)1 _ 4 are equiva
lent to the usual concepts of the plasticity theory (convexity, normality). Since the plastic 
potentials, cp, and the plastic activation coefficien,s, i, are sign constrained, Eqs. (2.7h.4 
apply componentwise and say that plastic activation of a face of the yield polyhedron 

I 
I 
I 

L----·-·· 

i= t::!1.i1+t::!2 ~2+···+!:::!6 i6 

.i1 ,j 2 > o ; l3=· .. =l6=o 

(/J ·=NTa-h-k 
J -J- J J 

[b.1 ··• hs ]=~ ~ 

subsequent yield polygon 

FIG. 1. Typical yield domain in two dimensions and mathematical description of the flow-rule. 

occurs only if the corresponding potential and its time derivative are both zero (see 
Fig. 1). 

The vector y depends on strain (work-hardening) and on strain rate (strain rate sen
sitivity). Assuming a piecewise linear dependence, we write 

(2.8) y = Hl+R~+k, 
where H and R are symmetric and positive semidefinite (psd) matrices and k is the vector 
of the plastic resistances. The work-hardening matrix H can be defined in such a way that 
the most important hardening laws can be allowed for (isotropic, Koiter's, kinematic 
work-hardening, for instance). In the following the matrix His supposed to be psd. 

In Eq. (2.8) the vector k is positive (k > 0) and describes the distances of the yield 
faces from the origin in the virgin state (t < 0). 

The vector 
T 

(2.9) A= f Adt 
0 

is a non-decreasing and non-negative function of t and can be assumed as a measure of 
plastic strain. The boundness of A can therefore be assumed as equivalent to the bounded
ness of plastic strain and then to the adaptability of the structure to the loadings. 
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3. Further relations and definitions 

The following observations and definitions will be useful. 

3.1. Statically admissible yield surface (SAYS) 

Let us suppose that we can find a time-independendent vector, say i, such that the 
following conditions are satisfied: 

Ca = f(-r), i ~ 0, 
(3.1) 

NTa-Hi-k ~ 0, V-r ell, 

where a changes with the load. The vector i defines a subsequent yield surface such that, 
for every loading condition, at least one stress vector a can be found which is in statical 
equilibrium with the load and does not exceed the yield surface. Such a yield surface is called 
"statically admissible", while it is called "safe statically admissible" when Eq. (3.1h applies 
in the stronger form 

(3.2) 

3.2. Perturbances 

Given a safe SAYS, we can always transform it in a simple SAYS by introducing the 
"perturbance" vector, k*, and writing 

(3.3) 
eTa = r(-r), i ~ o, 

NTa-Hi-k+k* ~ 0, V-r ell. 

The perturbance vector k* is arbitrary. In particular, the vector k* can be given the 
following forms: 

(3.4) i) k*=ak, O<<t<l, 

with IX suitably selected within the open interval (0,1). This is equivalent to a uniform 
shrinkage of the given yield surface. 

(3.5) ii) k* =kw, w > 0, 

where k ~ 0 is arbitrary. This is equivalent to a non-uniform shrinkage of the given yield 
surface. 

(3.6) iii) 

that is k = NTa in Eq. (3.5), Ci being arbitrary. In this case the given yield surface under
goes a rigid translation -aro. 
(3.7) iv) 

that is Ci =AT fin Eq. (3.6), fbeing an arbitrary load equilibrated by the stresses a. Again, 
the yield surface undergoes a translation - ATfro. 
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We shall call "admissible perturbances" those perturbances which satisfy Eqs. (3.3). 
Moreo~er, for the sake of clarity, we shall call "perturbed" SAYS a yield surface defined 
by Eqs. (3.3). 

4. A general inequality 

Let us suppose that a perturbed SAYS exists. Then considering the vector 't' as a time 
function, let the inequality (3.3h be multiplied by the non-negative vector of plastic strain 
intensity coefficients, i, relative to the real mechanical problem. We obtain 

(4.1) aTNi-llii-kTA+k*Ti ~ 0, Vt ~ 0. 

Then, let the equality (2. 7)3 , which in explicit form reads 

(4.2) a7'Ni-ATHA-ATRl-kTA = 0, Vt ~ 0, 

be subtracted from the inequality (4.1). The result is, remembering Eqs. (2.8) and (2.6), 

(4.3) -(a-a)T£+(A-i)THl+ATRi+k*TA ~ 0, 

whose first term can be put in the form 

(4.4) -(a-aV£ = iJTVti+iJTMii 

in view of the virtual work principle. Then, substituting from Eq. (4.4) gives for Eq. (4.3) 

(4.5) 

where L is the psd quadratic form 

(4.6) 1 ( ")TH( ~) 1 "TM" L =TA-A A-A +TU u. 

The inequality (4.5) is a general inequality, in the sense that it is valid for any time instant 
t > 0 and for arbitrary perturbances, k*, within the class of admissible ones. 

S. The adaptation criterion 

The following theorems can be shown to be true, always in the hypothesis that the 
work-hardening matrix H is psd. 

THEoREM I. A necessary and sufficient condition for dynamic adaptation to occur is that 
a statically admissible yield surface exists. 

P r o o f. The necessity is immediate. In fact, when adaptation occurs, the structure 
reaches some perfectly rigid state described by the vectors Ua, Aa so that we can take u = 
= Ua and i = Aa and Eqs. (3.1) are certainly satisfied. 

It is less simple to prove the sufficiency. It can be rigorously demonstrated only if 
the yield surface is a safe one, that is if the inequality (3.1)3 is repiaced by the inequality 
(3.2). However, the theorem could be made plausible by using a perturbation technique. 

Thus, the hypothesis is that a safe SAYS exists, so that introducing the perturbances 
k* = ock, a being suitably chosen in the open interval·(O,l), a perturoed SAYS can be gen-
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erated and the inequality (4.5) holds. From this we deduce that the psd quadratic form L, 
being t ~ 0 by Eq. (4.5), proves to be a non-increasing function oft. As a result, as t ~ oo, 
the velocity u tends to vanish and the plastic coefficient vector A tends to some time inde
pendent vector, Aa, which generally is different from i. Moreover, the vector Aa is finite, 
as we can deduce from Eq. ( 4. 5) by integrating with respect to time. We have in fact 

(5.1) 
1 1 

kTA( oo) = ~ [L(O)-L( oo )] ~ - L(O) 
(X (i, 

where, since A(O) = 0, it is 

(5.2) (0) 1 ~TU~ 1 'TM" L =2A A+Tu0 u0 . 

Since k is a positive vector and the right hand member of Eq. (5.1h is finite, we conclude 
that A( oo) is finite too, and this is equivalent to saying that the structure adapts to the 

\ 

loadings. As a result, the energy dissipated, D, is also limited. It is in fact 

00 00 

D = J aT£dt = J [cp+HA+ Ri+kfAdt 

(5.3) 
0 0 

00 

1 J. . =TAT (oo)HA(oo)+kTA(oo)+ ATRAdt, 
0 

where the latter integral is limited because it satisfies the inequality 

00 

(5.4) f i TRAdt ~ L(O) 
0 

as we can deduce from Eq. (4.3). So the theorem already given in [4] for continuous 
bodies has been found. 

Let us observe that: 
a) If we put M= V= 0 and R = 0, all the dynamic terms disappear from the prob

lem and the (dynamic) Theorem I transforms into the statical theorem previously given 
in [3]; 

b) The conditions required for the validity of Theorem I are expressed in purely sta-
tical terms, as appears from Eqs. (3.1)1 _ 3 , (3.2) and (3.3)1_ 3 • 

These two remarks permit us to formulate the following second theorem : , 
THEOREM II. Dynamic adaptation occurs if, and only if, statical adaptation occurs. 
P r o o f. If there is dynamic adaptation, then a statically admissible yield surface 

exists which assures also the statical adaptation, and vice versa. (Q.E.D.) 
On the basis of Theorem 11, there is no difference between the safety factor for a static 

load and the safety factor for a dynamic load, provided both loads range within the same 
domain. The evaluation of the safety factor can be made by solving a linear programming 
problem [3, 5, 6]. 

A kinematical theorem for inadaptation, that is a theorem analogous to that of KOITER 

[20] for elastic-perfecly plastic shakedown, could be given in the present context. However, 
always on the basis of Theorem 11, it would prove to be like that given in [3]. 
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On the basis of Theorem I and of the definitions (3.1)1, 2 and (3.2), the following theo
rem can also be proved. 

THEOREM Ill. In the case of kinematic work-hardening and zero initial velocities, if the 
structure has a safety factor for adaptation s* > 1, a permanent load can always be found 
such that, applying this load all the time, the structure would adapt to any load s < s* re
maining always perfectly rigid. 

Proof. In the case of kinematic work-hardening, we know [3, 6] that the addition of 
a permanent load does not produce any change in the value of the safety factor for adapta
tion and that HA = NT er', the stress vector er' being the displacement of the yield surface. 
By hypothesis, a safe SAYS exists for any load sf( -r), provided s < s*. Then, setting a = 
=a-er', Eqs. (3.1)1 and (3.2) become 

(5.5) 
CTa = sf(-r)+f', 

where the load 

(5.6) 

is the permanent load to add. Eqations (5.5) say that the "virgin" yield surface itself is 
a safe SAYS with respect to the loadings sf(-r)+f'. As a result, for any s < s*, we can 
take L(O) = 0 in Eq. (5.lh and this implies that A.( oo) = 0. The theorem so proved could 
have some value in engineering practice. 

6. Bounds on plastic deformations 

The inequality (4.5) can now be used to deduce bounds on some plastic deformation 
parameters. Integrating over the time interval (0, t 1) and recalling that A.(O) = 0 and 
u(O) = 0, yields 

(6.1) 

where the non-negative term L(tJ in the right-hand member of Eq. (6.1)1 has been disre
garded. Three kinds of deformation parameters can be bounded using Eq. (6.1h and 
remembering the positions (3.4)-(3. 7). 

6.1. Bound on plastic strain lntenslties 

Taking k* = kro, then the inequality ( 6.1 h becomes 

(6.2) k'A (t ,) .. w-l ( +). ru). +Ko)' 
where K0 is the given initial kinetic energy, i.e. 

(6.3) V 1 'TM' 
.n.o = T Uo Uo. 

http://rcin.org.pl



ON WORKHARDENING ADAPTATION OF DISCRETE STRUCI'URES UNDER DYNAMIC LOADINGS 89 

Since k can be any non-negative vector, the inequality (6.2) represents a bound on any 
linear non-negative combination of the plastic strain intensity components at any time 

tl. > 0. 

6.2. Bound on plastic strains 

If we take k* = NTaw, then we have the inequality 

(6.4) orE(t1).;;; w-• ( ~ )!Hi+Ko). 

which is a bound on strain at time t 1 > 0. 

6.3. Bound on displacements 

Taking k* = WATfw, then the inequality (6.lh yields 

(6.5) 

which is a bound on the displacement vector u(t1). This recalls the "dummy load" method 
by PONTER (20). 

Since the bounding quantityjn Eqs. (6.2), (6.4) and (6.5) contains parameters which 
have some degree of freedom, we may try to render the bounds most stringent. These pa
rameters (the vectors a and~' as well as the disturbance multiplier ro) must satisfy the 
conditions (3.3)1 _ 3 • 

Therefore, let us consider the following minimization problem: 

(6.6)1 Minimize <P = ! (+ fLTHp.+Ko) subject to p.;. 0, w > 0 

and 

ere = f(-r), 

NTp-Hp.-k+kw ~ 0, V-r ell. 
(6.6h,3 

This problem is a convex one, with linear equality and inequality constraints. Its optimal
ity conditions (see Appendix) are the following: 

(6.7) crp = f(-r), V-r ell (equilibrium); 

(6.8) 

(6.9) 

(6.10) 

(6.11) 

~ = Nrp-HfJ.-k+kw, 

~ ~ 0, I;?; 0, ~TJ = 0, V-r ell (conformity); 

NI~ca = 0, V-r ell (compatibility); 

1L = jidll, 
II 

v = J a dll (resultant mechanism); 
II 
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where the vectors I and a are Lagrangian variables having the meanings of plastic intensity 
-coefficients and displacements, respectively. 

The solution (if any) to the problem (6.6) must satisfy the above optimality conditions. 
It defines a perturbed SAYS determined ~y the vectors fL, v, and kw. In fact, for every 
loading condition, a stress vector p exists which is in statical equilibrium with the given 
load and does not exceed the perturbe'!._ yield surface (see E~s. (6.7) and (6.8)1 , 2). There
fore, Eqs. (3.3) are satisfied if we take A = fL, a = p, k* = kco. 

In addition to this, we find that the set of Eqs. (6.7) to (6.10) for a given w looks like 
a "finite" or ''holonomic" description of the original adaptation problem suitably per
turbed. Under every load- independently of the real time history and considering the 
load as applied upon a structure which has already been adapted - (congruent) plastic 
deformation is produced. The sum of these deformations, considering all the loading con
ditions (resultant mechanism, Eqs. (6.10) ), constitutes the deformation associated with 
the adapted structure. Equation (6.11) is a consequence of the fact that the perturbance 
multiplier w has been considered as an additive variable in the framework of the minimiz
ation problem. From Eq. (6.11) the optimal perturbance multiplier is deduced. 

Comparing Eq. (6.11) with Eqs. (6.2), (6.4) and (6.5) enables us to write the bound 
inequalities in a more expressive form, i.e. 

{6.12) 

kTA(t1) ~ "j{T fL, 

(iT£(t1) ~ <JTq, 

fTu(t1) ~ {rv, 

where q is the strain vector associated with the resultant mechanism, i.e. 

{6.13) q = NfL = Cv. 

Equations (6.12) show that the "finite" solution of the "perturbed" adaptation problem 
·can be used to bound directly the corresponding real quantities at any time t 1 > 0. More 
precisely, if we take all components of k to be zero, except the j-th one which is equal to 
~ne, the inequality (6.12)1 transforms into 

{6.14) A.J(tt) ~ ftJ· 

Furthermore, if only a single component of o, say Cih, is different from zero, that is ah = 
= ± 1, then, instead of Eq. (6.12h, we can write 

{6.15) q;; ~ eh(tt) ~ q{, 

where qh- comes from the finite solution for Cih = - 1 while q{ comes from that for "'iih = + 1. 
Finally, if all the components of 7 are zero except the j-th one, and J; = ± 1, then 

{6.16) Vj ~ u1(t1) ~ vf, 

where vf and vj are finite solutions relative to fJ = + 1 and "l = - 1, respectively. 

7. Variational formulation of the adaptation problem 

Since the set of Eqs. (6.7) to (6.10) can be viewed as the governing equations of an 
adaptation problem in finite plasticity, the minimization problem (6.6) can be considered 

http://rcin.org.pl



ON WORKHARDENING ADAPTATION OF DISCRETE STRUCTURES UNDER DYNAMIC LOADINGS 91 

as the corresponding variational formulation. In other words, the problem (6.6) for a given 
w is a minimum principle similar to that of Haar-Karman for elastic-plastic structures 
[21, 22]. The objective function to minimize is the sum of the initial kinetic energy and 
of the energy associated with the adaptation strains in connection with their ability to 
produce hardening. Equilibrium and plasticity (or conformity) conditions are the con
straints to impose for every loading condition. If the multiplier w is included within the 
variables of the problem, the solution (if any) constitutes the most stringent bound at the 
selected element of the structure. 

The following two statements can be ·phrased: 
THEoREME IV. The structure adapts to the loadings if and only if the domain of admissible 

solutions to the unperturbed (i.e., k = 0, w = 1) minimization problem (6.6) has at least 

one interior point. 
THEoREME V. The admissible solutious to the minimum principle (6.6), which character

izes the holonomic adaptation problem suitably perturbed, furnish a class of bounds on de
formation parameters at a given point of the structure, while the most stringent bound is given 
by the true solution to the same minimum principle. 

Following what has been said previously the two above statements are self-evident. 

8. Example 

Let us consider (Fig. 2) a simple bar whose yield stress resultant is denoted by k. An 
axial load f = k-r:, (0 ~ 1: ~ s), is applied in traction at the free node where a mass M is 

k 

k-r,(Os;t"s;s) 

FIG. 2. Rigid-plastic bar subjected to a variable load. 

located. The initial velocity of the mass is zero. We assume a linear kinematic hardening 
law and denote the hardening coefficient by c > 0. 

Ifs~ 1, the system remains rigid for any load (it is already adapted) while when s > 1 
it deforms. However, as long ass < 2, the system is able to adapt to the load, which means 
that the bar becomes rigid some time after the beginning. Finally, for s;;:::: 2 there is no 
adaptation. 

Referring to the case 1 ~ s < 2, we want to find bounds on some deformation para
meters and compare them with the real values produced by a stepwise load history (Fig. 3). 
A load jump occurs, by hypothesis, when the system is already at rest under the action 
of the previous load. This is expected to produce the maximum deformation effects. 
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-r 

1st cycle 1 2nd cycle l 
I T 

r---

s 

timet 

FIG. 3. Stepwise load history. 

For each load cycle there is a deformation cycle (Fig. 4) in which the bar first yields 
in traction under the load sk, then yields in compression under zero load. The mass oscil
lates around the final rest position which is reached at, say, the n-th cycle. During the 
first half of the r-th cycle (r = I, 2, ... , n) the mass moves from the rest position u;-_ 1 

ur-

Fio. 4. Typical deformation cycle. 

(produced during the compression phase of the previous cycle, u0 = 0) to a further po
sition ut, causing the bar to suffer a plastic strain intensity in traction, ;.: . During this 
phase it is 

(8.1) sk-Mii-cu-k = 0, 

where u indicates the current position of the mass. Multiplying Eq. (8.1) by u and then 
integrating with respect to t along the entire step furnishes an algebraic equation of second 
degree whose solution, u = ut, is 

(8.2) + 2k _ 2k( c_) _ 
u, = c (s-I) -u,_1 = c s-I-kur-t +ur-1· 
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Thus 

(8.3) 

If 
(8.4) 

~ + + - 2k ( 1) 2 -Ar = u, -u,_ 1 = - S- - u,_ 1 • 
c 

k-cu: = k(3 -2s)+cu;_ 1 > 0, 

93 

the system is already adapted; otherwise, further deformation is produced during the second 
half of the r-th cycle. In this case, in fact, the mass moves from the position u: to a nearer 
position u; causing the bar to suffer a plastic deformation intensity in compression, .I.;-. 
During this phase it must be 

(8.5) Mil+cu-k = o, 
and again multiplying by u and then integrating with respect to t along the complete phase 
gives us a second degree equation whose solution, u = u; , is 

2k 2k 
(8.6) u; =- -u: =- (2 -s)r 

c c 

and the associated plastic strain intensity proves to be 

2k 
.1.; = u: -u; =- (2s-3) -2u;_ 1 c 

(8.7) 
2k 

= -(2rs+l-4r). 
c 

No further deformation is produced during the subsequent loading cycle if 

(8.8) sk ~ k+cu;, 

otherwise, a new deformation cycle is to be considered. 
It is easily shown that u: > u:+ 1 and that u;_ 1 < u; . Thus the maximum displace

ment of the mass is given by 

(8.9) Umax =ut = 
2

k (s-I). 
. c 

The maximum plastic strain intensity in traction is 

(8.10) 
2k 

A.+ = .l.t+.l.t+ ... +.1.: = -n(ns+I-2n), 
c 

where the multipliers must satisfy the condition (8.8) for r = n, i.e. 

(8.11) 4n+I 
s~ 2n+I' (n=l,2,3, ... ), 

while the analogous quantity in compression is 

(8.12) 2k 
A.- = A1+A2+ ... +.1.;_ 1 =- (n-1) (ns+ I-2n), 

c 

where s must satisfy the inequality (8.4) for r = n, i.e. 

4n-I 
(8.13) s ~ --y,z, (n = I, 2, 3, ... ). 
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In Figs. 5 and 6 the dimensionless parameters eA.+ f2k and eA.- f2k are plotted as func
tions of s. 

Now we want to apply the present method in order to determine upper bounds on 
A.+ and A.-. 

1.0 1.2 1.4 1.6 1.8 

FIG. 5. Maximum plastic strain intensity in traction (J.+) and upper bound (!.£+). 

1.0 1,2 

E:: ! 
!! ! 

1
:: 
! .... 

j. .. 

/ 
... ..... 
.......... 

. 
~ .... 

~-K···· 
----~----~ ~" ,.-

1.4 1.6 1,3 2.0 

FIG. 6. Maximum plastic strain intensity in compression (.A-) and upper bound {!.£-). 

The bound on A.+ is obtained by diminishing the positive yield stress of the bar by an 
amount wk, w > 0 being unknown. We have to solve a problem of finite plasticity with 
quasi-static loads. The yield conditions are 

'P+ = -rk -e(p,+ -p-) -k+wk E:; 0, p+ ~ 0, 'P+ p+ = 0, 

"'- ~ 0' 'P-"'- = 0. 
(8.14) 
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It must obviously be 1p+ = 0 for T = s and 1p- ~ 0 for T = 0. Thus 

(8.15) 
c 

w = k (p+ -!r)-(s-1), 

(8.16) 

The optimality condition ( 6.11) gives 

(8.17) 
1 T c(~t+ -~-t-)2 = wk~t+ 

and substituting from Eq. (8.15) 

(8.18) -} ~ (p+~p-y = [~ (p+~p-)~(s~I)]p+ . 

If 1-t- = 0, the latter equation furnishes 

(8.19) 1-t+ = 2k_ (s-1), 
c 

which is valid fors ~ ~ , as we can deduce by verifyng the inequality (8.16). If 1-t- > 0,. 

then 1p- = 0 and the inequality (8.16) must be verified as an equality, i.e. 

(8.20) 
k 

1-t+ -~t- =-
c 

Substituting this result in Eqs. (8.18) gives 

(8.21) 

The curve p+ = p+(s) is plotted in Fig. 5 and we see that 1-t+ proves to be a good upper 

bound for the parameter A+ (they coincide for s .;; ; ) . 

An analogous procedure is to be adopted for obtaining the upper bound on A-, but 
this time we diminish the negative yield stress of the bar. Thus the yield conditions now. 
read 

1p+ = Tk- c(p+ -~t-) - k ~ 0, 1-t+ ~ 0, tp+ 1-t+ = 0, 

'P- = -Tk+c(p+ -p-)-k+wk ~ 0, 1-t- ~ 0, VJ-p- = 0. 
(8.22) 

Again 1p+ = 0 under the load T = s, and 'P- ~ 0 under the load T = 0. Thus we deduce: 

(8.23) 

(8.24) 

k 
p+ -~t- =- (s-1), 

c 

w ~ 2-s. 
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The optimality condition (6.11) is now written as 

(8.25) 
I 2 c(p+ -!'-)2 = wkft-' 

which shows that 1'- must be different from zero, and hence "P- = 0 and Eq. (8.24) 
holds as an equality. Thus Eq. (8.25) becomes 

(8.26) 

from which 

{8.27) 

_!_~(s-1)2 = (2-s)ft-
2 c 

_ 2k (s-1)2 

I' = c 4(2-s)' 

In Fig. 6 this parameter is plotted as a function of s. We see again that 1'- proves to be 
a good upper bound for the parameter A.-. 

Finally, we observe that if the bar were permanently prestressed by the force -sk/2 
{compression), it would remain rigid under any loading history, provided s < 2. 

'9. Conclusion 

In the present paper the dynamic work-hardening adaptation problem has been stu
died in the case of infinitesimal displacements, , taking into account viscous forces and 
strain rate sensitivity. A perturbation method, recently given by the author [15, 16], is 
used for the treatment of adaptation criteria together with bounds on plastic strains and 
displacements. The concept of "statically admissible yield surface" (SAYS) proves to be 
-crucial for the given adaptation criterion. It is shown that dynamic adaptation implies 
static adaptation and vice versa, as previously found for continuous bodies by the author [4]. 
The extreme simplicity of this result perhaps warns of the caution with which the rigid
plastic mojel is to be handled in dynamics, however, it indicates also the existance 
in the structure of a strength reservoir and, in the author's opinion, it may be valuable 
to take it into account. 

Bounds on plastic strain, on plastic strain intensity and on displacement at any point 
-of the adapted structure are formulated. These bounds can be made the most stringent 
by solving a holonomic adaptation problem suitably perturbed, and the holonomic so
lution can be used as the bounding quantity at the selected point. 

The effectiveness of the proposed bound techniques has not yet been sufficiently asses
sed. However, the simple numerical application worked out permits us to expect the pre
sent method to furnish boun::is which seem to be good, also under a load approaching the 
maximum value for adaptation. 

A variational formulation of the holonomic adaptation problem, similar to Haar
·-Karman's principle, is shown to play a role in characterizing the adaptability of the struc
ture, as well as the boun::i o;>timality. In the author's opinion, however, this is a point 
to be clarified better in the future. 
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Appendix 

The optimality conditions (6.7)-(6.11) are deduced in the present Appendix. To this 
purpose, let us introduce for every loading condition the vectors 

(A.I) wr = [ ~ zi ~ z~ .. .]. zr = [z1 z2 ... ] 

both having as many components as there are plastic potentials. Considering was a vector 
of slack variables, the inequality ('.6h transforms into an equality, i.e. 

(A.2) 

Then, let us consider the following Lagrangian functional: 

(A.3) <PL = ~ [+ p.THp.+Ko]+ J ir[i(-r)-Crp]d/I 
n 

+ J JT[NTp -HJL+k+kw + ]dll, 

where i and i are Lagrangian vector variables. The first variation is 

(A.4) ~<PL = ~fl.r[~ Hp.-H fldll] 
n 

Then, letting 

(A.5) 

+ J ~pr[ -Cii+NJ]dll+ J frz~zd/IHro [- ~i( ~ p.THp.+Ko) 
n n 

+J<r J Jil/1] + J ~iir [f(-r)-Crp]d/I + J ~fr[NTp -Hp.-k+kru +w]d/I. 
n n n 

a= wi, I= wl, 

the following equations are deduced from Eq. (A.4): 

(A.6) crp = f(~), v~ ell, 

(A.7) 

(A.S) 

(A.9) 

(A .tO) 

(A.ll) 

NTp-HJL-k+kw+w = 0, JTz = 0, V-r ell, 

Nl-Ca = 0, V~ ell, 

HJL-HIR ~ 0, fL ~ 0, f!.THJL- f!.THJR = 0, 

- 1 
wkTJR = 2 p.THf!.+K0 , 

)R = jJdll, aR = J adll. 
n I1 

It is easy to show that the inequality (A.9)1 applies always as an equality. In fact, 
multiplying it by IR ~ 0 we have 

(4.12) 

7 Arch. Mech. Stos. nr l/80 
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Then, summing the latter with the equality (A.8)3 yields 

(A.l3) 

and hence, H being psd, 

(A.14) 

which is equivalent to 

(A.l5) 

C. POLJZZ<YITO 

If H is pd, then it must be 11 = IR; while if ~ is strictly psd, it is in generalJL :f: IR. 
However, in connection with the problem we are studying, we can consider them as equiva
lent because HJL and HIR are interchangeable. Thus, by eliminating the vector z from 
Eqs. (A.6) to (A.ll), the optimality conditions take the form given in Eq. (6.7) to Eq. 
(6.11). 
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