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A velocity potential panel method for the prediction of unsteady 
airloads on oscillating wings and bodies(*) 

W. GEISSLER (GOTIINGEN) 

A METI{OD is presented to calculate unsteady airloads on oscillating three-dimensional wings 
and bodies in subsonic flow. This method is based on the velocity potential using distribu
tions of harmonically pulsating doublets in the case of wings, and harmonically pulsating 
sources and sinks in the case of bodies. On account of a panel type method, the oscillating 
surfaces are divided into small surface elements, -panels-, each with a constant yet unknown 
singularity distribution. The unknown singularity strengths are calculated using the solution 
of a large system of linear equations. The method is applied to a variety of geometrical con
figurations and fiow conditions. The results are compared with other methods as well as with 
experimental results. 

Przedstawiono metod~ obliczania nieustalonych sil parcia powietrza dzialaj~cych na drgaj~ce 
tr6jwymiarowe platy i kadluby przy pr~o5ciach poddiwi~kowych. Metoda opiera si~ na 
potencjale pr~o8ci przy wykorzystaniu harmonicm.ie pulsuj~cych dipoli w przypadku plat6w 
oraz harmonicm.ie pulsuj~cych ir6del i upust6w w przypadku kadlub6w. W przyj~tej koncepcji 
drgaj~ce powierzchnie podzielone s~ na male elementy powierzchniowe, tzw. panele, z kt6rych 
ka.Zdy scharakteryzowany jest przez pewien niem.any rozklad osobliwoSci; ich intensywno5ci 
obliczone s~ z rozwi~ia du.Zego ukladu r6wnan liniowych. Opisana metoda zastosowana 
jest do szeregu konfiguracji geometrycm.ych oraz warunk6w przeplywu. Wyniki por6wnane 
s~ z rezultatami otrzymanymi za pomQal innych metod oraz z danymi doswiadczalnymi. 

llpe~CTaBJieH MeTO~ paClleTa CTaiUfOHapHhiX a3pO,znmaMHlleCKHX Ha.I'PY30K H3 TpeXMepHble, 
COBepiWUOIIU~e KOJie6aBWI Iq1biJieH H $I03e.JIIDKeH. Me-ro~ OCHOBllH Ha noTe~anax CKO
poCTH C HCDOm.30BaHHeM pacnpe~eJieHHH rapMOHIAecKHX fiYJILC:QPYIOmH'X nap (B Cnytme 
KPbiJieB) H rapMOHU'IeCKH . nyJILCiq)yiDII.UlX RCTOliHHKOB H CTOKOB (B CJIYllae cl>I03e.JIIDKeA). 
Mcnom.ayeTCH MeTO~ ,,mmem.uoro'' THna, OC:QHJIJUIPYIOIIUie nosepXHoCTH pas~eJIHIOTCH ua 
MllJibie IlOBepXHOCTHble 3JieMeHTbi ,naueJIH", K~ C IlOCTO.IIHIIhiM, IlOKa HCHSBecTHDIM pa
cnpe~eJieHKeM oco6eHHOCTeA. HeusseCTHhle aMIIJIHTYAI>I oco6eHHocreil paCliHThiB8lOTCH n}'TeM 
pemeHHR 6om.moil CHCTeMbi mtHeHH:biX ypasueHKA. Me-ro~ npHMeHHeTCH wm paaJIHtmbiX 
reoMe-rpHlleCKKX Koucl>urypaiUUt H ycnosd TelleHIDI. Pesym.TaThi conOCTa.BJIHIOTCH c no.ny
lleHHhiMH C IlOMO~IO ~yrHX MeTO.ll;OB, a TaK>I<e C 3KCDepHMeHTaJILHbiMll ~IMH. 

Nomenclature 

x, y, z Cartesian coordinates (Fig. 1), 
x, r, tp polar coordinates (Fig. 4), 

/ 0 , L reference length (Fig. 2, Fig. 4), 
/(y) local lift chord, 

s wing half span (Fig, 2), 
F wing surface, 
A aspect ratio, A = 4s2 IF, 
x... location of pitching axis, 

r distance between sending point and control point, 
time, 

(*) Paper presented at the XIII Biennial Fluid Dynamics Symposium, Poland, September 5-10,1977. 
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1. latroduetion 

(I) frequency. 
~ displacement of surface point, 

U «~ mainflow velocity, 
or. steady mean incidence (Fig. 4), 

Ma«~ Mach number, Macn = Utr~fa«~• 
(I; transformed velocity potential, 

.d(l; potential difference bet~een wiq upper and lower surface, 

w .. am.ua 

Lie, unsteady pressure difference betwee.n win& lower and upper surface, Ac, = 
= Ac;+iL1c~. 

Cpl unsteady preiSure On body surface, Cpt = c;, + 1c;1, 
e density, 
C oscillation amplitude, 

dAftly 
c. local unsteady lift coefficient c.= c;+ic~' = ----

~ U!l(y)C' 

c. local unsteady pitching moment coefficient 
dM/dy 

c.= c~+ic:.: = ----
i U!,l(y)2C 

FoR. THB CALCULATION of unsteady airloads on oscillating lifting surfaces a variety of 
methods have been developed dw:ing recent years which are known as the kemel function 
methods [1, 2] or the doublet lattice methods [3]. Both con<:epts are based on the accelera
tion potential or pressure function with the obvious advantage that a wake, where no 
pressure jumps exist, has not to be taken into consideration. 

In ·the following a velocity potential concept is used in connection with a panel type 
method which was first described by JoNBS and MooRB [4] and. which has bee~ conse
quently developed to handle more complicated three-dimensional ftow problems on 
oscillating wings and bodies [5, 6]. The advantage in applying a velocity potential concept 
is that the a.erodylia.mic influence functions are rather simple and can even be handled 
analytically in the case of incompressible flows. The method can be u8ed for simple plan
forms as well as for arbitrary thick and cambered wings and last, but not least, also for 
bodies. The additional semi-infinite wake integrals can also be expressed by a sum over 
discrete wake strips. The soluti6n of these integrals is not simple but can be carried out 
numerically in a sufficient way. 

2. Govemiog eqoatioas, aumerical solation procedlll'e 

11. la8alte tlda wiDgs 

Using Green's theorem for the linearized subsonic unsteady potential equation and 
taking into account only harmonic time dependency, the potential equation can be trans
formed in the usual way into an integral equation for the unbown · velocity potential: 
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o.P JJ · 0" (. e-••) (2.1) 4n az = A.P az2 -,- dXdY 
. F 

with A(]> as the complex potential jump on the thin lifting surface and r as the distance 
between the control point and the integration point on the wing. The first term in Eq. (2.1) · 
expresses the infiuence of a doublet distribution on the wing surface F. The second term 
is the infiuence of the wake W a where the doublet strengths of the wake are related to 
the doublet strength at the wings' trailing edge by applying the Kutta condition. 

Assuming the oscillation of the wing to be known, the downwash 6n the wings' sur
face can be given as 

(2.2) w = - ( aq,) = __!_ (c'iw*+ cC' )e-i<lX+w•n az p ax 
with the displacement of an arbitrary surface point 

and 

w·lo w* =--, u«> 
as the reduced frequency. 

C = C'(X, Y)e1~r 

X= with w* 

The coordinates in Eq. (2.2) and the timet are made dimensionless in the usual way by 

with 

X= x/10 ; Y = Y • P/lo; Z = z · Pflo; T = t · Uoo/lo 
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y 
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FIG. l. Coordinate system, panel distribution for wing configuration. 
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The problem which has to be solved now is to find the doublet strengths of an arbitrary 
doublet distribution on the wing and wake surfaces, respectively, in such a way that the 
normal velocities induced by all doublets are equal but opposite in sign to the prescribed 
downwash velocity of the wing (kinematic boundary condition). 

To solve this integral equation a panel type concept is used (Fig. 1) ~plitting up the 
planform of the wing into a number of small surface panels. Here, the outer edges of 
the wing surface as well as control surfaces etc. are taken into account as panel side 
edges. The wake behind the wing is represented by a corresponding number of small 
wake strips (Fig. 1). On each wing surface panel the potential difference LJ(]) is assumed 
to be constant. The geometrical midpoint of the panel is taken as the control point where 
the kinematic bopndary condition has to be fulfilled: 

With this discretization procedure the integral equation can be rearranged in a linear 
system of equations: 

2J ff ;)2 ( e-ixr) + j(/> . e-ir(X-Xrq) __ --- dXdY = W t4 az2 r 
q=l Waq 

with I- number of panels in chordwise direction and J- number of panels and wake 
strips in spanwise direction. The double integrals in Eq. (2.3), the aerodynamic ihfluence 
functions, must be treated in such a way that they are easy to solve by numerical means. 
In [5] it is shown that the surface integrals in Eq. (2.3) can be reduced to line integrals 
around the side edges of the panel. Evaluation of the term e-iKr in series leads to simple 
analytical expressions. It is sufficient to distinguish between a nearfi.eld and a farfi.eld 
solution of the integrals with respect to the distance of the control point from the panel 
under consideration. The corresponding formulae are given in [5]. Special care must be 
exercised in the evaluation of the wake integrals (the second term in Eq. (2.3)). The in
tegration in spanwise direction of the wake strip can be carried out analytically. But 
a semi-infinite integral in streamwise direction is left. This integral is transformed into 
an integral with finite boundaries and then treated in a similar manner as the wing in
fluence functions. 

After the solution of the linear system of Eq. (2.3), the pressure jump on the wing 
surface can be calculated by applying the Bemoulli theorem: 

(2.4) A L1p 2 [·.Am (}j(/>] iAX A I •A , ., 
LJC11 = = lVLJ'¥+ L1X e = LJC,+lLJc,. 

_g_ U 2 C 2 CX) 

The pressure coefficient is also a complex number expressed by real (.de~) and imaginary 
(L1c~') parts. In Eq. (2.4) C is the oscillation amplitude. 
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2.2. Bodies 

For the case of bodies with arbitrary thickness only the incompressible case has been 
treated until now. In this case a source-sink distribution is used on the real body surface. 
The geometric boundary condition is not lineari~ed in the body case. A static mean angle 
of attack can be taken into account. On account of the nonlinearized geometric bound
ary condition, the solution procedure is not automatically divided into a steady and an 
unsteady solution as is the case for thin wings. Now the unsteady solution builds up on 
the steady one and therefore the latter must also be known. 

On the other hand the calculation process is similar to that of the thin wing case. 
The body surface is split up into a number of small panels each represented by a constant 
yet unknown source or sink distribution of harmonically pulsating strength. The calcula
tion of the prescribed normal velocities on the body surface representing the known right 
hand side of the linear system of equations is now exact. 

In [6] it is shown that the pressure distributions on the body surface can be calculated 
as steady, first and even higher harmonic parts. 

3. Results for oscillating three-dimensional wings in subsonic ftow 

Figure 2 shows the results for an oscillating rectangular wing of aspect ratio A = 2 
with pitching oscillations about the midchord axis. The pressure distributions are given 
in a section close to the wing symmetry plane and are compared to the corresponding 
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FIG. 2. Rectangular wing (A= 2) with pitching oscillations. Unsteady chordwise pressure distributions. 

results given in (1]. For all Mach numbers the differences between the two methods are 
small. A similar behaviour can be observed for the spanwise pressure distributions. 

Figure 3 gives local unsteady lift and pitching moment coefficients for a swept wing 
of aspect ratio A = 2 for Mach number Maoo = 0.8. The results of the present method 
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Fio. 3. Swept wins (A = 2) with pitchiq oscillations. Unsteady lift and moment distributions. 

are again compared to the results of the kernel function method. The differences between 
the two methods which are based on quite different theoretical concepts are again suf~ 
ficiently small. 

4. Results for osciDatiDg bodies iDcladbag the ground etreet 

Figure 4 shows the coordinate system and panel arrangement. The b~y is allowed 
to make pitching or plunging oscillations. A static mean angle of attack ( «.) can be taken 
into account. Representing the ground, the mirror concept is used assuming a second 
body in double ground distance 2ys. 

In Fig. S · the case without ground (ys -+ oo) is investigated first. The bodies' cross
section in this case is a spheroid of axis ratio 5 with a cylindrical afterbody. This more 
complicated cross-section can easily be represented by using a panel . method. Figure 5 
gives unsteady pressure distributions (real and imaginary parts) for the body undergoing 
plunging oscillations. The theoretical results _are compared with experimental data obtained 
in the low speed wind tunnel of the DFVLR-A VA in Gottingen (7]. These measurements 
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were part of a wing-store investigation where some few test cases have been carried out 
with the store alone. 

The results are given at three different circumferential positions. The differences be
tween calculated and measured results are remarkably small. 
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602 W.GEISSLER 

Figure 6 gives results for a body (spheroid of axis ratio 5) with and without ground 
effect. The body makes pitching oscillations about the midchord axis (Fig. 6). The upper 
diagram of Fig. 6 gives steady results for two different circumferential positions in the 
ground case (Ys = 0.15) compared to results without ground (Ys = oo ). The latter results 
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y-4~ 
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-1,0 
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FIG. 6. Spheroid with pitching oscillations. Steady and unsteady pressure distributions including the 
ground effect. 

are of course unchanged for different circumferential positions q;. In both q;-positions 
the pressure minimum is increased compared to the case without ground. The lower 
diagrams in Fig. 6 show unsteady pressure distributions at the same q.>-positions again 
compared with the case without ground. There are considerable interference effects of 
the ground for this mode of oscillation. 

In a similar manner a variety of other oscillation modes can be investiga~ due to 
the fact that these modes only influence . the right hand side of the corresponding linear 
system of equations, whereas the aerodynamic influence functions as well as the static 
conditions remain unchanged in all unsteady cases. 

S. Conclamion 

A numerical method has been presented to calculate unsteady airloads on oscillating 
three-dimensional wings and bodies in subsonic flow. The velocity potential concept is 
used in contrast to the existing methods based on the acceleration potential or pressure 
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function. This has the advantage of relatively simple aerodynamic influence functions 
and the possibility to extend the method to arbitrary body geometries. In the nonlinear
ized case of a finite thick body, the exact geometrical boundary condition is taken into 
account. The results are steady, first and even higher harmonic pressure distributions. 

Some typical results for the mean surface case of three-dimensional wings are given 
and compared with the kernel function method for the whole subsonic flow regime. 

Steady and unsteady results for oscillating bodies are given with and without ground 
effect. It is thought to extend the body case also to compressible subsonic flows. 
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