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On slip-line field solutions for steady-state and self-similar 
problems with stress-free boundaries 

H. PETRYK (WARSZAWA) 

IN nns PAPBR it is shown that the matrix technique for constructing slip-line field solutions 
proposed by COLLINs [6] can be used for solving steady-state and self-similar problems with free 
boundaries. Boundary operators are proposed which generate the velocity field, automatically 
satisfying the condition of invariable position or of maintenance of the geometric similarity 
of a free boundary. The presented examples of slip-line field solutions illustrate a practical 
\lPPiicability of the proposed free boundary operators. 

Pokazano, ze macierzowa metoda konstrukcji siatek linii poslizg6w zaproponowana przez 
ColilNSA [6] moie bye zastosowana do rozwi~ania stacjonarnych i samopodobnych zagad
nien ze swobodnym br;zegiem. Wyprowadzono postac operator6w macierzowych generujllcych 
pole pr~o8ci spelniajClce automatycznie warunek stalego polozenia linii swobodnego brzegu, 
wz&)~e zachowaniajej geometrycznego pOdobienstwa. Podano przyklady rozwiClzan ilustrujll
ce mo:iliwo8ci praktycznego zastosowania proponowanych operator6w. 

lloKasaHO, liTO MaTpH'1Hhlii MeTO~ nocrpoemm CeTOI< mnmii CI<OJIL>Kemm, nperoiO>KeHHblii 
KoJIJIHHcoM [ 6], Mo»<eT 6&m. llPilMeBeH wm pememur ~ou:apH&IX u aBTOMo~em.HbiX ~q 
eo cso6o,znlo:H rp~e:H. BhiBe~ea BB~ MaTpHtlllbiX onepaTopoB, reuepupyroiiUIX none CKo
pocm, y~oBJieTBopmo~ee aBTOMaTiflleci<H ycnosmo nocrommoro nono»<eHWI JilUUW cso6o~
Ho:H rplllnfiU,I HJIH coxpoHeHWI ee reoMeTpftlleci<oro no~o6mr. llpHBe~eHbi npRMepbi pememm 
HJIJIIOC'l'PHPYIOl.IUfe B03MO>KHOC'l'Jl npaKTHlleCKOro npuMeHemm: npeMO>KeHHbiX onepaTopoB, 

1. Introduction 

THE THEORY of slip-line fields has been ·successfully used to analyse a great number of plane 
strain metal deformation problems [1, 2, 3, 4, 5]. The results obtained ate surprisingly 
dose to experimental observations in spite of the use of a strongly idealized, incompressible 
rigid-perfectly plastic model of the material. 

The class of solutions available has been remarkably widened by employing the matrix 
technique for constructing slip-line field solutions developed by CoLLINS (6] and DEW
HURST and COLLINS [7]. The matrix technique makes it possible to derive in a relatively 
simple way the solutions of the so-called indirect type, in which the shape of none of the 
slip-lines, or their liodograph images (at least in some region), can be deduced in advance. 
In such cases the base slip-lines must ·first be found by solving an integral equation in the 
case of the analytic formulation. In the matrix formulation the problem of finding the base 
slip-lines reduces to solving an algebraic matrix equation with vector representations 
of these slip-lines as unknowns. The use of the matrix procedure is, however, limited to 
problems.with boundary conditions leading to a linear integral equation. This will be the 
case when a plasticaiJy deforming region is bounded by: 1) slip-lines constituting rigid-
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862 H. PETRYIC 

plastic boundaries, or 2) rectilinear contours of rigid tools (rotating or not) with constant 
shear stress along them [7, 8]. 

In the present paper it is shown that the matrix technique can also be used when a plas
tic region is bounded by 3) a curvi-linear stress-free surface in a steady-state or self-simi
lar(!) problem. In that case not only the shape of slip-lines, but also the position of the 
free surface are to be found. The shape of the body must be chosen such that the solution 
of the problem satisfies the condition of invariability or of maintenance of geometric simi
larity of the body shape during deformation for steady-state or self-similar problems, 
respectively. The boundary conditions to be satisfied by the solutions of steady state or 
self-similar problems will be discussed later in detail. Since these conditions are imposed 
along the free boundary of initially unknown position, it would seem that it is necessary 
to employ some iterative procedure involving successive changes of geometry of the free 
surface until these conditions are satisfied. Such iterative procedure has been in fact used 
in some papers [9, 10, 11], not only for the plane strain problems. 

However, it is found that these free boundary conditions can be incorporated in the 
matrix procedure by introducing respective so-called free boundary operators. One such 
operator, which generates the slip-line field between a given slip-line and a stress-free sur
face of initially unknown shape, has been introduced by DEWHURST and CoLLINS [7]. 
The other free boundary operators, which transform the hodograph characteri~tics accord
ing to the steady-state or self-similarity requirements for velocities at the free surface, are 
proposed in the present paper. Using these free boundary operators within the framework 
of the matrix _technique, we obtain a solution automatically satisfying all the stress and 
velocity conditions at the stress-free boundary, without the need of employing any iter
ative procedure(l). 

The important advantage of this approach, in addition to saving computing time due 
to the elimination of an iterative procedure, lies in the fact that it enables us to derive 
in a natural way not only one but a class of different possible solutions for the sa~ bound
ary value problem. This is also important for any other solution method since numerous 
examples show [12, 13, 14, 15, 16] that non-unique solutions do exist. There is no contra
diction with the uniqueness themem due to HtLL [17] since this theorem does not apply 
to problems with undefined a priori boundaries. 

Three slip-line field solutions with a stress-free boundary illustrate the practical applic
ability of the proposed free boundary operators. 

2. Stress-free boundary in steady-state problems 

In steady-state problems the stress and velocity do not vary at any fixed point. In order 
to satisfy this condition, the position of a free surface must remain unchanged during the 

e) By self-similar problems w~ understand problems of non-steady motion where geometric similarity 
of the entire configuration is maintained during the deformation. 

e) However, in most cases it is necessary to use iterative procedure to satisfy other conditions such 
as g~ometric or total force requirements, appearing in the problem but not covered by the matrix equa
tion (see the examples given in Sect. 4). 
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deformation. This implies that the free boundary must coincide with a stream-line, i.e. 
along this line we have 

(2.1) v·n = 0, 

where vis the velocity vector and n denotes the vector normal to the free boundary. 
Thus, in steady-state problems we have a special type of boundary conditions at the 

free boundaries. Not only should the normal and tangential components of stress vanish 
there, but the additional condition (2.1) should also be satisfied. Instead, the shape of the 
stress-free boundary is to be found. Such conditions are particularly difficult to satisfy 
when a free surface bounds a plastically deforming region. 

Let us consider a plastic region ABC bounded by a concave segment AB of a stress-free 
boundary(l) and by slip-lines AC and BC of angular range() (Fig. la). Assume that the 

a 

Fro. 1. 

configuration of slip-lines images in the hodograph diagram abc for this region is as shown 
in Fig. lb (the other possibilities will be discussed later). We will assume that both the 
stress and velocity fields in ABC are described by analytic functions. There is no loss of 
generality in so doing since in the opposite case the ABC region could be decomposed 
into analytic subregions. The ABC region is so-qght as a part of a slip-line solution for a 
steadystate problem; the shape of AB is a priori not known. 

Let us extend the hodograph net beyond the image ab of AB up to obtaining the curvi
linear quadrangle abed. The hodograph characteristics form, as slip-lines do, the Hencky
Prandtl net [18]. Thus it is convenient to introduce [1] three pairs of parameters ((X, {1), 
(r, s), (u, w) in terms of which the relations describing the geometry of the hodograph 
net take a particularly simple form. The parameters ((X, {1) constitute the pair of curvilinear 
coordinates such that ad and ac are the reference (X- and {1-lines. (X and {1 at a typical point 
p are the positive angles turned through to reach that point from the base point at a along 
either pair of (X- and {1-characteristics. Thus (X = 0 along ac and {1 = 0 along ad. (r ,s) 
denote the radii of curvature of (X- and {1-lines taken with a positive sign, and (u, w) are 

e) Note that superimposing a uniformly distributed hydrostatic pressure has no influence on the 
following considerations. 
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864 ·H. PETRYK 

so-called "moving coordinates" related to the Cartesian coordinates (vx, v,.) in the hodo
graph plane by 

(2.2) 

where q; = a.+{J+q;0 , q;0 is the angle of inclination of the tangent to the a.-line at a to the 
positive ~'x-axis (Fig. 1b ). 

The geometry of the hodograph net is governed by the equations (compare with 
Hencky's second theorem) 

(2.3) osfoa. = r' orfo{J = -s' 

or (compare with Geiringer's equations) 

(2.4) owforx = -u, Ou/o{J = w. 

The quantities (r, s) and (u, w) are related by 

(2.5) r = oufoa.-w, s = owfo{J+u. 

Now we are ready to examine the infiuence of the boundary conditions at the free 
boundary AB on the stress and velocity fields in the plastic region ABC. Since the shape 
of AB is not known, it is impossible to determine in this region the shape of any slip-line. 
Neither can we determine the shape of any hodograph characteristic from the velocity 
conditions at AB alone. However, it is possible to determine the form of the boundary 
operators transforming slip-lines or hodograph characteristics in such a way that the 
boundary conditions at AB are automatically satisfied. The form of the operator F: 
A C ~ BC which generates the slip-line field in ABC such that AB is stress-free, has been 
derived in [7]. Below we will seek for the form of the operator H: ac ~ be, acting on the 
hodograph plane which generates in ABC the velocity field satisfying automatically the 
condition (2.1) at AB. 

The hY-drostatic pressure does not vary along AB. Thus from Hencky's relations we 
obtain 

(2.6} a. = fJ along ab. 

Since AB is stress-free, all slip-lines meet it at 45°. Thus the condition (2.1) may be written 
in the form 

(2.7) u(a., a.) = w(a., a.), 0 ~ a.~ () 

or simply: u = w along ab. 
The differentials du = (oufoa.)da.+(oufo{J)d{J and dw = (owfoa.)da.+(owfo{J)d{J after 

substituting Eqs. (2.4) and (2.5) take the form 

du = (r+w)drx+wd{J, 

dw = -udrx+(s-u)d{J. 

In virtue of Eq. (2.7) the differentials du and dw taken in the direction da. = d{J must be 
equal along ab. Thus we have 

(2.8) r = s-2(u+w) along ab. 
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Equating in turn the differentials of both sides of Eq. (2.8) taken in the direction da. = d{J 
and using the relations (2.3) to (2.7) in a way similar to the one presented above, we obtain 

(2.9) iJrfiJrx+r = iJsfiJ{J-s along ab. 

It can be proved by mathematical induction that the s~eady-state condi~ion (2.1) leads 
to a more general, recurrence relationship on higher-order derivatives of the radii of curv
ature of hodograph characteristics, namely 

(2.10) iJ'+1rjiJa."+ 1 +iJ'rjiJa." = iJ"+ 1sjiJ[Jn+I_iJnsjiJ{J" along ab (n = 0, 1,2, ... ). 

Now let us introduce the vector representations [6, 7] a 1 and a3 of the basic hodograph 
characteristics ac and ad 

where s0 , s1 , ••• and r0 , r1 , •.• denote the coefficients of {he power series expansions 
of the radii of curvature of the lines ac and be: 

00 00 

s(O, {J) = 2; s,{J"/n!, r(a., 0) = ~ r,a."fn!. 
n=O n=O 

From Eq. (2.10) written at the point a it immediately fo1lows that 

(2.11) 

From Eq. (2.8} we obtain 

(2.12) ro =So· E, 
where E is a parameter introduced for convenience according to the formulae 

E = 1-2Jliv0 /s0 , 

Vo = loal =vi . u(O, 0) = y12. w(O, 0). 
(2.13) 

The parameter E must be taken from the interval (0, 1] in order to satisfy the condi
tions ro > 0, so > 0 and v0 ~ 0, but is otherwise at this moment arbitrary. If the shape 
of ac is determined, the position of ac referred to the hodograph pole o will be defined 
by the value of E according to the formulae (2.13). 

The ~elationship (2.11) together with Eq. (2.12) can be written in the matrix form 

(2.14) a 3 = A~a1 , 

where 

E 0 0 0 

.. ] -1-E 0"0 ... 
(2.1 5) A~= l+E -2 I 0 

.:....1-E 2 -2 I 
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The required operator H: ac ~be can be obtained by using the relation 

(2.16) 0'2 = Ro(P:)- 1(a3-Q: Roat) 

between the vector representation 0'2 of be and a 1 and 0'3 • P, Q, R in the above relation 
are the basic matrix operators introduced by CoLLINS [6] and discussed by DEWHURST 

and CoLLINS [7]. The equality [2.16] results from the relation (15)1 of the paper [7). 
Combining Eqs. (2.14) and (2.16) we finally obtain 

(2.17) 

where 

(2.18) 

From Eq. (2.18) it is evident that the operator H: ac ~ be has the form of an infinite 
matrix with elements depending only on() and E as the corresponding subscripts indicate 
in the operator symbol. For the fixed values () and E the operator His then linear and can 
be determined independently of the shape of a free boundary AB. So the operator H may 
be used in the framework of the matrix technique for solving steady-state problems with 
a stress-free surface. As it has been proved above, the relation (2.17) must be satisfied 
fo,r the position of the free boundary AB to be fixed during the deformation. On the other 
hand, if the velocity field in ABC is such that Eq. (2.17) is satisfied and the hodograph 
pole has a position according to Eq. (2.13), then the steady-state condition (2.1) is auto
matically satisfied along AB, no matter what the actual shape of the free boundary is. 
This can be shown by inverting the course of argumentation presented above and using 
the assumption that the velocity field in ABC is described by analytic functions. 

By using GREEN's method [19] it can be shown that for the configuration of slip-lines 
and their hodograph i·mages as illustrated in Fig. 1 the rate of plastic work is positive 
everywhere in ABC if, and only 'if, AB is a trajectory of the algebraically smaller principal 
stress. However, if the boundary AB is subjected to tension, then the hodograph must 
take another form. In such a case, as well as when AB is convex, the analysis can be carried 
out in a way analogous to that presented above. In any case the operator H depends on 
the relative distance of the hodograph net from the hodograph pole, expressed by the par
ameter E. The particular case when one of the hodograph characteristics represents a giv
en circular arc or is reduced to a singular point, has been examined by EWING [20] and 
CoLLINS [25] by using a somewhat different approach. 

3. Stress-free boundary in self-similar problems 

In the general problem of non-steady motion the stress and velocity depend on the 
element position, defined by the position vector r referred to some fixed point 0, ·as well 
as on the stage of the deformation defined by a characteristic length c. In self-similar 
problems the stress and velocity are functions only of the single variable rfc. The anal
ysis of self-similar problems becomes much easier when using the concept of a unit dia
gram [21]. An element whose position vector is r in physical space is represented in the 
unit diagram by a point whose position vector is r* = rjc. When geometric similarity 
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is preserved the unit diagram is exactly the same for all stages of the deformation. Thus, 
in the unit diagram the curve corresponding to the free boundary must coincide with 
a stream-line. Here a close resemblance between self-similar and steady-state problems 
is apparent [1]. 

Thus, in self-similar problems along a free boundary we have the additional condition 

(3.1) v* · n = 0 

analogous to Eq. (2.1); v* = dr*jdc is the velocity vector of an element image in the unit 
diagram. Since v* is directed towards the point whose position vector is the non-dimensio
nalized velocity vector v = drjdc [1] (see Fig. 2), the condition (3.1) can be written ~own 
in the equivalent form 

(3.2) (v-r*) · n = 0. 

FIG. 2. 

It can be shown [18] that when a segment of a free boundary bounds a rigid and ro
tating region, then Eq. (3.2) is satisfied if and only if this segment has the form of a loga
rithmic spiral. It must obviously be straight when such a rigid region does not rotate. 

FIG. 3. 
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868 H. PETRYK 

Now we will analyse the most difficult case when a stress-free surface bounds a plastically 
deforming region. This will be done in a way similar to that presented in the previous 
section. However, it can already be seen from Eq. (3.2) that in self-similar problems the 
geometry of the hodograph net is directly affected · by the shape of the free boundary, 
contrary to the case of steady-state problems. 

Let us consider the problem in terms of the unit diagram (Fig. 3). Let the plastic region 
ABC be bounded by a concave segment AB of a stress-free boundary and by the slip-lines 
AC and B.C of the angular range() (for simplicity we use the same terminology as in the 
physical plane). The corresponding hodograph diagram abc for non-dimensionalized 
velocities v = drfdc is superimposed on the unit diagram in such a way that the hodograph 
pole and the fixed point 0 coincide. We assume that the configuration of slip-lines and 
their hodograph images is as shown in (Fig. 3); other possibilities can be examined in an 
analogical way. As previously we make the assumption that the functions describing the 
stress and velocity fields in ABC are analytic. 

Let us extend the slip-line field from the ABC-region beyond the free boundary AB 
up to obtaining the curvilinear quadrangle ACBD, and repeat such operation for the 
hodograph net. The geometry of the hodograph. net can be described in terms of para
meters (a, {3), (r, s) and (u, w) defined in Sect. 2; the corresponding equations (2.3), (2.4) 
and (2.5) remain unchanged. The same pair of variables (a, {3) parametrize the slip-line 
field in ACBD as well, and any point Pin ACBD can have the same (a, {3) coordinates 
as its hodograph image p. Denote by R and S the radii of curvature of a- and {3- slip-lines 
respectively, taken with a positive sign. Introduce also the moving coordinates (x, y) 
for points of the slip-line net, related to the Cartesian coordinates (x, y) in the unit diagram 
plane by formulaes analogous to Eq. (2.2). Then, 

(3.3) oSfoa = -R, oRfof3 = s, 
(3.4) oyfoa = -x, oxfof3 = y 
and 

(3.5) R = oxfoa-y, s = -oyioP+x. 
Let us now consider the boundary conditions imposed on the free boundary AB. 

We remind that the shape of AB is not known; if the slip-line AC were known it could 
he determined uniquely with the help of the operator F: AC-+ BC mentioned above. 
Now we will seek for the operators, which relate the shape of the hodograph characteris
tics ac and be and the slip-line AC in such a way that Eq. (3.2) is automatically satisfied. 

Since the pressure along AB is constant, then by Hencky's relations 

(3.6) a = {J along AB. 

Moreover, all slip-lines meet the free boundary at 45°. Thus Rda = Sdf3 along AB and 

(3.7) R(a, a)= S(a., a), 0 ~ a~ 0. 
The condition (3.2) expressed in terms of moving coordinates (x, ji) and (u, w) takes 

the form 

or simply: u-y = w+x along AB. 
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The differentials d(u-y) and d(w+x) after substituting Eqs. (2.4), .(2.5) (3.4) and (3.5) 
take the form 

d(u-y) = (r+w+x)d«+(w+x-S)dp, 

d(w+X) = ( -u+R+y)d«+(s-u+Y)d{J. 

Equating, in virtue of Eq. (3.8), these differentials taken in the direction dct = d{J 
and making use of Eqs. (3.7) and (3.8), we obtain 

(3.9) r = s-4(w+X) along AB 

or, since 

y'2[w(«, «)+x(tt, «)] = Jl'2£u(«, a) -.Y(«, «)] = I.Pil, 

(3.10) r = s-2V2"1JiPI along AB. 

Equating in turn the differentials of both sides of Eq. (3.9) taken in the direction 
dct = d{J, we get after some transformations 

(3.11) 8rfo«+, = osfo{J -s-2(R+S) along AB. 

It can be proved by mathematical induction that the condition (3.2) leads to a more 
general, recurrence relationship 

(3.12) on+ 1r/ octr~+ 1 + o"r/ori' = (}"+1 sfo{Jrt+ 1 - O"sfo{J" -2(o"R/ ori' + o"S/8{1") along AB 
(n = 0, 1,2, ... ). 

Now let us introduce- the vector representations of the base slip-lines and hodograph 
char-acteristics, namely 

From Eq. (3.12) it follows that 

(3.13) r,+ 1 +r, = s,+ 1 -s,-2(R,+S,), n = 0, 1, 2, ... 

and from Eq. (3.10) we obtain 

(3.14) 

where 

(3.15) 

The parameter C plays a similar role as e in steady-state problems and must also be 
taken from the interval (0, 1]. 

Another trecurrence relationship follows from Eq. (3.7), namely [22] 

(3.16) 

(note the formal analogy with Eq. (2.11)) with R0 = S0 • 

Using Eq. (3.16) we can write Eq. (3.13) together with Eq. (3.14) in the matrix form 

(3.17) a3 = Acai -Ba4, 
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where A, is defined by Eq. (2.1S), and 

r 
0 0 0 0 ... 1 
1 0 0 0 .. . 

B = 4 -1 1 0 0 ... . 
1 -1 1 0 .. . 

- . -

(3.18) 

Substituting Eq. (3.17) into Eq. (2.16) and denoting 

(3.19) E8 = R8(P:)- 1 B, 

we finally obtain 

(3.20) cr2 = H 0,a1 -E0a4 • 

The relation (3.20) is equivalent to the condition (3.2) of maintenance of geometric simil
arity of the AB-line, provided Eq. (3.15) is satisfied (compare the similar equivalency 
of Eq. (2.17) with Eq. (2.1)). The operator H occurring in Eq. (3.20) is identical with the 
one for steady-state problems, i.e. is defined by Eq. (2.18). Thus, Eq. (3.20) differs from 
Eq. (2.16) by the second term which expresses the influence of the. shape of the free bound
ary AB on the velocity field in ABC. However, since the operator E is linear and de
pends on the value of (J only, as it is seen from Eq. (3.19), it is possible to use the matrix 
technique for solving self-similar problems with a stress-free boundary as well. 

4. Examples 

In order to illustrate the possibilities of using the free boundary operators, three new 
slip-line field solutions are discussed. All solutions involve a plastically deforming region 
bounded by a stress-free surface of initially unknown shape, all can be determined by 
using the matrix technique and all are non-unique. Only the main features of the solu
tions will be discussed here; for a more detailed analysis see [13, 16, 23]. 

4.1. A solution for the steady-state problem of rollln~ of a rigid cylinder on a plastic half-space 

The slip-line field and corresponding hodograph in Fig. 4 represent the steady stage 
of rolling of a rigid, perfectly rough cylinder on a rigid-perfectly plastic half-space. Accord-

0 

PIG. 4. 
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ing to the incompressibility condition, free surface elements before and after deformation 
are on the same level. The additional portion of the material which forms a "stationary 
wave" in front of the cylinder has been bulged out from the half-space during the initial, 
non-steady stage of the deformation which is not considered here. 

The solution shown in Fig. 4 differs from those proposed by other authors [10, 24, 25] 
mainly on the basis of the stress singularity at B. The region EAD is rigid and rotates 
together with the cylinder with the angular speed w. The velocity discontinuity of the 
magnitude wr occurs across the BFDE-Iine, r being the radius of an isolated slip-line arc 
DE. The plastically deforming region ABC is exactly of the same type as that discussed 
in Sect. 2. Thus the results obtained there may now be directly applied. 

Let us denote the vector representation of the slip-line AC by cr. We can express the 
vector representations of subsequent slip-lines and hodograph characteristics up to the 
ac- and be-lines by a, using the matrix operators P, Q, R, F discussed in (7]. Moreover, 
in order to satisfy the steady state requirements, the ac-Iine transformed by the operat
or H defined by Eq. (2.18) must give the.line b.c as proved in Sect. 2. From this we obtain 
the matrix equation on er, viz. 

(4.1) Ka = rLc, 

where c is the unit circle vector and 

K = MQ:(P,pQ:F11 +QpyQ:)-HocEPafJP«Ih 

L = -MP;, 

M= Ra+p-HocEQtJoc· 

ex, {J and y are the field angles as shown in Fig. 4 and the parameter E has a geometrical 
interpretation according to Eq. (2.13). Three of these parameters are independent since 
one geometrical condition oe = oa* must be satisfied. When er is found form Eq. (4.1), 
all geometrical parameters of the solution as well as the moment and forces acting on the 
cylinder can be conveniently determined by the series method due to EwiNG [22]. 

We may assume arbitrarily the magnitudes of two components of loading (e.g. the 
moment and the vertical component of the pushing force). Since the solution has three 
degrees of freedom, then an infinite number of solutions can be constructed each for 
a different value of the third component of loading. It should be added that for some 
range of parameters the solution is proved to be complete since the statically admissible 
extension of the stress field into rigid regions can be constructed l23]. 

4.2. A solution for the steady-state problem of macbinlng 

The slip-line field and corresponding hodograph in Fig. 5 describe the steady plane 
flow of material cut by a rigid wedge-shaped tool. The shear stress r along the tool rake 
face FH is assumed to be constant. Thus the slip-line field in FGH is generated by the 
straight rough boundary operator G discussed in [7]. The ARC-region is of the same type 
as that discussed in Sect. 2. It can be shown that for the slip-line field to statisfy the stress 
and velocity boundary conditions (including ~hese at the free boundary AB), the vector 
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b 

Pio. S. 

representations a1 and a2 defining the shape of the HG- and AC-lines must satisfy the 
matrix equations 

(4.2) 

(4.3) 

(GAaQpa.QapGN£-l)at = rGAaPapc, 

(H,E -Q4,Q')'f7F,)a2 :: rP yc7c, 

where I is the unit matrix and r is the radius of the isolated slip-line arcED. 
By solving Eqs. ( 4.2) and ( 4.3) we find a 1 and a 2 , after which the geometry of the whole 

solution can be shown to be uniquely defined. The field has six degrees of freedom defined 
by five field angles ex, p, y, ~' l as shown in Fig. 5 and the parameter E. Five conditions 
only exist to determine the values of these six parameters, namely three conditions of 
equilibrium of the chip and two conditions resulting from the assumed values of the rake 
angle 'P and of the shear stress T along HF. This indicates that for given values of 'P and T 

an infinite family of solutions may exist. However, numerical analysis suggests [13] that 
this might be the case only if a chip were not force-free, since the resultant moment and 
force acting across ACDEGH did not simultaneously vanish for a remarkably wide range 
of the parameters examined(4

). 

In spite of this, the solution of the type shown in Fig. 5 presents a good example of 
the use of the operator H and confirms that such solutions may be non-unique. 

4.3. A solution for the self-slmllar problem of cutting 

The solution presented in Fig. 6 is of a similar type as that given in Fig. 5 but it repre
sents now the process of indentation of a wedge-shaped tool- into a plastic half-space 
at some small angle 0. The problem is self-similar; the unit diagram with a superimposed 
hodograph is shown in the figure. The plastic region A-BC is of the same type as that 
considered in Sect. 3. 

e> Dewhurst [14] considered the solution which is a special case of that given in Fig. 5 when~ = 0 
and did not find a solution which satisfied all conditions of equilibrium of the chip, either. 
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FIG. 6. 

Unit diagram 

Two main differences arise when the solution from Fig. 5 is compared with the present 
one. Firstly, the free boundaries of the (rigid and rotating) chip have now the form of logar
it-hmic spirals instead of circular arcs. Secondly, the vector representation ·or the AC-line 
according to Eq. (3.20) must now satisfy, instead of Eq._ (4.3), the following equation: 

(4.4) (H,,-Q,,Q,,F,- ~ E,)a2 = rP>'c, 

where w = OF/01 S is the non-dimensional parameter proportional to the angular speed 
of a chip. 

The parameter w represents now an additional degree of freedom. Therefore, we·have 7 
degrees of freedom instead of 6 as in the previous case. Also we now have 6 conditions 
(instead of 5 in the previous case) since, additionally, .0 must have the assumed value. 
Thus the comments concerning the non-uniqueness of the analogous solution of the 
steady-state problem remain valid when the problem becomes self-similar. Unfortunately, 
it is also doubtful whether the solution presented in Fig. 6 can satisfy the condition of to
tal equilibrium of a chip. 
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