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Nonlocal, continuum models of large engineering structures(*) 

J. HOLNICKI-SZULC and D. ROGULA (WAR.SZAWA) 

THE AIM of the paper has been to analyse the possibilities of modelling large engineering struc
tures by nonlocal continua. An example of rod structure is discussed in some detail. The discrete 
description of the structure is known and can be made use of to estimate the accuracy of the 
results obtained by using individual continuum models. The integral and gradient nonlocal 
models of the discrete structure have been constructed. The modelling maps and the associated 
ways of determining the forces in the rods have been discussed. 

Celem pracy jest analiza moZliwoSci modelowania dui:ych struktur ini:ynierskich przez nie· 
Iokalne kontinuum. Dyskutowany jest przyklad struktury kratowej. Dyskretny opis ustroju 
jest znany i moze bye ui:yty w celu oszacowania dokladnoSci wynik6w uzyskiwanych przy sto· 
sowaniu poszczeg6lnych modeli kontynualnych. Konstruowane Sfl calkowy i r6i:niczkowy nie· 
lokalny model struktury dyskretnej. Dyskutowane s~ odwzorowania modelowe i zwi~ne 
z nimi sposoby okreslenia sil w pr~tach. · 

UeJILro pa6oTbi HBJUieTCH aHaJIH3 B03MO>I<HOCTH MO~emtpoBaHHH 6oJILlllilX _!UDKeHepcKHX 
crpyK'l'Yp qepe3 HeJIOKilJILHoe KOHTmcyyM. 06cy~aeTCJI np~ep peilleTllaTOH crpyKTypbi • 
.r4lcKpeTHoe OIIHcaHHe ycrpoitCTBa 1{3BCCTHO H MO>KeT 6biTL HCllOJIL30BaHO C ~eJILIO O~CHKii 
TOliHOCTH pe3yJILTaTOB nonyqaeMDIX, llpHMCHJIJI OT~CJII>HbiC KOHTHHyllJILHbie MOAeJIH. ilo
CTpOCHbl HHTerpam.HaH H ~cpcpepe~llJILHaH MOACJIH ~CKpeTHOH CTpyKTypbi. 06cy>KAalOTCJI . 

MOAeJILHDie oro6pa>KeHHJI H CBH3aHHbie c HHMH cnoco6bi onpeAeJieHHH cHJI B crep>KWIX. 

Introduction 

THE PURPOSE of the paper has been to analyse the possible use of various nonlocal, con
tinuum models for describing engineering structures. Detailed considerations have been 
restricted to the case of a plane rod lattice structure and to the discussion of its integral 
and gradient models. The gradient model of higher order is considered to be a nonlocal 
model, although in a weaker sense [5]. 

The use of nonlocal models for describing large engineering structures provides a con
venient tool for analysing these structures on the one hand. On the other hand, it makes 
it possible . to test the various aspects of constructing nonlocal models using the example 
of a structure about which complete information is available. The second reason has been 
the main purpose of undertaking the present considerations. 

If, from the formal point of view, descriptions of nonlocal m·odels of crystalline lattices 
I4] turn out to be analogous to those of lattice structure models, then the analysis of the 
latter will allow, among other things, various boundary problems to be defined, depending 
on the formulation of support conditio_ns of the structure and on the basis of certain 
criteria for evaluating the applicability of individual models depending on the problem 
to be solved. 

(*)Paper presented at the EUROMECH 93 Colloquium on Nonlocal Theory of Materials. Poland, 
August 28th-September 2nd, 1977. 
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794 J. HOLNICKI-SZULC AND D. ROGULA 

The considerations have been prese~ted in two parts. The present part is concerned 
with analysing 1he models of unbounded structures, whereas the second part [12] deals 
with the analysis of the conditions i'mposed at the edge of the structure. 

The gradient, nonlocal theory of continuous medium has been developed by TOUPIN 

[10], MINDLIN and TIERSTEN [6], ROGULA [7] and KUNIN [5], whereas the integral, nonlocal 
theory has been put forward and extended by KRONER [2] and DATTA [3, 4], EDELEN [1] 
and E~GEN [2]. Generally speaking, the phenomenological approach to the continuum 
theory has been provided by ROGULA (8], whereas some boundary problems for bounded 
bodies have been discussed by KUNIN [5] and RYMARZ [9]. 

Continuum models describing large engineering structures have been_ used by Woz
NIAK [11], although nonlocal models have not been considered until now. 

Our considerations will be exemplified by a rod structure made up of rods articulated 
at their nodes (Fig. 1 ). It has been assumed that external load operates at the nodes only, 
hence the rods of the structure transmit axial forces only. 

FIG. 1. 
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It can be ealily seen that the structure can be split into two sub-structures (Fig. 1), 
of which the first (I) implements short-range interactions between the nodes of the structure, 
whereas the second (II) implements interactions of longer range. The example of the struc
ture has been chosen so that a structure with nonlocal features may be obtained when the 
possible simplest problem is available. 

Interactions of longer range than those implemented by substructure 11 can of course 
be introduced, but it is of no purpose at this stage of our study. However, it is essential 
to note that both substructures are geometrically invariant, which prevents additional 
complications in our work. 

A homogeneous geometry of the structure and, additionally, homogeneous properties 
of materials have been assumed. 

Nonlocal models describing unbounded structure without boundary conditions will 
be discussed iri the present paper as follows. 

Chapter 1 will describe a discrete structural model whose solution can be considered 
as rigorous. This ·solution also makes it possible to evaluate the accuracy of continuous 
models. 
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NoNLOCAL, . CONTINUUM MODELS OF LARGE ENGINEERING STRUC'IURES 79S 

Chapter 2 will present aJocal model of the classical continuum providing. an intermediate 
(less accurate) step in constructing a nonlocal integral model. 

The nonlocal integral model will be described in Chapter 3 and the nonlocal gradient 
model in Chapter 4. 

Chapter 5 will give a summary of the considerations concerning the application of the 
various nonlocal models. 

In constructing individual structural models, the main problem reduces to obtaining 
an adequate correspondence between the model and the object being described. On the 
other hand, the problem within the model being constructed involv~s determining the rela
tionship for the internal energy of the system. Given its form, it is easy to obtain structure 
equilibrium equations by applying the principle of minimum potential energy of the system. 
For determinate boundary value problems it is then possible (what will be discussed later 
[12]) to determine the displacement field of the structure and other quantities important 
from . the engineering point of view. 

1. Discrete structural model 

Let r; and ri describe the radius vectors determining the nodal points of the rod lattice 
structure. Assuming that the rods are made of the Hookean material, the force in the rod 
connecting the nodes, r, and ri, of a deformed system can be related to the displacements 
of the nodes, r; and ri, by the following relationships: 

( 1.1) PJ(r, r') = <f>Jl' (u,(r') -u,(r) ), 

where 

(1.2) 
{

E"'A'" 
cJ)fi' = (/','')3 (rj -ri) (ri -r;) 

0 ' 

for r and r' connected by a rod, 

· for the remaining pairs of nod~s, 

E"', A''' and /m being the Young modulus, the cross-sectional area and the length ()f the 
rod connecting the nodes r and r'. 

The internal elastic energy of the structure can be expressed by the equation 

(1.3) U = . ~ 2 Pj(r, r') (uJ(r') -uJ(r)) = } 2 (/)}'i' (u1(r') -u,(r)) ( u1(r') -uir) ). 
r,r' r,r' 

It can be easily confirmed that for any deformed (geometrically invariant) structure 
the value of the energy U is positive (which means the stability of the system); since for 

all the rods of the system the following inequality is valid ~1 > 0. 

Given the form of internal energy (1.3), the support condition. of the structure and the 
external load, it is possible, by making use of the principle of minimum potential energy, 
to determine the actual state of displacements of the nodes. 

This solution is considered to be exact, but rather inconvenient in the case of large 
structures. The purpose of further considerations will be to construct continuum models 

3* 
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196 J. HOLNICKI-SZULC AND D. · Roouu. 

describittg the present system not exactly, but with suitable accuracy, and more convenient 
to use for various reas~n$ than the discrete modt1l. 

It can be seen that the form of internal energy (1.3) is identical with that of the energy 
of crystalline lattice with central interactions [4], where the condition for centrality of inter
actions corresponds to the assumption of the articulated nature of the nodes of the lattice 
syste$, not transmitting moment interactions. On the other hand, the distribution of mutual 
interactions in crystalline lattice corresponds to that of rigidity properties in the individual 
rods of the structure. 

By including in the discussion a more general case of rod structures with rigid nodes 
where axial forces are accompanied by bending moments in rods, a description analogous 
to that of crystalline lattices with non-central two-point interactions is obtained. 

An engineering system corresponding to crystalline lattice with multi-point interactions 
can be exemplified by a structure obtained by dividing a surface girder into finite elements. 

· And thus for example, the introduction of finite triangular elements relates the state of 
stress in the element to that of displacements of its three corners. 

Further considerations will be restricted to the case reported at the outset of two-point 
central interactions in lattice structure. Separate papers will deal with the analysis of more 
complex · structures. 

2. Local structural continuum model 

The intermediate stage in constructing a nonlocal structural continuum model involves 
defining a (less accurate) local continuum model. Given the matrix of interactions (1.2) 
of discrete structure, it is possible to select the stress tensor of an equivalent classical 
elastic continuum. Here we take into . account the criterion which claims that the local 
internal energy within each structural unit cell should, for the same homogeneous deforma
tions, be identical for both the discrete and the continuum descriptions, respectively. 
Hence, search is instituted for the form of the stress tensor Ciikl of ela~tic continuum such 

. that the energy calculated for the region V0 corresponding to a structural unit cell and rela
ted to homogeneous deformation flit: 

(2.1) Uv0 = + f C,"1,fJ,,J1JrdV 
Vo 

should be equal to that of the discrete system calculated over the region V0 • 

a b c x,
1 

~ 
1uz 

¥ tHJ tll1 
r . tit .. r 

x1 
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It follows from tl;le homogeneity of the mechanical features of the structure that the 
tensor C;tjr is constant over the entire region. 

The structural unit cell- as shown in Fig. 2a, has been assumed. It can be noted that 
. the internal energy of the unit cell is equal for homogeneous deformation to half the inter
nal energy associated with the connection point for the node r (Fig. 2b). 

Hence we have (cf. Eq. (1.3)): 

(2.2) Uv
0 

= ! 2 tP'f,' (ut(r') -ui(r) )(u1(r') -uJ(r) ). 
r' 

Expressing the energy (2.2) with hpmogeneous deformation components Pu, w_e 
obtain 

(2.3) Uv0 = ~ [L~J'(r~-rt)(ri-rr)]p,kpJr· 
r' 

Comparing two representations (2.1) and (2.3) of the same value Uv
0

, it is possible to 
determine the stress tensor of the required equivalent continuum: 

c.,., = :"j [a' 2 t/ltJ't~Etfl + 3tf' l' t)'Et)IEtL'ft)'E] , 
~= 1,2,3 '= 1,2,3 

(2.4) 

where the parameters r} and a11 describe homogeneous rigidity characteristics in the sub-
structures: 

(2.5) 

E"'A''' 
an=--

/"' 

for all the rods of substructure I, 

for all the rods of substructure 11, 

whereas the vectors tll and tP~ describe directional unit vectors of the rods of the first 
and second substructures (Fig. 2c). 

The tensor C1i"' can be resolved in a natural manner into two components 

(2.6) C,1tr = C/Jtr + Cf}~:r 
describing the properties of substructures I and 11, respectively: 

C1 2 
a1 ~ t!lt11'tl't1

1', lill = .!j ~ • .. 
J' '"" 1,2,3 

(2.7) 
C~'- - ~ aii ~ tiit~lltDltlll 

IJk l - yJ L..J I J k l • 

l= 1,2,3 

Each of the stress tensors of the substructures· has an axis of symmetry of the sixth 
order which, for a plane medium, is equivalent to its isotropy. Using the isotropy of the 
tensors Cfitr and C/}11 and the fact that they satisfy.the conditions of the Cauchy ·syiDJDetry 
relative M the permutations of all the four indices, they can be written down as follows: 

(2.8) 
C/1"' = A1(~u~tr+~,,~Jr+~il~Jk), 

cnu = .A"(~ij~tr+~iA;~Jr+~u~Jk) 
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798 J. HOLNICitl·SZULC AND D. ROOULA 

forgetting the internal structure that provides the starting point for constructing an equiv
alent continuous model. 

Comparing Eqs. (2.7) and (2.8) and assuming (Fig. 2b), 

t 11 = [I, 0], Ill = [ J/ 3 __!_] 
t 2 ' 2 ' 

(2.9) 12 = [__!_ ¥3] 
t 2 ' 2 ' t 112 = [0, 1], 

tl3 = [ - _!_ y3] 
2' 2 ' 

tll3 = [ _j/ 3 --~] 
2 '2 ' 

we obtain the Lame constants)} = p} and .A.11 ·= pP for cJassical continuum: 

;.• = _3_ a• 
4y3 ' 

(2.10) 

;.n = 3~3 an. 

The material constants (2.10) or more generally Eq. (2.4) of equivalent elastic continuum 
are uniquely determined by the geometry and rigidity features of the starting discrete 
structure. However, many various rod structures with identical features of. equivalent 
continuum medium ~~n be selected, which results from reducing the number of ·para
meters determining the system under consideration to two .A.1 and .A.11• 

The forms (2. 7) of the tensors of material features of the equivalent elastic continuum 
are in agreement with those derived (in another manner) for structures with a homoge
neous range of interactions by WozNIAK [1~]. 

3. Nonlocal integral structural model 

Let us now construct a nonlocal continuum model of the structure under consideration. 
It should make stresses at the point of the .medium dependent upon deformations within 
the range of interactions. Such a model will give results closer to those of a strict solution,. 
as compared with those obtained by means of the local model discussed above. The greater 
the differences, the more heterogeneous will the state of strain discussed be. In particular, 
differences in the displacement fields determined by the use of these two models will appear 
in boundary regions. 

Let us distribute the values of the above-determined tensor components C1 and C11 

at point r uniformly over the regions of interactions of the connection points of sublat
tices I and 11: 

C1 ( ') _ .Cl111(r)h1(r, r') 
iJkl r, r - !JI ' 

(3.1) C
u (- ') _ Cl}k1(r)h11(r, r') 
IJkl r' r - !JII ' 

Cm:1(r, r') = Cf1kl(r, r') + Cf}11(r, r'). 
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NONLOCAL, CONTINUUM MODELS OF LARGE ENGINEERING STRUCTURES 799 

where 
Q 1 = n(/1)

2 = nf2 } the areas of interaction regions of substructures I and 11 
!J11 = n(/11) 2 = 3n[2 (Fig. 3), 

/t(r, r') } the characteristic functions of the regions of interactions in the neighbour
h11(r, r') hood of point r of substructures I and 11. . , 

FIG. 3. 

The total internal energy of the structure will be expressed by the equation 

(3.2) U = J J Cutz(r, r')e",(r')eu(r)drdr' 
V 

describing the integral model of continuous medium with nonlocal interactions (cf. [4D. 

4. Gradient structural model 

Another continuum model capable of being used for describing approximately discrete 
rod structures of long-range interactions is the gradient model. 

It is assumed that the relative displacement of two arbitrary points of structure is repres
ented by the sum of two consecutive terms of the expansion into the exponential series, 
i.e. Jinear and quadratic 

(4.1) u1(r')-u1(r) = f3'ij(rj-r1)+ ~ i;11(r)-r1) (ri -r1), 

where the coefficients of expansion are gradients of the first and second orders, respectively, 
of the displacements field u, made continuous: 

fJ'i1 = u(i,J>(r), 

Ytik = {Jl<J.t,(r}. 
(4.2) 

Elastic energy of the structure (1.3) can be expressed by the states of strain of the first 
and second orders {J and y 

(4.3) U = ~ 21/>'jJ [P:.(rt-r.}+ ~ y..,(rt-r.}(ri-r.>] 
r,r' 

x [PJ.(r;. -r .,) + ~ l').,,(r;, -r .,)(r~ -r ,} ]. 
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800 ·]. HOLNICKI·SZULC AND D. RooULA 

It can be noted that in view of the principle of reciprocity 4Y,j' = l/1/, the mixed terms 
Puc'YJmn cannot appear in the equation for energy and that Eq. (4.3) can be written in the 
form . 

(4.4) U = ~ 2 4Y,}' [(r~ -r~c) (rl-r,)fJi~:~J 
. r,r' 

1 + 4 (r~ -r1) (rl-r1) (r~ -r ,) (r~ -rn)YitcrY}mn· 

Using the definition (1.2); the energy U for the homogeneous structure (Fig. 1) takes the 
form 

(4.5) U = ~ 2 {[b1 2 tf't]'tl'tl'+b11 2 t}IEtJ''ti''tl''] fJ'i1{Jk, 
E= 1,2,3 E= 1,2,3 

+ [cl '\1 tiEtlEtiEtEEt IEtiE+ ell ~ tiiEt!IEtliEtiiEtiiEtiiE] ,.,r_. y' } LJ I J A: I m n LJ i 1 A: I m n . r iJk lmn ' 

E=1,2,3 E=1,2,3 

where 

b1 = E1A1JI, cl = E1A1(11) 3, 

bll = EIIAIIJ'I, c~• = EIIAII(JII)3. 

On passing to continuum description, we obtain (just as in Chapters 2 and 3): 

U = ~ f (e,J'"p~JfJ~:,+eu~c•mnYutY•mn)dV, 
(4.6) • J' 

where 

er - er ~ t•Et'EtiEtlEt•EtlE 
i}lclmn - Vo LJ l ! k l "' n ' 

E=l,2,3 

ell _ eu ~ tiiEtiiEtiiEtiiEtiiEtiiE 
l}klmn - V, .L..J i } k I m n • 

0 E= 1,2,3 

V0 = ~J J2 being the unjt cell area. 

Attention is focussed on the fact that in the case when substructure 11 represents inter
actions of a range much longer than does substructure I, (en ~ C1

), it is justified to 
neglect the term Cl111,n as that exerting negligible influence on the accuracy of solution. 
This is associated with the fact that the use of the first term of the expansion (4.1) only 
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NONLOCAL, cgNTINUUM MODELS OF LARGE ENGINEERING STRUCTURES 801 

for short-range interactions can give the accuracy of the description of' displacement field 
similar. to that obtained by using the two first terms of the development (4.1) in relation 
to a substructure with long-range interactions. 

5. Modelling pragmatics 

Two nonlocal continuum models describing an unbounded discrete structure have 
been described above. The determined forms of internal enerzy being positive for geomet
rically invariant structures allow the deformation area of a modelling medium · to be 
determined by making use of the principle of minimum potential energy of structure. 
In addition to the knowledge of the expressions (3.2) and (4.6), it is necessary for this 
purpose to determine also the model representations of the external load system f and 
boundary geometric constraints u. In effect, it is necessary to determine their approxima
tions f and ~ made continuous: 

(5.1) f, u => i, i. 
Here, we have adopted the principle that double arrows describe transitions between the 
continuous and the discrete model, whereas single arrows correspond to transitions inside 
one of the models. 

Given the model quantities f and ~' we obtain the displacement field determined in one 
of the continuum descriptions: 

(5.2) - -f, fi-+il. 

The problem of returning the solution thus obtained from the continuous model to 
discrete structure may involve, depending on the problem under consideration, the necessity 
of determining various quantities whose accuracy of determination reflects that of the model 
in relation to the accurate solution (in agreement with a certain standard). 

In engineering problems, the displacenients of the structural nodes u and, particularly, 
forces in the rods Pare interesting as solutions. Consequently, the accuracy of determining 
internal forces should provide a measure of correctness (from the engineering point 
of view) of -the model adopted. 

A system of internal forces in the structure can be determined by two methods. The 
first of them involves the transition of the displacement model field il to nodal displace
ments of a discrete system: 

(5.3) il => u, 

which presents no difficulty and, next, the determination of the forces in the rods of sub
structures P1 and P11 from the constitutive relationships of the discrete model (1.1): 

}lP' - / 
U=>U 

"\. p11 
(5.4) 

The second method involves the necessity of determining stress states in the continuous 
models of individual substructures G-1 and G-11 by using the relationships (3.1) and (4.6). 
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802 J. HOLNICKI-SZULC AND D. ROOULA 

Next, by using the assumption of local Uniformity of states a1, and o-11, it is possible to 
determine forces in the individual rods P1 and P 11 as the corresponding components of the 
states of stress 0.1 and i 11• 

a• => p• 
_/' 
u 

"" ill => pll 
(5.5) 

A detailed construction of the states of stresses in substructures and discussion of bound
ary problems for the nonlocal models under discussion will be carried out in the second 
part of the paper [12]. 

On the one hand, it will provid~ the basis for analysing the applicability of individual 
nonlocal models to describe definite engineering systems and, on the other, to provide 
a mechanical interpretation for the analysis of boundary problems in nonlocal continuum. 
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