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A note on some dynamic crack problems in linear viscoelasticlty 

C. ATKINSON (LONDON) 

THE PROBLEM of a semi-infinite crack propagating at constant speed in a linear viscoelastic 
medium under plane-strain conditions and with particular time-dependent loadings in consider· 
ed. Explicit results for crack tip stresses and displacements are given for short and long 
times. The analysis is to some extent heuristic, but is supported by an exact analysis of the 
corresponding mode 3 problems (Appendix 1) and a formal factorisation (Appendix 2). Also 
considered is the situation of a crack propagating steadily in a viscoelastic strip. Singular pertur· 
bation methods are used in the limit when a dimensionless parameter e1 = t.tr/L ~ 1. t.1 is the 
crack speed, T a representative relaxation time of the medium and L a length associated with 
,the · problem (half strip width). 

Rozpatruje si~ problem p6lnieskonczonego ~kni~ia rozchod.z4cego si~ z.e stal~ pr~o8ci
w liniowym o8rodku lepkospr~zystym w warunkach plaskich napr~en i przy szczeg6lnego typu 
zaleinych od czasu obciClieniach. Podaje si~ wyra.Zenia jawne na napr~i:enia i przesunicccia dla 
koncowki ~knicccia, dla czas6w kr6tkich i dlugich. Analiza jest do pewnego stopnia beurystyczna 
Iecz jest wspomagana przez 8cisb\ anali~ odpowiednich problem6w typu 3 (Uzupelnienie 1) 
oraz formalm& faktoryzacj~ (Uzupelnienie 2). Rozpatrzono te:i przypadek jednostajnej propagacji 
~kni~a w lepkosp~stym pasku. Wykorzystano metody rozwini~ osobliwych w granicy, 
gdy parametr bezwymiarowy e1 = t.1T /L <C 1; t.1 jest ~c*i~ PQknicccia, T- reprezentatyw· 
nym czasem relaksacji o8rodka a L jest dlugo8ci~ charakterystyczn~ ;r;wi~~ z problemem 
(polowa szeroko§ci paska). 

PaccMaTpHBaeTC.R npo6neMa mmy6ea<oHe'IHOH: TP~ pacnpocrpawuo~eiic.R s mmeibroH: 
B.R3Ko-ynpyroH: cpeAe s yCJIOBH.RX imOCKBX RIIDPlDKemdi 11 npH llaCTHoro THIIa, 38BH~ 
OT BpeMeHH, Barpy3KaX. IJpHBCAeHbl .RB.IIble Bblpa>KeHH.R AJV1 BaiipiDKeHWI H IIepeMe~eJIH.R 
Ha l(()JD.taX 'lpellUDibl, AJI.R I<OpoTKIIX H ,lt1IHIUibiX <>Tpe31(QB speMeJUl. AHa.1uts B Hei<OTOpoH 
Mepe eBpHCTiftleci<HH, HO BCIIOMaraeTC.R TOllllbiM asaJIH30M COOTBeTCTBYIO~KX IIpOOJieM THII8 3 
(.UonoJIHeHHe 1) H cj)opMaJIJ.m>:H 4>aJ<rop~eii (.Ilono.JIIWIHe 2). PaccMOTpeH To>Ke c.nyqaH 
O;zu:ioMepHOrO pacnpocrpaueHH.R "rpe~Hllbl B B.R3I<O-ynpyroR IIOJioce. 11CIIO.Jib30B8Bi.I Me'fOAbl 
oco6hiX pa3JIO>Kemdt B npeAeJie, I<OrA& 6eapa3Mepllblii IIapaMeTp 81 = VT/L < 1; V .RBJI.ReTC.R 
CI<OpocTLIO TJ)ellUUibl, -r - xapaKTepH~ecKHM speMeue.M peJiai<~ cpe~r, a L .RBJI.ReTC.R 
xapai<TepHC'nl'leCI<OH MHHOH, CB.R3aHHOH C IIJ)06JieMOH (IIOJIOBHHa IIIHpHHbi IIOJIOCbi). 

Introduction 

As FAR as the stress analysis ·of moving crack problems in viscoelastic media is concerned 
there has been to our knowledge only one attempt [1] which considered transient motion 
and included the i~rt,ia terms in the analysis. The problem considered in [1] was that 
of a semi-infinite crack which suddenly appeared and propagated rectilinearly with uniform 
velocity under mode 3 conditions. The mode 3 [anti-plane or longitudinal shear] assumption 
has been criticised by KNAUSS [2] on the grounds that a crack doesn't grow rectilinearly 
in a viscoelastic solid under the experimental conditions of longitudinal shear. Never
theless, we expect the main features of the results of [1] to be indicative of what would 
happen in the much more complicated plane-strain situation. In this note we give an approx
imate solution of some mode 1 (plane-strain) problems, the solutions assumed valid 
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830 C. ATKINSON 

for small and large times, and compare these solutions with exact solutions given in Ap~ 
pendix 1 for the mode 3 situation. Also, as a means of comparison we reconsider and 
slightly generalise the steady-state problem of a crack growing in a viscoelastic strip (3]. 

1. Analysis 

Before considering the dynamic crack problem we state briefly some well-known 
results of the linear theory of viscoelasticity (see for example CHRISTENSEN [4]). The stress
strain relations for isotropic viscoelasticity can be written 

(1.1) 

and 
I 

(1.2) JG (t--r:) deu(-r:) d-r: 
2 d-r: ' 

-00 

where 

(1.3) 

(1.4) 

The usual summation convention is employed above and the infinitesimal strain eii is 
defined by 

1 
(1.5) e11 = T (u1,1+u1•1). 

·An alternative form to Eqs. (1.1) and (1.2) using differential operators 'Yould be 

(1.6) H1 ( ~) s11 = P 1 (-~) e11 , 

(1.7) n,(~)a .. =P,(~)• ... 
where H 1 , H2 , P 1 and P2 are functions of the operator~ . 

To t~e above constitutive equations must be added the equation of motion 

( ) aa,j o2u, 
1.8 ox} = ea~2 ' 

where e is the density and the xj are stationary Cartesian coordinates. 
Problems in which the boundary (i.e. a semi-infinite crack) moves with velocity v 

are to be considered, so put ' 

(1.9) x 1 =x~-vt, 
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We now apply the Laplace transform over time and the Fourier transform over x, 
defined by 

(1.10) 

00 

ftxt ,p) = J e-Ptf(x1 , t)dt, 
0 

00 

fts ,p) = J eisx1J(X1 ,p)dxt. 
-00 

Then Eq. (1.8) becomes 

(1.11) dUu . = ( . . )2= . 1 2 3 -d-- -lSO'tt = f! p+IVS u, • I = , , , 
x2 

while Eqs. (1.6) and (1. 7) become 

(I.f2) Ht(p+ivs)stJ = P1(p+ivs)e,J, H2(p+ivs)akk = P2(p+ivs)~kk 
and comparison with Eqs. (1.1) and (1.2) gives 

(1.13) pG1(P) = Pt(P)/Ht(p); pG2(P) = P2(p)jHip). 

Equations (1.11) and (1.12) are identical with the transformed elastic equations so the 
formulation of the elastic problem of BAKER (5], for example, can be used here with the 
replacements 

(1.14) 
3A.+2,u = (p+ivs)G2 (p+ivs), 

2,u = (p+ivs)G1 (p+ivs), 

where A. and ,u are the Lame constants. Also the elastic wave speeds d = (A.+2p)/(} and 
d = ,u/e are replaced by the corresponding functions of the transformed variables from 
Eqs. (1.14). 

We consider situations where a semi-infinite crack propagates in an infinite viscoelastic 
medium under mode 1 conditions (in Appendix 1 exact solutions to some mode 3 situa
tions are given). Typical boundary conditions in the moving coordinate system are: 

0' 12 = 0, - 00 < Xt < 00 , X 2· = 0, t > 0, 
.(1.15) 0'22 = -O'(X1 , 1) X1 < 0, X 2 = 0, t > 0, 

U2 = 0, x1 > 0, x 2 = 0, t > 0. 

The stress O'(Xu t) on the crack faces is assumed to be known. Taking the Fourier and 
Laplace transforms of these boundary conditions gives 

(1.16) 

where 

00 

00 

H+(s) = J eis" 1h(x1 ,p)dxt 
0 

and h(x1 , p) = J e-Pth(x1 , t)dt with h(x1 , t) the unknown 0'22 stress ahead of the crack 
0 

tip. Also 
0 00 

g(s,p) = J eisx,dx1 J O'(X1 , t)e-Ptdt. 
-oo 0 
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If we ·define 

(1.17) 
u2 = o, X1 > 0, on x2 = 0, 

= j(xl), x1 < 0, on x 2 = 0, 

then 

0 

(1.18) u2 = l_(s) = J elsxtj(x1)dx1 on x2 = 0. 
-eo 

We assume that the behaviour of the stresses and displacements as x 1 __. ± oo are such 
that H+(s) and J_(s) are functions- regular in overlapping half-planes of the complex s 
plane. Then, solving the equations of motion (1.11) in terms of potentials and following 
the algebra of [5] leads to the Wiener-Hopf equation 

(1.19) -g(s,p)+H+(s) = K(s,p)J_(s), 

where 

(1.20) 

with 

and 

3ect = (p+ivs)[G2(p+ivs)+2~ (p+ivs)], 

2eci = (p+ivs)G1 (p+ivs), 2p = (p+iv~)G1 (p+ivs). 
The fact that cf and c~ are now complicated functions of s makes the factorisation, K = 
= K + K_ , of K into the product of functions regular ami non-zero in respective half
planes difficult in general. Nevertheless, if we assume that this essential step in the solution 
of the functional equation (1.19) has been made, then Eq. (1.19) can be rearranged as 

(1.21) L(s) = K_(s,p)J_(s)+C_(s) = KH((s)) - C+(s), 
+ s,p 

where 

(1.22) 
g(s,p) 

K ( ) = C+(s)+C_(s). 
+ s,p 

In each of the above expressions the plus subscript denotes regularity in some upper region 
of the complex s plane and th~ minus subscript regularity in some lower region. The two 
regions are assumed to have. a common strip of regularity. The sum split (1.22) can be 
effected by Cauchy's theorem when gfK+ is regular in some strip of the complex s plane 
(see e.g. NoBLE [6] for more details). 

Our intention here is to give an approximate solution of the dynamic crack problem 
in a viscoelastic medium (i.e. an approximate solution of Eq. (1.19)) for mode 1 condi
tions and guide the solution by comparison with the exact mode 3 solution given in Appen-
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dix 1. To do this we note that BAKER [5] has given the factorisation K = K+K- in the 
elastic case, we amend this a little and write it as 

(1.23) 

with 

(1.24) 

K+(s,p) = [(l-vfc2)s+ip/C2]1'2F+(s) (1-v/C2)-
1

'
2

, 

F±( s± c-,:~v [ 1 <~2J:rv>-1 -11 [w•- _(I ~c-=--"t>T I dw l 
.:. s) = ip exp 7i- tan 2 [ 2 (1 ±vw)2]1/2 [ (1 ±vw)2 2]1/2 -is 

S± :=-=- (Ct=fv)-l W W -
2 2 - W W+-

c2 +v c1 c2 p 

and 

(I -v2 fCi)li2(I -v2 /C~)l/2 
RI = (I -v2 /d)t/2(1 -v2 /d)t/2- (I -v2 f2c~)2 , 

where in Eqs. (1.23) and (1.24) c1 , c2 and p, are elastic constants and so independent 
of s or p. Our expression (1.23) has the same properties as the factorisation of Baker 
who considered the elastic case, we have merely multiplied by the factor (1-v/C2)-1'2 

for K+(s) and divided by it for K_(s). 
In our subsequent analysis of the viscoelastic problem we will need the lim lsl-+ oo 

of K+(s,p) and K_(s,p) in their respective half planes of regularity. We note that if the 
material behaves like a solid for short times, then d, ci and I' defined in Eq. (1.20) each 
tend to constants as lsl-+ oo (to see this use the definitions (2.12), (2.13)) and we denote 
these constants by cf 0 , ci 0 and l'o. They are those wave speeds and moduli associated with 
the small time elastic moduli of the body. From Eqs. (1.23) and (1.24) with v > 0 we 
deduce the result 

(1.25) 

lim K+ (s, p)-+ s!!2
, 

l.rJ-+00 

I. K ( ) -4c~ol'o0-v2 /do) 112sY2 
1m _ s,p -+ 2R , 

J.rJ-+oo V 10 

where Rto is the expression Rl with cl and c2 replaced by Cto and C2o and 

3ecfo = Iim[CG2(C)+2CGt(C)], 
(1.26) C-+oo 

2ecio = limCGt(C), · 2flo = limC~(C). 
C-+oo C-+oo 

The behaviour (1.25) can be compared with the results (A.5) (Appendix 1) of the cor
responding mode 3 problem which has the factor (1-v2 fc 2) 112 [c being the short time shear 
wave speed c20] in place of the velocity factors above which include the Rayleigh factor 
in the denominator of R10 • To proceed further with the analysis we consider particular 
loadings chosen so that the sum-split (1.22) is easily made. It is expected that these loadings 
will illustrate the influence of the viscoelastic properties of the body on the propagating 
crack. · · 
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1.1. 

(1.27) (ii) ct(x1 , t) = T for t>O 
T 

so that g(s,p) = -.-. 
lSp' 

C.ATKINSON 

The pole at s = 0 lies in the plus region since we need · Ims < 0 for the half transform 
g(s,p) to exist. 

The factorisation (1.22) can now be made by inspection giving 

C+(s) =.I_ [ I - I ] 
isp K+(s,p) K+(O,p) ' 

. T 
C_(s) = . K (0 ) . lSp + ,p 

(1.28) 

To complete the solution of Eq. (1.21) a generalised form of Liouville's theorem is applied 
to that equation so as to show that L = 0 with the results 

(1.29) 

see [7] for a brief account of how the argument goes for crack problems and [6] for the 
method in general. 

Our main interest is the behaviour of stress and displacement at the crack tip and this 
can be obtained via Tauberian theorems by taking ,the limit as Is I ~ oo in the respective 
half-planes of regularity of the expressions in Eq. (1.29). The results are 

rs-112 
(1.30) lim H + (s) -+ - + 

lsl-+co ipK+(O,p) 

and 
. 11(1 -v2jc2 )-1/2v2 R s:3f2 

lim J_(s)-+ . ~o 1o . 
1•1-+co 4!loC2oipK+(O,p) 

From the expressions (1.30) and appropriate Tauberian theorems (cf. (7] Eqs. (4.10) 
and (4.11)) the time transforms of the stress and displacement at the crack tip can be 
found as 

(1.31) 

and 

- T(l-v2 fc~o)-1f2v2Rto( -xt)1/2t~d/4 
(1.32) u2(x1 ,p) = 2n112ciofloPK+(O,p) . 

To proceed further with the solution, the full factorisation of K(s, p) (defined in Eqs. 
(1.20)) is needed since in order to invert the transforms (1.31) and (1.32), we require 
K+(O, p) for all p. To do this for all p would be, we think, a complicated task. However, 
by analogy with the results in Appendix 1, we assert that when the long and short time 
behaviour of the medium is such that the moduli and wave speeds are finite and non-zero 
(instantaneous and long-time elastic behaviour), then the factorisations lim K±(s, p) 

p-+0 
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and lim K±(s, p) follow from the factorisation (1.23), (1.24) with c1 , c2 and P, replaced 
p-+00 

by the corresponding long time values when p -4 0 and short time values when p -4 oo . 
A formal justification of this result is outlined in Appendix 2. It then follows that 

. (ip)1/2 1 2 
limK+(O,p)-+ 112 F0 +(0) (l-v/c20)_ I , 

p-+oo C2o 
(1.33) 

where 

[ 

<~-v)-1 I [w
2

- (l+vw)
2

]

2 ll 
F (0) = c2 -V ex _!_ J tan-1 2c~ dw 

+ CR -V p 'J"l - [ (I +vw)2]1/2 [<• +vw)2 ]1/2 W ' 
(c1-v)-1 w2 w2- _ -w2 

cf c~ 

eR is the Rayleigh velocity associated with the zero of the denominator of R1 (defined 
in Eq. (1.24)). In Eq. (1.33) the subscripts zero and one on F+ and on c2 mean that the 
expressions C2, Cl and CR should be replaced by C2o, Cto, CRo; C21, Cu, CRl etC. Where 
subscript zero denotes short-time wave-speeds (i.e. p = oo ). (see the definition (1.26)) 
and subscript one denotes long-time wavespeeds (p = 0), i.e. 

3ed. = lim[CG2(C)+2CGt.(C)], 
C-+0 

2ed. = limCGt (C); 2#1 = limCGt(C). 
(1.34) 

C-+0 C-+0 

Using the relations (1.33) in Eqs. (1.31) and (1.32) and inverting gives on x 2 = 0 

(1.35) 

for small t, and 

2T x:ttf2tlf2c1~2(l-vjc 21)tf2 
u22 "'"'n F1.+(0) ' 

T( -xt)lf2v2t1f2c1~2(l-vfc2t)tf2Rto 
u2 (x1

' t) "'"' ndo,uo0-V2/do)112Ft+(O) 

(1.36) 

for Jarge t. It is of interest to evaluate the flow of energy into the crack tip, this we do by 
calculating the work done at the crack tip from the above limiting stress and displacement 
distributions. The results are: 

for small time 

(1.37) 
G- tT2 . v2R10 (1-vfc2o)1f2 . 

- if-to (Fo+(0)]2c2o (1 +vfc2o) 112 ' 

for large time 

(1.38) 
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Both these expressions are linear in t as we might expect, Eq. (1.37) simply being the elastic 
solution for all time with the short time elastic constants. The presence of [F0 + (0)]2 in the 
denominator gives rise to the Rayieigh factor v- cRo in the numerator so that G -+ 0 as 
v -+ cRo. In Eq. (1.38) on the other hifnc.i we find that G has a velocity factor involving 

(v-cR 1); (the term (v-cRo) being a factor of the denominator of R1 0 ). Since cR 1 < cRo 
~~~o . 

by virtue of the fact that the long time moduli are less than the short time ones, G in 
Eq. (1.38) will tend to zero as v -+ cR 1 • For intermediate times we have a transition between 
these two extreme behaviours. To get an approximate curve for the stress intensity factor 
versus time for all time, it might be possible to replace t in the long time result by (t + t0 ) 

where t0 is some threshold time estimated from the exact mode 3 results given in Appendix 
1 (cf. [1]). 

1.2. 

(ii) a(x1 , t) = 6(x1 +vt)H(t) = 6(x1')H(t), where His the Heaviside step function, 
6 the delta function. In this case g(s,p) = 1/(is+P/v) for Ims < Pjv. 

The factorisation (1.22) gives 

The result (1.29) still holds and in place of Eq. (1.30) we have 

8 -112 

~~~r.o H+(s)-+ ~(+iP) ' 
1K+ -,p 

fJ 

(l-v2fc~o)-1f2v2R1os:3J2 
lim J_(s)-+ -----------

1 '1~"' 4do.uoiK+ ( ~ , p) 
As in Example 1 the time transform of the stress and displacement of the crack tip can be 
determined and written 

and 
_ (1-v2fc2 )-1J2v2R ;t/2( -x )1/2 u (x ) _ 20 10 1 

2 1 'p - n 1122cioPoK+(ip/v,p) · 

For the solution for all time we again need the full factorisation of K(s,p). To determine 
the solution for short and long times we calculate K+(ipjv,p) by analogy with the exact 
solution of Appendix 1 by first evaluating K+ (s, p) from the elastic factorisation ( 1.23) 
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in the limits p --. 0 and p --. oo , then replacing s by ip fv and again taking the appropriate 
limit. 

This procedure or an application of the results of Appendix 2 gives 

( 
. ) (' )112 . lp lp -1/2 IimK+ -, p __. ---r;r Go(l-vfc2o) , 

Jl-+00 f) f) 

and 

( 
. ) (. )1/2 . lp lp -l/2 

IimK+ -, p --. --rJ2 G1 (1-v/c21) . 
p-+0 f) f) 

The subscript zero refers to short times and subscript one to long times as described 
following Eq. (1.33). Also 

GJ = lim FJ+ ( ip) = t;RJ(c2J -v) exp [_!__ (clJJ-v>-1 tan-1/(w)dw] 

11 .... oo fJ c21(cRJ -v) n (w+ lfv) ' 
(Clj-V)-l 

(1.39) 

where j takes the value 0 or 1 ·and 

(1.40) 
f(w) = w2 [wz- {l +~w)2 ]1/2 [ (1 +~w)2 - w2]1/2 

cu . c21 

Inverting the transforms one gets for the stress and displacement at the crack tip 

(1.41) 

1 (I vfc ) 112 
,.. (x )-1/2v1f2t-1/! - 20 
u 22 "' --;- 1 Go ' 

on x2 = 0 for a small time. 
For large tiine one gets 

(1.42) 

and 

vzRto (l-vfcu)1f2 ( -x )112,-1/2 v1f2 
Uz "' 2n,uo4o (1 -v2 Jc~o)l/2 t G1 . 

From these results one obtains the energy flow into the crack tip as 

(1.43) 

for small t, and 

(1.44) 

for t large. 

G __ 1_ v3R1o t- 1 (l-vfczoV12 

- 4n ,UoC~o G5 (l +vfc20)
112 

G __ 1_ fJ3 R1o t- 1 (l-v/c21) 
- 4n ,Uo c~o Gf {1 -fJ 

2 /c~0) 1 '2 
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1.3. 

(iii) u(x 1 , T) = eAx1 for 
(A>O) 

t>O then 
T 

g(s,p) = p(is+.A)' 

C. ATKINSON 

where the pole at s = i.A (A > 0) lies in the plus region. The steps of the solution are almost 
identical with those of examples (i) and (ii); merely replace pK + (0, p) in example (i) by 
pK+(i.A,p). Assuming as before that the factorisation for long and short times is essentially 
the factorisation (1.23) with the wave speeds replaced by their corresponding long and 
short time values, or alternatively using the results of Appendix 2, gives . 

IimK+(iA,p)-+ ..!!!_ Fo+(O)(I-v/c20)- 112 
( 

. )1/2 

p-.ctJ C2o 

and 

lim K+(i.A,p)-+ [i.A]112. 
p-+0 

The short time behaviour is thus just like that of example (i) as we might expect. Of more 
interest here is the long time behaviour which from Eqs. (1.31) and (1.32) can be seen 

to be 

(1.45) 

Tx-;t/2 
a22 = _A1/2n1/2 ' 

T(l-v2/c'io)- 112v2R1o( -x1)
1

'
2 

u2 = 2_A12n1/2do.Uo 

at the crack tip on x2 = 0. Further in this" connection it is worth noting that the factor
isation K(s, 0) = K+(s, O)K_(s, 0) can be made directly from Eq. (1.20) with p = 0. 
Writing 

(1.46) 
K+(s, 0) = s~2, 

-4cijis~2(l-v2 Jci)1/2 
K_(s, 0) = ,.. , 

v2R1 

where R1 is the same as R1 of Eq. (1.24) with c1 , c2 , ~replaced by c1 , c2, j1 and which 
are the same as the wave speeds and moduli defined following Eq. (1.20) but withp replaced 
by zero. In particular for use in the next section we remind the reader that 

(I-v2 /c~,)l/2(1 -v2 jc~,)l/2 
(1.47) Ru = (I-v2Jcf,)112(l-v2fc~,)1f2_(l-v2j2ci,)2, 
where i = 0 or 1 and c10 , p,0 etc. are the effective "short time" wave speeds and moduli 
and e11 , p,1 etc. the "long time" wave speeds and moduli. 

If we define eR to be that root of the denominator of R1 which is least for all s (i.e. 
the root when s = 0, if the long time elastic constants and wave speeds are IeasO, then 
for v < eR, K_(s, 0) will be analytic in Im s < 0; s~/2 has a branch cut from iO to ioo 
and s,V2 a cut from - iO to - ioo. A special case of the factorisation (1.46) has been used 
in (3] where-an asymptotic analysis of a variety of steadY. state problems has been made. 
A slight generalisation of one of these problem's is considered in the next section. Note 
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GO 

also that from the definition G(ivs) = J e-ios'G(t)dt, the transforms G(ivs) are analytic 
0 

functions in Ims < 0 and hence d, d etc. are from Eq. (1.20), so we don't anticipate any 
difficulty with the above argument provided v < eR and eR is in turn less than any of the 
instantaneous wave speeds. 

1.4. A aack propagating steadily In a vlscoelastic strip 

Here we consider the problem where fixed displacements are applied to the sides of 
the strip x2 = ± 1 and a crack propagates on the x~ axis with uniform velocity v. As in the 
previous examples we use coordinates moving with the crack tip and define x1 == x~ -vt. 
On account of the steady-state assumption the stress and displacement field depend only 
on x 1 and x2 • The boundary conditions of the problem can thus be written as 

on x2 = ± 1, u2 = ±u2o, U1 = 0 for all Xt, 

(1.48) on x 2 = 0, u22 = 0 = u12 for x1 < 0 (stress-free crack), 

and on x 2 = 0, u2 = 0 for x 1 > 0 (from symmetry), 

u20 is a constant and the viscoelastic properties of the medium depend on a small parameter 
e through the relaxation functions G1 and G2 of the form defined in.Eq. (1.48) below. 

In [3] an asymptotic method was outlined and applied to certain steady moving boundary 
problems. Results were given explicitly for the standard linear solid. The key ingredient 
in the analysis was a dimensionless parameter e1 = v1:jL (e1 ~ 1) where v was the crack 
speed, 1: the relaxation time of the medium and La length associated with the problem 
(half the strip width say). Here we will present the asymptotic method in a slightly differ
ent way and apply it to media where the moduli have small relaxation times. Thus a typical 
relaxation func~ion G(t) might be written as 

N 

(1.49) G(t) = G0 + 2 G1exp( -tfet1), 

J-3 

where G1 and ti are constants and sa small parameter. Note that the sumj = 3 toN (N > 3) 
is chosen so as not to clash with the previous use of the relaxation functions G1 'and G2 • 

In [3] an argument was given suggesting that for steady state situations (such as that of 

CLAMPED BOL!NDARIES 

FIG. 1. 
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a crack propagating steadily in a displacement loaded strip, Fig. 1) the stress analysis 
problem can be viewed as a singular perturbation problem. 

If we put e = 0 in the viscoelastic relaxation functions as a first approximation to the 
problem, G(t) = G0 , we get an elastic strip problem whose solution is well known. How
ever, if a formal perturbation expansion is attempted it is soon seen that the expansion 
is a singular one. This suggests that the elastic solution formed by putting e = 0 is valid at 
distances d ~ e from the crack tip. The influence of this "outer" solution is transmitted 
to the '"inner" solution through matching conditions near the crack tip where e ~ d < 1, 
and since both inner and outer approximations are valid in these regions they must be 
asymptotically equivalent there. Thus the inner limit of the "outer solution" must match 
with the outer limit of the "inner" solution. (cf. V AN PYKB (8] for details of the method 
of matched asymptotic expansions). One key feature of the present problem is that the zero
order outer solution is just the solution for the elastic strip and the inner limit of this solu
tion (i.e. the solution near the crack tip) has the form 

(1.50) 
u2 f'OJ A2( -xt)l/2. 

The constants A1 and A 2 are known from the solutions [9, 7]. We give here the slightly 
more general result for a strip which has elastic moduli varying in the direction perpendic
ular to the crack direction; we quote from (7] correcting an obvious misprint there. 

(1.51) 

and 

At Ru v2 
A2 = 2 {l-v2/C~t) 1 '2 c~1 • 

Note that the subscripts one on the c 2 , p. etc. refer to the "long" time wave speeds and moduli 
defined in Eq. (1.34). Ru is the corresponding value of R1 , Eq. (1.24). 

To obtain the zero-order inner solution, we define the inner coordinates (X1 , X2) by 

(1.52) 

and write 

·(1.53) 

Recall that if the crack is stress free, then applying a Fourier transform over x1 as in Eq. 
(1.19) leads to the functional equation 

(1.54) 

where H+ and J_ are defined in Eqs. (1.16) and (1.18). If in these expressions we refer 
to the inner coordinate X1 and replace s by s1 /e, we set 

(1.55) 

00 

lf+(s) = e112 J e151x1T22(X1 , O)dX1 = e112T+(s1) 

0 
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similarly 
-00 

J_(s) = e312 J eis~x~ul(Xt,O)dXt = e3f2i]_. 
0 

Also for the relaxation functions we get 

(1.56) G(ivs) = G(ivs1 /e) = e J e-lus 1t 1G(et1)dt1 
0 

841 

and from the definition (1.49), G(et1) is independent of e so ivs G(ivs) is a function only 
of s 1 when written in terms of s 1 and does not depend on e. Hence the moduli and wave 
speeds defined from Eq. (1.14) depend only on s1 for solids modelled by the definition 
(1.49). Using these results in Eq. (1.54) gives the functional equation 

(1.57) 

where 

K ( ) = K(stfe) 
1 st - e . 

Now by analogy with the factorisation (1.46) we can deduce tha 

K1 (st) = K1+(st)K1_(st), 
with 

(1.58) 

We repeat that there is no explicit dependence -on e in the expressions R1(s1/e), c2 (s1/e) 
etc. because of the form of the relaxation functions G(t), Eq. (1.49) and the argument 
following Eq. (1.56). 

It remains now to solve the functional equation (1.57) subject to the matching require
ments that the far field should match with Eq. (1.50) written in inner coordinates. This 
leads to the requirement that 

(1.59) U2 "W A2 ( -X) 112 as X--+ _-oo, 

and 

T22 "W At X- 112 as X-+ + oo. 

These matching conditions will be satisfied if the transforms have the behaviour 

1/2 
fj "W ~ s-3f2A tf"l/4 

(1.60) 
- 2 1- 2 

T+ "W A1 ntl2tf"i/4sJ:!I2 

Using Eq. (1.58) in Eq. (1.57) gives 

(1.61) 

6 Arch. Mech. Stos. nr 6/79 

as s1 --+ 0. 
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The function N(sJ defined by both sides of Eq. (1.61) is analytic in the whole s1 plane 
except possibly at s1 = 0, and for large s1 each side of Eq. (1.61) is bounded on account 
of the usual condition that the stress should be no more singular than r- 112 at the crack 
tip. Matching the stress boundary condition on ~ from Eq. (L60) and using Liouville's 
theorem specifies N(s1) as 

A
1 

n1f2etc1J4 

(1.62) N(s1) = • 
s 

Then, from Eq. (1.61) the transforms f+ and V_ are determined, and using Tauberian 
theorems the stress and displacement at the crack tip can be determined. The resulting 
expressions are on x2 = 0, lxtl ~ 1 

(1.63) and 
T22 ,...., Alxt- 112 

At( -Xt)tf2v2Rto . 
u2 

"' 2cio,uo(l ~V2/C~o) 112 • 
Referring these expressions to the (x1 ~ x2 ) coordinate system and evaluating the energy 
flow to the crack tip via a local work argument at the crack tip gives the result 

-
( 64) G = nA~v2R1 o 
1. 4,uoc~o(l-v2 /c~o) 1 '2 

If we now substitute in for A1 given from Eq. (1.51) and simplify, we get the result 

1 

G _ 2u2 ,Ut ci1 R1o (1-v
2 /dt)1

'
2 

{ J dx2 ~-
1 

-
20 Po c~0 R11 (1-v 2 /do)112 0+2,u)t 

-I 

(1.65) 

This expression can be simplified a little particularly if we write 

2Uio 
G=-.:---"----

f dx2 
-1 (A.+2,u)l 

for the elastic strip; then the expression (1.65) becomes 

G _ ,Ut dt (I-v2/c~o)1 12 {0-v2 /cft)1'2(1-v2 /cit)112 -(1-v2 /2ci1) 2
} 

(1.
6

6) GE - Po · do · (1-:-v2 /er t)1/2 • { (1-_v2 /c~0) 1 ' 2 (1 -v2 fc~o)1 12 - (1-v2 /2cio)2 } 

Again we remind the reader that the subscript zero refers to short times (see Eq. (1.26)) 
and the subscript one to long times (see Eq. (1.34)). This result should be the same apart 

. from some misprints with the result derived in [3] for the standard linear solid. Note the 
presence of the Rayleigh factor top and bottom of the expression (1.66), hence G tends 
to zero as v _tends to the long time Rayleigh velocity. Note further that Eq. (1.66) arises 
from only the first terms in the asymptotic expansions; we expect, however, that the Ray
leigh factors will be present in higher order terms also. We have derived the result (1.66) 
using Eq. (1.51) as if in the long time limit the material were elastically inhomogeneous. 
The argument should still work for this case provided the crack propagated in a homo
geneous viscoelastic layer (thickness jx2 1 ~ h < 1) such that the limit h/e-+ oo, for the 

s-+0 

inner coordinates (X1 , X2 ) so the inner problem would still be as described above. 
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2. Concluding remarks 

The main results of this paper relate to the short and long time behaviour of,constant 
velocity dynamic crack propagation in a linear viscoelastic solid. For the short time behav
iour the results of Eqs. (1.35) and (1.41) for the various loadings are intuitively clear. 
For early enough times we expect the material to behave like an elastic solid with the cor
responding "short time" moduli. The limit (1.25) eventually leads to the result that the 
crack tip field will always possess a velocity factor which is like the usual Rayleigh factor 
encountered in the ela'Stic problem but involving the '"short time" moduli and wave speeds. 
A; result of this kind should also apply to the case of non-uniformly moving cracks. To see 
this use the differential operator form of the constitutive equations (1.6) and (1. 7), and 
substitute into Eq. (1.8). An eigenfunction expansion in coordinates based at the moving 
crack tip will then result in equations governing the coefficient of the rt {leading term) 
in the crack tip displacement which depend on the highest derivatives in the differential 
equation. The highest derivative terms in Eqs. (1.6) and (1.7) involve the "short time" 
moduli and the resulting equations are then just as in the elastic situation. 

More intriguing are the results (1.36) and (1.42), for the long time behaviour, which 
show the presence of a factor (CR 1 -v) in the numerator of both stress and displacement 
at the crack tip in addition to the presence of the factor R10 (discussed above). We re
mind the reader that CR 1 denotes the Rayleigh velocity calculated from the "long time" 
wave speeds and R10 is in terms of the "short time" wave speeds. (The denominator 
of Rlo has a zero at CRo' the "short time" Rayleigh velocity). 

We stress that these results, although they involve fairly general viscoelastic moduli, 
have been derived in·a heuristic way and moreover only at short and long times. A complete 
analysis based on equations (B.3) of Appendix 2 would be desirable although it would 
then probably only be possible to treat particular constitutive equations. We hope to do 
this in the future. In support of the above mentioned results, however, are the exact results 
of Appendix 1 which are valid for all time. 

The results in Sect. ( 1.4) generalise and correct some misprints in (2]. As a final remark 
note that the energy release rates calculated in the paper have been based on local work 
calculations at the crack tip; the effect of the medium has been involved only in determin
ing what these crack tip fields will be. 

Appendix l . 

We consider here mode 3 {longitudinal shear) analogues of the mode 1 situations 
of the main text to guide the approximations used there. The mode 3 situation was first 
considered in [1] where an exact analysis was given for certain model viscoelastic solids. 
We expect properties of the exact analysis given here to agree qualitatively with those 
of the approximate method given in the text. 

Because mode 3 conditions are assumed, we have in place of Eq. (1.15) the conditions 

(A .I) 
ff23 = -u(xu t) x 1 < 0, x 2 = 0, t > 0, 

6* 
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Following the proced:ure outlined in the main text leads to the functional equation 

(A.2) -g(s,p)+H~(s) = K(s,p)J_(s), 

where H+ and J_ are now respectively the transforms of the unknown u23 stress ahead 
of the crack and the unknown opening u3 of the crack. Following [l] we consider the 
constitutive model · • 

(A.3) 

where p,1 , a and p are constants. This model was originally suggested by AcHENBACH 

and CHAO [10] as an alternative to the standard linear solid; it . is used here as it 
simplifies the analysis a little. 

For this solid K(s) can be factored asK= K+K- where with ec2 = p, 1 , 

Kt(s) = [s+iX1 ]
112 

(A.4) and 

-p,1 (l-v2 fc2 ) 112[s-i(a+p)fv] [s-iX2]112 [s-iX3]112[s-iX4 ] 112 

K_(s) = [s-i{p+P)/v]2 ' 

where 

xi = 2v(I ~vfc) [{l(vfc)(2p+P> -(p+o:)l'+ ~. (1-vfc)p(p+P>}"' 

± ( v(2p + P)/c- (p +a)}], 
X! = 2v(l ~vfc) [{: (2p+p)+p+<X}:t{[(vfc)(2p+p)+ (p+«)]' 

4v ll/2 - c (1 +vfc)p(p+P)f 

Thus ReXj > 0, j = 1, 2, 3, 4 and the radicals in Eq. (A.4) have branch cuts from s 

= - iX1 to - i oo in the lower half plane and from iX2, iX3 and iX4 to + ioo in the upper 
half plane. Further, 

(A.5) 

lim K+(s) -+ s!l2, 
lsi-+OO · 

Iim K_(s)-+ -p,~(l-v2fc2)lf2s!_!2. 
l.sl-+00 

We now consider particular examples which correspond to the loadings treated in the main 
text. 

(A.6) ex(i) a(x1 , t) = T for t>O 
T 

so g(s,p) = -. -. 
lSp 

Corresponding to Eq. (1.30) we now get 

-Ts-112 
lim H+(s)-+ . K (o) , 

(A.7) 
1•1-+00 lp + 
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with 

K+(O) = [iXd~2 • 

From the exact factorisation above we have lim X 1 -. -( p ) and 
p-..oo C-V 

limX1 -. P provided v < cr:t./{3, and we note that p 1 r:t. 2 /{J2 

•~• ( c; -v) 
is the long time shear modulus of the model (A.3) and hence ca.j {J is the long-time wave
speed. 

Inverting Eq. (A.7) for the stress at the crack tip gives 

c'+ioo 

(A.8) f e'' 
·pXtf2 dp 

c'-ioo 
1 

and for the displacement 

(A.9) 

c'+ioo 

( 
-x1 )1/2 (I-v2jc2)-1/2 1 J e'' 

u3 = 2 -- -2 . -Xl/2 dp. 
n fl1 :m . P 1 

c'-100 

From the behaviour of X 1 as p tends to infinity or zero it is straightforward to deduce 
from Eqs. (A.8) and (A.9) that 

(A.IO) 
4T ( ~xt)1 12 c u - tl/2 

3 --,:c flt (c+v)1f2 

at the crack tip for small t, and 

<123 = 2: (x,)-1/2( c; -v)"2 t'l2, 

_ 4T < -x,>''2 (T -v)"
2 

.,. 

u3 - n l't (l-v2 jc2)1f2 t 

(A.ll) 

for large time. Results for intermediate times are tabulated in [1] giving the stress intensity 
factor as a function of time. 

From Eqs. (A. tO) and (A.ll) and a local work arpment one gets for the energy release 
rate 

A.l2) 4 c (c -v)1
'
2 

G=-T2 -~--:-,..,.~ 
n p 1 (c+v)112 

for t small, and 

(A.t3) 
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for t large. 

ex(ii) a(x1 , t) = T~(x1 +vt)H(t) so 
T 

g(s,p) = '( . I ) . 
l S-lp fJ 

C.ATKINSON 

For this problem following the steps outlined in the text one gets the results (A.7) 
with pK+(O) replaced by K+(ipfv) and 

(A.l4) K+(ipfv) = [i{p/v+X1)]
1
'

2
• 

Furthermore using the expression for X1 one can deduce that 

pc 
pfv+X1 --. ( ) as p-+ oo 

v c-v 

and 

perJ./{J 
--. ( {1 as p --. 0. v ea/ -v) 

So in. place ofEqs. (A.lO) and (A.ll) we now get 

(A.l5) 

at the crack tip for small t, and 

a23 = _ (x1)-t/2 _v_ (ea/{J -v)If2rtl2, T ( )112 
n erJ./{J 

u = T2 ( -Xt)1f2 .(-v-)1/2 (erx.f{J -v)1f2 r-1/2 
3 n 1-'t ca.f{J (1-vl fe2)112 

(A.l6) 

for large time. From Eqs. (A.15) and (A.l6) one gets for small time 

(A.17) 
T 2 v (e -v)112 

G= .~- r 1 

- n l-'1 (e+v)1f2 

and for large time 

(A .IS) 
T 2 v (ea./P -v) _ 1 

G = n 1-'t (ea.f{J) (l-v2 fe2)tf2 t 

-ex(iii) 
T 

a(x1 , t) = Te'-" 1 for t > 0, so g(s, p) = p(is+ A.)· 

The steps of the solution are the same as before; now in Eq. (A.7) we replace pK+(O) 
by pK+ (iA.), hence in Eqs. (A.8) and (A.9) we have A + X1 in place of X1 • It is straighfor
ward to deduce that 

lim [A. +X.] --. A.+-( P ) 
p ... oo e-v and lim [A.+X1]-+ A.+ ( /: ) . 

p-+O ea. -v 

From these limits it is clear that the results (A.lO) and (A.l2) hold for short times. The 
long time result follows from Eqs. (A.8) and (A.9) as 
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(A.l9) 

with 

(A.20) 
(1-v2jc2)-1f2 

G = T2-. ---- A_-t. 
Pt 

We assume here as before that the crack is running at a speed less than the long-time 
wave speed crx/ fJ of the medium, i.e. v < crxf {J. If instead we consider the situation when 

v ;;:;: crxf{J, then A. in the above long time results is replaced by A.+ !~~~~:~ . 
Appendix 2 

In this appendix we give a formal derivation of the factorisation of the expression 
K(s, p) and make some deductions about the behaviour at long and short times. 

From Eq. (1.20) one gets 

(B.l) lim K(s' p) = /si { -4c~oP,o(l-v2 /do)t/2 } 
lsl-+oo v 2R10 • 

So we define 

(B.2) 

with 

, •• = (1-v•Jdo)'l• [·- (vi: .. ) r· [•+ (c2~-v) r· 
and the square roots having cuts from s = ( ip ) to ioo and s = -ipf(c20 -v) to -ioo, 

c2o+v. 
respectively. (We remind the reader that the subscript zero refers to short time wave speeds, 
i.e. p -+ oo, see the definition (1.26)). From the above follows the result lim N(s, p) -+ 1 

ls!-+oo 
where the limit is taken in the strip of regularity of N(s, p ). However, for all p we do not 
know precisely what this strip of regularity is without closer investigation of the detailed 
viscoelastic moduli so we denote this strip by -d1 < Ims < d2 , where -d1 ~ 0 is above 
all the singularities (including branch points) in the lower half s-plane. Similarly, d2 is 
to be below all singularities in the upper half s plane. The factorisation of N into the pro
duct of plus and minus functions the& follows in a standard way as 

(B.3) 

oo-id1 

N ( ) _ { f logN(C,p)dC} 
+ s,p - exp C-s , 

-oo-ld1 

OO+ld4 

N ( ) = {- f IogN(C,p)dC} _ s, p exp ,. , 
~s-S 

-oo+ld• -

with -d1 < . -d3 < Ims < d < d2 • 
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Then 

(B.4) [ 

. ] 1/2 

K+(s,p) = s+ ( 'P ) N +(s,p) 
C2o -v 

and 

K .... (s,p) = - s- lp (l-v2jc~o)tl2 c;oPo. 
[ 

. ] 1/2 4 2 

(c2 0 +v) v R10 

Clearly these expressions are consistent with the limits given in Eq. (1.25). Although this 
completes a formal factoris~tion any further analytic~l progress requires detailed knowl
edge of the viscoelastic moduli. We restrict ourselves to the behaviour for long (p -+ 0) 
and short times (p -+ oo ). If in the relations (B.3) we make the substitution C = pC 1 , 

then 
oo-ld3/P 

{ f log N(pC1 ,p) } 
N+(s,p) = exp Ct -sjp dC1 • 

-oo-ld3/P 

(B.5) 

We now consider the singularities of the function N(pC 1 , p). Asp -+ oo we expect that these 
singularities coincide with the singularities obtained for an elastic solid with the "short 
time" wave speed and moduli cfo, c~0 , p0 • This assumption leads to the result 

(B.6) limN+(s,p)-+ F0 +(s), 
p-+00 

where F+ is defined in Eq. (1.24) and the subscript zero is used to denote that the velocities 
cl, cl, eR in Eq. (1.24) are to be replaced by Clo, C2o, CRo· 

On the other hand, as p -+ 0 ( t -+ oo) we expect that the singularities of K(pC 1 , p) 
will tend to those obtained for an elastic solid with the "long time" wave speeds and moduli 

d11 c~1, Pt (cf. Eq. (1.34)). 
With this assumption the following result is obtained from Eqs. (B.5) and (B.2), 

[ 
+ ip ]1/2 

s (c21 -v) . 

[ 

i ]1/2 Ft+(s). 
s+ '{J 

(c20 -v) 

(B.7) 

Note that FI+ is defined as Fo+ except that the velocities are now c111 c21 and cRt· Also 
the above expression is a function only of sfp and lim N+(s,p)-+ 1 is still retained. 

J.fJ-+00 
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