
Archives of Mechauics • Ardliwum Mecbaniki Stosowauej • ll, S, pp. ~23-647, Wanzawa l~ 

On constitutive equations and numerical solution 
of the multidimensional problems of the dynamics of nonisothermic 
elastic-plastic media with finite deformations 

V. I. KONDAUROV and V. N. KUKUDJANOV (MOSCOW) 

A SIMPLE model of nonisothermal elastic-plastic media subject to finite deformations is de­
scribed. This model is built on the basis of the laws of thermodynamics and the principle of 
minimum of irreversible forces. It is shown that the plasticity condition enables us to define 
the dissipation function and to obtain the constitutive equations. The results of numerical 
calculations of certain axi-symmetrical two-dimensional problems are given. 

Opisano prosty model nieizotermicznego o8rodka sprc;zysto-plastycznego poddanego skonczo­
nym odksztalceniom. · Model ten zbudowany jest na podstawie praw termodynamiki oraz na 
zasadzie minimum nieodwracalnych sil. Pokazano, Ze warunek plastyczno8ci pozwala zdefi­
niowac funkcj~ dysypacji i wyprowadzic r6wnania konstytutywne. Podano wyniki obliczen 
numerycznych dotyCUlce kilku osiowo-symetrycznych zagadnien dwuwymiarowych. 

0IIHcaHa npoCTaH: Mo~em. HeH3oTepMHt~eCKoii ynpyro-rmaC'l'H'IeCKOH cpe.z:u,I no~epmyroii 
:KOHetmbiM ~ecl>opM~. 3Ta MO~eJIL liOCTpOeHa Ha OCHOBe 3a:KOHOB TepM0~8MH:KH H Ha 
np~e MHHHMyMa Heo6paTHMhiX CHJI, llOH83aHO, liTO YCJIOBHe WiaC'l'H'IHOCTH ll03BOJIHeT 
onpe~eJIHT& cl>yma:uuo J:UtCCIUI~ H BbiBeCTH onpe~emnoiiUle ypaBHeHHH. flpHBe~eHhl 
peaym.TaTbi liHCJieiDibiX paCtleTOB, :KacaiOIIUIXCH HeCKOJILIGlX OceCHMMeTp.HtleC:KHX ~yMep­
HbiX ~a1.1. 

lntrocluction 

IN A SERIES of recent works attempts have been made to obtain equations which would 
reflect the main features of the behaviour of elastic-plastic bodies under the conditions 
of a dynamic load at finite deformations and would be fit to use in specific calculations 
[1-7]. 

A detailed survey of the papers devoted to the numerical solution of the dynamic 
equations of the elastic-plastic media is given in the paper of the authors [7]. 

In the present work, a simple enough and convenient for practical applications model 
of a nonisothermic elastic-plastic medium at finite deformations is given. This model is 
built on the basis of the laws of thermodynamics and the quasi-thermodynamic principle 
of the minimal irreversible forces. The formulation of the principle in terms of the problem 
on the conditional extremum for the rate of dissipation at some restrictions is given. It 
is shown that setting the plasticity condition permits to define the function of dissipation 
and to obtain the constructive equations of the medium. At small isotherm.ic deformations 
the equations produced coincide with the classical equations of Prandtl-Reiss. 

A complete system of equations of the considered medium noted in the current La­
grangian and Euler frames of reference is given. The hyperbolicity of the system is proved 
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and the expressions for the rates of propagation of weak disturbances are obtained. We 
propose to reduce the system of differential equations to a special canonic form contain­
ing the derivatives only in the direction of the hi-characteristics. 

The notation of the equations in such a form proves to be very convenient for the 
construction of the stable characteristic finite-difference schemes. 

The results of the numerical calculations of some two-dimensional axi-symmetrical 
problems are given. Some interesting peculiarities in the solution are noted. 

1. KiDematics of elastic-plastie deformations 

We shall consider the nonsteady :flows of the nonstrengthening elastic-plastic bodies, 
the material of which is assumed to be homogeneous, isotropic and the deformations 
are considered to be finite. To describe the behaviour of the material medium we shall 
use, as this is done in the papers of [8], the following frames of reference: 

1) a current Lagrangian system E1E2E3 with a mobile basis 3, = ;, , where r is the 

radius-vector of the material particle; 
2) the· initial Lagrangian system E1E2E3 with an immovable basis 31 which, in the 

general case, is not the basis coinciding with 3, in the moment of time t = 0 but is often 
chosen owing to other considerations. For example, when using Lagrangian methods of 
numerical calculation, it is convenient to choose the basis 3, so that the body occupies 
a si:ffiple region with a regular calculating net in · the space E"; 

3) the Euler frame of reference x1x2x3 with a fixed basis s1• In the Euler system the 
coordinates of particles are variable and are defined by the law of motion 

x" = x"(E', t), i, k = 1, 2, 3, t ~ o. 

Let V = ( ~) = Vt 31 = v,31 be the velocity vector of the fixed particle, t1 = 
ut l'- coast 

= a,Ja1:tl = o,J3'3J- the Euler stress tensor, g = gl}a':tl = KtJ3'3l- the metric tensor, 
e - the material density, V 1:- the eo-variant derivative over the spatial coordinate 
x", dfdt- the complete derivative over the time. Everywhere, if not specially mentioned, 
the repeated indices mean summing up along them. As in the paper of [8] we denote the 
values referring, accordingly, to the initial and current states by the symbols e> and (). 

For ·the purpose of describing the kinematic characteristics of an elastic-plastic rigid 
body, we shall use the approach based on the transformation of the basic vectors ·ac­
companying the process of deformation. 

Let the transformation of the eo-variant basic vectors 3; of the initial Lagrangian 
system into the basis 3, of the current frame of reference be realized by the matrix F(E', t), 

(1.1) 

To deScribe the kinematics of the finite defo~tions we shall use the function of the 
matrix F which would be the measure of deformation: 

1 (F/ FT 0) 1 (" 0 ) 2 g -g tJ = 2 g,J-Kii , 
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where g 11 is the matrix of the metric tensor components of the initial Lagrangian system 
of reference. In the basis 3' the whole complex of components obtained will then represent 
the Almansi tensor of finite deformations. Apart from the tensor of full strains we shall 
introduce the tensors of elastic and plastic deformations. To describe the two latter tensors 
besides the initial and the current systems we shall use the Lagrangian frame of reference 
corresponding to the unloaded state. Let us denote the basis of this frame of reference 
as a;, and the metric tensor as g = g,p1~. The asterisk over the values will henceforth 
denote the unloaded · state. 

In a number of contemporary works on the theory of plasticity the description of the 
e Iastic-plastic media is based on splitting the matrix F up into the product of matrices 
E and P: 

(1.2) F=EP. 

The matrices P and E may be interpreted as those of the transformation of the basic 
vectors 31 into 31 and :1 into 3m, correspondingly. Using these vectors it is easy to express 
the matrix of the tensor e components. Taking the relation (1.2) into account, we have 

" 1 ( o T T p o T p o T o) 1 (." • ) 1 e g e11 = T EPgP E - gP + gP -g IJ = T KtJ-Ku +T(g,J-sf})· 

From this one can see that it is possible to introduce the tensor of the finite elastic de­
formation 

(1.3) (e) " (e)"l~ I 1 (" • )"I~ I e =e u3 a" = 2 K;i-KtJ 3 a" 

and the tensor of the finite plastic deformation 

(1.4) 

For the tensors (1.3)-(1.4) the following tensor equality is valid 

e = e<e>+e<">. 

This equality is carried out for components with any structure of the indices in the space 
of the metric tensor g. 

We ·shall also note that the tensors of the elastic and plastic deformations introduced 
by the formulae (1.3)-(1.4) are independent of the arbitrary orthogonal transformations 
of the unloaded state. 

Now we shall define the velocity tensors of elastic, plastic and full deformations in 
the following way: 

(1.5) 

3 Arch. Mech. Stos. nr 5(19 
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For the velocity tensprs of deformation (1.5) the following property .holds: 

(1.6) 

which is essentially used further for constructing the model of finitely deformed elastic­
plastic bodies. 

2. Some thermodynamic relations 

Let us assume the state of the particle Ek to be fully determined if, for this particle, 
we know the spatial position x1(E1

, t), the stress tensor a,b the tensor of the elastic de­
formation eu>, the absolute temperature 8, the specific (per unit mass) inner energy U 
(or some other thermodynamic potential), the specific entropy 1J and the density of the 
medium f!· We shall ignore the mass forces, the thermal conduction of the material, and 
the mass sources of heat. 

For the above values we must observe the local laws of mass conservations: 

(2.1) 

momentum: 

(2.2) 

energy: 

(2.3) 

av' ,. ,. 
n- = v,a 1 
t:' at ' 

au ,.,r e--at = a e,j 

and the second law of thermodynamics or the postulate of the positiveness of the en­
tropy. Note this in the form of the Clausius-:Ouhem inequality: 

(2.4) 

We shall consider the set of values efj>, 8 as independent parameters of state. We shall 
assume the free energy F = U- 81J to be a smooth enough function of the independent 
variables of state. 

Using the law of the conservation of energy the inequality (2.4) may be written in 
the following form: 

• 8. 1 "'r -F-1] +-a e11 ;J!: 0 
e 

whence it follows 

(2.5) [ 1 ,.11 aF] "<e> ( aF) · 1 "tJ"< > -a - -,.- e11 - 11+- 8+- a e11P ;J!: 0. e aeij> a8 e 
The inequality (2.5) leads to the following relations: 

(2.6) 
,.,

1 
aF 

(1 = e a"<e> e,i 
aF 

rJ=- ao· 
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Taking Eq. (2.6) into account, the aausius-Duhem inequality changes to the so-called 
inequality of the internal dissipation: 

(2.7) 

The further concrete definition of the model discussed is based on the fact that we 
shall restrict our consideralions to the isotropic homogeneous medium, the free energy 
of which may be represented in the form 

(2.8) F = F(I&, 8), k = 1, 2, 3, 

where If are the invariants of the elastic deformation tensor. 
Note further that the deviator components of the tensor of elastic deformations are 

the values of the order of the ratio of the yield strength to the elasticity modulus. This 
ratio for most of the metals equals 10-2-10- 3 and the square of it may be ignored as 
compared to unity. 

Let us also introduce the assumption of the plastic incompressibility of the material 
in the form of 

(2.9) * 0 
(!=(! 

or 

(2.10) e = e(1-2]f+412-813)1
'
2

• 

After introducing these assumptions, the relations (2.6) may be written in the form 

(2.11) C!ii = At(JL 8)1fg;j+2!'t(8~W-«t(8)0gii 

which is a thermo-elastic relation that takes into account the finality of the volume and 
plastic deformations of the material with the elastic characteristics independent of the 
preceding plastic deformations. 

In Eq. (2.11) we supposed that !f has not to infiuence the connection of the tensor 
stress deviator with the elastic deformation deviator. The functions !'1(0) and «1 (0) may 
be defined on the basis of the experimental relations of the shift modulus and of the 
coefficient of the linear dilatation with temperature. The function A1 (If, 0) is restored 
according to the relation p = p(e, 8) known for many substances [11]. 

Further, we shall need the relation (2.11) in the differential form. We shall use the 
matrix aC!iifot as a characteristic of the velocity of the stress tensor change. From Eq. 
{2.11) and wi~ the above accepted assumptions, it follows that 

(2.12) 

where 

je- olf 
1 

- at ' 
1 1· 1e oA1 
11.2 = 11.1 + 1 a I(, 

n o«t le o(At + 2/3!'1) 
#2 = #1 + ).1Jf- C%1 0' IX2 = IX1 +v --aB- 1 o0 

and the last term may be neglected if O(o!'1 fo0) is the value of the order of the yield 
strength. · 

3• 



628 V. I .. KONDAtmOV AND . v. N. ICUCJmANOV 

2.1. Plude domaiD 

Let us note the assumption of the plastic incompressibility of the material (2.9) in 
the differential ·form. Differentiate the equality det P = 1 equivalent to Eq. (2.9) and 
obtain 

(2.13) 

From the formula of the non-singular matrix we have 

! det A= det A· tr(AA- 1
). 

From Eq. (2.13) it follows that tr e<'> determined by the relation 

1 . .,. . . 
tr e<~> = T tr(PgPT + PgPr) 

turns to zet:o· in ·the unloaded space 3,. 
Using the components of the velocity of the plastic deformation ef1> we can write 

down Eq. (2.13) in the form 

(2.14) J•Jsw> = o 
and express the tensor dli using the stress tensor a1i. Really, bearing in mind Eqs. (1.3)-­
(1.5) we may note 

d"IJ8"<P> = _!_ d" li(P• «• pll•.;, + pa.• pll• go ) = .d" lip«• &. pll • p -1 ,.. p' 7• = 0 
I} 2 • •I •JO«/l •I •} «/1 •fo«/l • M •1'. •} • 

If we define Jll so that the equality 

d'1P~iKOI{J P~i = d'1iu, = ~ 
is valid; then, taking (2.13) into account, this equality may be reduced to the form 

"tj " A . ) M d (g11 -2e,J(l-2f3If) = ut 

as 

P~;P~itoc{J = i," = i,"-2e~:> = (1-2/3If>i~"-2e"', 
where e 11 is the deviator of the elastic deformations. 

Convoluting this equality with { K'"' + (I ~~~~f)) and eliminating the terms of the 

order of O(EocfJe«tJ), we get 
"ij 

(2.15) J~ = g_'~- ~"'' p = 1'1(1-2/3/f). 

Let us consider now the thermodynamic inequality of dissipation (2.7). On the basis of 
Eq. (2.14), Eq. (2. 7) may be written as 

(2.16) D = (ail- Pd'1) eff> = fll e~> ~ 0. 

Since Eq. (2.16) is valid for .any eff>, it follows that g'i is the function of eij'> and, perhaps, 
of some other parameters of the state, i.e. 

(2.17) 



Since the constitutive equations of the elastic-plastic medium should not depend -on the 
scale of time, "'1 are the homogeneous functions ·of the zero power and, therefore, the 
six values of q11 are the functions of the five independent variables, for example, ~f1fef 1 • 

Hence it follows that there exist some constraints for qii, that is, there exists the loading 
surface for which, in the process of the active loading. 

(2.18) f(qii, 8) = 0, df= 0 at D > 0. 

At stresses satisfying the condition f = 0, df = 0, D = 0 a neutral loading takes place, 
and at f ~ 0 and df < 0 an elastic unloading occurs. 

The construction of the 'general' 'theory of plasticity is possible when the single re­
quirement to meet the condition (2.16) is imposed on the functions " 1i. 

Nevertheless, it is worthwhile to limit and determine the form of the functions "'J 
basing on the quasi-thermodynamic principle of the maximum of the dissipation velocity 
which, though it does not result from the laws of thermodynamics, seems rather well­
grounded and is widely used in constructing the rheological models of the media [13-14). 

We shall give ·the following formulation of this principle: 
For a given qiJ satisfying the condition (2.18) among any possible e[J>, satisfying the 

condition 

D(eff>) = £,/ill 
(when D is some function · of £1f>), there exists the unique value efJ>, which gives the max­
imum value to the rate of dissipation 

i.e. 

max"qiJ';(P) _ · q" ij-:(p) 
"'lj - "'I} • 

Formulating this principle as the problem of finding the conditional extremum, let 
us compile the expression 

Do = q'.l£if>+ «[D(eff>)-q.'1ef)>J, 
where « is the Lagrangian factor. From the condition aD0 jaeff> = 0 we find £~>: 

(2.19) ,.... aD(s~J I 
q'J. = tX !:~-({') "'(P) - "(P) • 

cJBIJ s.,. - ErnJI 

Convoluting with £(1 we get the equation for defining ex~ 

(2.20) 

Since the left hand side of Eq. (2.20) is a homogeneous function of the first order, 
then D(eff>) is also of the same kind and, consequently, ex = 1. 

Now .let us turn to the restrictions on the function D(eff>). 
From the condition of the existence and similarity of ef1 for ·any given qii satisfying 

Eq. (2.18), it foUows that the surfaces D(eff>) = const ate closed and convex. From Eq. 
(2.20) it also follows that D(eff>) ~ 0. 
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Finally, the condition (2.18) also imposes an essential restriction on the form of the 
function D. Let us consider the case when Eq. (2.18) has the form 

(2.21) q'1q,J = 2k2 (0) 

representing the assumption that the intensity of the generalized stresses is constant. The 
conditions (2.21) and (2.19) impose restrictions on the form of the function D: 

(2.22) oD oD tm .,. k2 
~"&> a"<P>g 'K1 = 2 (O). 
uStJ Bm, 

Let us assume that D is the isotropic function 8f.f> and depends on the first two invariants 

X _ :<P>g"iJ y _ ~(P):(P)g"img"Jn 
- r;;,IJ ' - <:-fJ <:-mn • 

Equation (2.22) may then be written 

3 (aD )
2 

4 aD aD 4 (aD )
2 

2k2 
ax + x ax ay + 1 ay = · 

Making use of the fact that D is a homogeneous first order function with respect to efJ~, 
let us represent D in the form 

where tP is a ho~ogeneous function of a zero order with respect to e~J>. Introducing the 
notation ~ = xffJY, we shall get an equation for tP: 

(2.23) ' (1- ~2) t/)'2 + tiJ2- 2k2 = 0 

the solution of which is 

(2.24) 

where a is an arbitrary parameter depending on 8. 
Apart from Eq. (2.24), Eq. (2.23) has still another solution which is the envelope 

of the family (2.24). Excluding ~ from Eq. (2.24) and from Eq. (2.23) we shall come to 
the solution 

(2.25) t/) = kJff. 

Using the condition of the plastic incompressibility (2.14) and neglecting the values 
of the order of (kfpJ2 , as compared to unity, it is easy to show that for the case of Eq. 
(2.24) the dissipation function is 

D - kl/2 "(A;)"i/ - / T e,i g . 

To make sure, one should convolute the equation q11 = oDfoefJ> with g11 and d,1, whence 
we find that a = 0. The function D = kJI 2f3efJ>g1i does not satisfy the condition of the 
existence of the maximum velocity dissipation at arbitrary q1i and will not be discussed. 

There remains the dissipation function corresponding to Eq. (2.25) which has the 
form 

(2.26) 
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The relatiOns (2.16) give 

" " p 2k
2 

"( ) (2.27) q,J = ail+ diJ. = 'n e,J . 

Convoluting Eq. (2.24) with di1 and taking into account that dtls!J> = 0, we shall obtain 

p = -&ii'JI}JJ""'d",. = -p-(p-p)s'ls,1f3p2 

to the precision of the terms o(k2 fp. 2
). 

Thus the condition of plasticity (2.18) and the law of the plastic flow has the form 

(2.28) 

where 

f - "IJ" - 2k2((J) - 0 
- S Stj (l-y)l- , 

1p = 0 when f < 0 or f = 0, 
a1 a1 

df ;= aq•• dq,.,. + ao d(J < 0, 

D 
'P = 

2
k2 > 0 when /= 0, df= 0. 

To formulate the complete system of equations, it is convenient to express the func­
tion 1p by means of the stresses and the velocity of the complete deformation. Evidently, 
for 'P we have 

S. "({') A "(e) d "(e) 1 A 1 /e" th mce e11 A = e,1 - e11 an e11 = -
2
- sli+ -

3 
1KtJ en 

l-'1 . 

"IJ"(ll> _ (l )"'J aefi> 1-, ,..,1 a'S,1 2 1e~r q Btj - -y s at= 2pl s -at+ T 1~ Btj• 

Using this relation, the formulae (2.12), differentiating the condition of plasticity 
(2.18) over time, ·and taking into account the relation (2.28), after simple enough but 
bulky calculations we obtain 

(2.29) "'= -1-{(1- ~-n)qu£ij-~ (mO+nin- 1 i!i"1s,J}, 
2k2 3 P.i (1-y)pl 

where 

al-'1 
k' a.,p.1 +p ao 

m= (1-y)-k - (1 ) ' -y P.P.l 
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To describe the changes of the temperature field we shall use the equation for the 
production of the entropy which, in the case where there is no heat conduction, has 
the form 

8 Of} - 1 Afj"({l) ---q BIJ• ot e 

Recollecting the earlier obtained relation '1J = - oF/ o8 and designating Ce = 8 ~~ = 

8 o2 F th h . . . -~ £' • = - 882 as e eat capacity at constant stra.m, (Uter some trans1ormattons we get 

(2.30) 

where 

61 = .!!_ OfJt 
08' 

"' The value of ir entering Eqs. (2.12) and (2.29) can easily be expressed in terms of 
the first invariant ef. In fact, with the assumptions made· 

(2.31) it= (dlf/Je)(Oe/Ot) = (1- ~It)£:. 
Introducing now Eqs. (2.30)-(2.31) into Eq. (2.29) we shall finally obtain (with the ac­
curacy of O(k2/ pi)), 

(2.32) 

where 

a, = [1-y- k
2

m (1- 8
«2 

)] (1-~n) H(f)H(j), 
/J1 (1-y)pl 3 

l~y . {1, X~ 0, 
(2.33) a2 = ----p;-H(f)H(f), H(x) = O, x < O, 

a,= ,.,(~-r>( ::: -+- i n)}HcnHu'>. 

where 

k1 = [(1- ~~)a2 -8al]/ece, 

k2 = (1- y) [(1-- ~~)a1- ~.2J!ec., k3 = (1- y)2 (1 ~ 61)a3/ec •. 
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The equation of elasticity in the differential form (2.12) will now ·be written as 

where 

P2. = a.2k3, w1 = Pta3/k2
, ro2 = a.2k2. 

The relation (2.34) represents the equations of state noted in the current frame of 
reference E'. For the transfer into the Euler system x' it is necessary to use the· relations [8] 

( a(rii) ( da,J cc cc) -a~· = "(ft +accl Vj'V +acc,;V 1v 

after which the equations (2.34) are transformed into 

d~,J = {Ag""g11 +p(b~~+bjM}-;'e2s«Ps,J-Pts;s"Ps,J 
-P2s;s"Pgu-w1 ~SIJ-w2saflg,J}Vccvp-ScciV~-s(JJVIif, 

where 

3. Complete system of equations 

Using the Euler coordinates the complete system of equations may be written in the 
form 

(3.1) 
df) 
di = (ktK'.1+k2.s11+k3 s!sa.i)V,flb 

def"> . d: = tpq,1-ei=>v1v(J-eg>v~, 

where 

(!l/ = Agttllg,J+p(df~ + djN/)-i2sa./JsiJ-P1 s;s'Yfls,1-P2s;s"~Pg,1-w1 gaPs,J-w2sa./Jg,J. 
The system (3.1) is a system of quasi-linear equations with coefficients depending pn the 
components of the tensor a11 and the temperature 0. 
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.·When using the numerical methods of integration connected with the Lagrangian 
nets, it is sometimes preferable instead of Eqs. (3.1) to apply the system derived from 
Eqs. (3.1) by substituting the .derivatives over x' for the derivatives over the Lagrangian 
variables E'. Such an approach assures the simplicity of formulating the boundary and 
other conditions essentially connected with the Lagrangian system and, at the same 
time, allows the form of the equations to remain simple. This is conditioned by the use 
()f the dependent variables Klb u,b v, e~~>, corresponding to the system x'. 

This system of equations has the form 

eov'fot = (ou'1!oE"') (oE"'foxl)+ci'1F!1+u"1Flb 

au,1fot = Q't/(oE"'/ox(l) (o'llfoE"')-etfv,.r:p- (O'Vr,.foE"') 

(3.2) x (sToE"'!oxi +sjoE"'fox')-fl(s,a.f'11+s1r~.rtp), 
ao;at = (k1 g11 +k1s'1 +k3s!sa.1) ((ovtfoE"') (oE"'foxi)-vvf'U), 

oe~J>fot = 'Pqii- (ova.foE"') (e1:>oE"'fox1 +ej:>aE"'/o~1)-v'(ef:>rp1 +ej:>r;,), 
where r;"' are the Cristofell symbols of the Euler frame of reference used. 

4. Characteristic properties of the complete system of equations 

Let us find the equation of the characteristic surface q;(E1
, t) = 0 of the system (3.2). 

For this purpose we use its definition according to which the Cauchy problem posed 
.on the characteristic surface has no unique solution. This condition is equivalent to the 
requirement of the impossibility to define, by means of the considered system of equa­
tions, the normal to the surface derivatives, if, for q; = 0, the values of the functions and 
1he tangential derivatives are known [15]. 

Let 

oq; · ... ,., oq; oq; 
/( )

1/2 

v, = oE'/ g oE"' oE" ' 
= _ 0(/J/("mn~.!!!_)l/l 

c at g oE"' oE" 

be the covariant components of the unique spatial normal to the surface !fJ = 0 in the 
system E' and the propagation velocity of the characteristic surface in relation to the 
medium particles, accordingly. 

Let T.N be the partial dprivative of a certain value (in particular, the tensor . com-

ponent) in the direction of the normal v to q; = 0, n1 = va. ~~ be the component of the · 

spatial normal (which is also a unit vector) to the surface q;(x"', t) = 0 in the Euler co­
ordinates. 

Then, from Eqs .. (3.2) there follows the system of equations 

- (!C'Vt,N- f1ta.,Nna. = ... , 

{4.1) 
-cuiJ,N-(!t/na.vp,N+(sTn1+sjn,)va.,N = ... , 
-cO,.N- (k1g11 +k2s11 +k3s!sa.1,)v,,N = ... , 

(p) q,J ( a.+ . ap+ a.) + ( (p) + (p) ~.a. --ce,J,N-
2
k" a1s a1 sps a3n 'Va.,N e1a. n1 e1a. niJv,N- ... , 
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where the dots mean the terms which do not contain the normal derivatives T. N and 
s« = s«Pnp. 

The condition of the equality to zero of the matrix determinant of the system coef• 
ficients (4.1) is a necessary condition for the existence of the characteristic surfaces for 
the system (3.2). This condition may be written in the form 

(4.2) c"det11at5J-n'nJ+"2s1s1+ro1 n1sJ+ro2 s1n1+ebjll = 0, 

where p = 7 in the general three-dimensional case and p = 5 in the axi-symmetrical 
and plane-deformed states. Here the following notations are introduced: 

a= (ec2 -p)/(A+ft), " 2 = x2 /(A+p), ro1 = w1 /(A+p.), 

ro2 = (w2+1)/(A+ft}, e = k/(A+ft), 

bj = (sJ+P1 sa.sa.1sJ+P2 sa.sa.1nJ)fk. 

Using the formula for the determination of the tWo-matrix sum and withholding the 
first order terms over e, Eq. ( 4.2) may be written as follows: 

where 

fo(a)+eft(a) = 0, 

fo = detlla6j+n1nJ-"2s1sJ-ro1 sJn'-ro2 s1n111 = detllmJII, 

ft(a) == triiMLbJII, 

Ml is the minor of the matrix element mJ. 
The solution f 0 (a0 ) = 0 is easy to find in explicit form if, instead of the system (4.1) 

for e = 0, we consider an equivalent system: 

(a0 -1+ro1 sa.n«)N+("2sa.n«+ro.JS = ... , 
(4.3) (-smn"+ro 1 smsa.)N+(a0 +"2sms"+ro2 smn")S = ... , 

( -sms"+ro1 s«s~sp)N + ("2s«s~s11 +ro2s«s«>S+a0B = ... , 
where 

N =n«va.,N' S = s«v«,N' B = srz.s~vfJ,N' 

which is obtained by the convolution of Eq. (4.1) with nrz., s« and s«s~, respectively. The 
determinant of the system ( 4.3) turns to zero if 

(4.4) ao = 0, ec2 = I' 

and 

(4.5) a, = ~ [1- ~<2s"s.- (w1 +w.)s1n1]± {! [1<2 s1s1 

- (w1 +w2)s1n1] 2 - (l<2 -w1 w2) [s's,- (s'n,)2]} 

112

• 

To find the correction introduced by the term e/1 (a), we search for the solution in the 
form a = ao + ea1 • It is easy to ·see that a1 = / 1 (a0)/f;(a0}, where a0 is defined by the 
formulae (4.3) and (4.4). 
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5. Redaetioll of .the system to a bi-characteristic form and COI8ttuction of the dUference 
schemes 

For further considerations it is convenient to use the matrix form of the .complete 
system of the differential equations (3~2): 

(5.1) 

where ·the vector u = {v1, uii' 8, efj>} is composed of the physical components of the 
vector v, of the tensors a, e1' and 0. We shall further denote these physical components 
by the former symbols with subscript~. There will be no misunderstanding beacause only 
physical components are used further. The matrices "A (k = 1, 2, 3) and the vector N, 
included in the system (5.1), are the nonlinear function~ of u defined by ~qs. (3.2). 

It is assumed here and further on that the indices given in Greek letters cover the 
values from 1 to 16 in the general three-dimensional case and from 1 to 11 in the two­
dimensional case and denote the components of matrices and vectors as well. The Latin 
indices may change from 1 to 3 or from 1 to 2, accordingly. 

Now let v be a certain fixed spatial normal vector to the characteristic surface. Let 
us denote by w the matrix, the lines of which are the left eigenvectors of the matrix A = 

= 1 Av1 of the system (5.1) corresponding to the given v. Cl (E = 1, 2, ... , 16) are the 
eigenvalues equal to the velocities of propagation of the characteristic surface of the 
system (5.1) in the direction of v. Using the definition w, it is easy to obtain the relations 
of compatibility 

(5.2) Wt11
1 

AocpV" = ClWe11 t)«fJ' I(E), 

where the sign E means there is no summing up according to the noted indices. 
The conditions of compatibility (5.2) which result from the hyperbolicity of the initial 

system of differential equations (5.1) permit to transform Eq. (5.1) into. a system contain­
ing the derivatives only in the characteristic plane. Moreover, in using some characteristic 
planes it is possible to obtain a system in which the derivatives along the bi-characteri~cs 
are included only. Choosing, for instance, a plane with the normaJs v<t> coinciding with 
the unit-vectors of the coordinate system ~' convoluting Eq. (5.1) with the matrices 
1m~11 (the index q indicates that thew corresponds to v<•>) and using the relations (~.1), 
we obtain three systems of equations: 

.E(cx), 

(5.3) 

3 dup 3 •A ou, 3 u 0 
lDocp ds! + lDocfl flv oE• + WocfJH fJ = ' m = 1, 2, 

where 

dup/ds: = oup/ot+c~fl>oup/oE', E(q), 

c!f> is the velocity of propagation of the characteristic surface with the normal v<•>. 
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The systems (5.1) and (5.3) in the general case contain 64 equations from which, 

naturally, only 16 are independent. Let us express the terms 1 A ;. , 2 A :;
2

, 3 A :;3 

from Eqs. (5.3) using the derivatives along the hi-characteristics and insert the attained 
relations into the initial equation (5.1). Mter this we obtain the equation 

( OUrz _ 1 [ 1 n q duy N. ] 1 2 3 5.4) Tt - 2 ~4rzfJ Wprz ds~ + rz , q = , , 

where t!J = [tw]- 1 • These equations contain the derivatives only along the hi-charac­
teristics. 

Using the initial system of equations in the form (5.4), we can propose a rather general 
method of constructing the finite-difference schemes permitting to make a good approxi­
mation of the dependence domain of the differential equations by finite-difference systems. 
This method was used for solving the problems with small elastic-plastic deformations 
and was described in detail in [16], therefore, we briefly state the basic idea here. 

To calculate u in the node H on the n+l layer, we have to construct characteristic 
cones with the top in the point H node up to the cone intersection with the n-layer. By 
changing the derivatives along the hi-characteristics included into Eq. (5.4). by finite 

a ,H b 
y 

2 

6 .... - -... 5 
, ... ,.---.... ' I / ... , ' 
/ \ I 

3 ! f \ \ 1 
\ \ a 1 I X 
\ \ I' ', ', ....... _ / / ,__.... / 

7 
,_ _ .... 

8 

4 

FIG. 1. 

differences in u<B> and u<M«) in the points M« of the intersection of the hi-characteristics 
with the n-layer (Fig. la), we obtain the following system of differential equations: 

(5.5) ui8> = !J A« 1wrz/u~M«> + Q A« 2QJrztlu~Mrz>- tfi.>- 1:N,.. 

The values tu<Mcx> are defined by means of the values in the nodes of the net using 
the interpolation formulae. To obtain the .schemes of the first order of accuracy, it is 
sufficient to take the interpolation formulae along the directions vU> and v<z> coinciding 
with the axis of coordinates 

(5.6) 
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where 

A u _ u,(i+I> u<i> A2u _ --''+I> 2uo. >+u<i-I> 
LJ l {J - fJ - fJ ' LJ l fJ - Up - fJ fJ , 

and where u~ is the value of up in the nodal points along the straight line on which there 
is the point M a.. 

In the case of the 4-point pattern (Fig. la) we confine our study to two terms in 
Eq. (5.6) and assume that 

1 
LII up = 2 [t4t> + u~4>- z!p2>- z!p3>]' 

1 
Ll2up = 2 [u~

3>+u~4>-u~1>-u~2>]. 
(5.7) 

4 

u~o> = ! 2 t4'>, 
i=l 

We find 1u~Ma.> by substituting into Eq. (5.6) and, taking into account 

kn lro c<">u<i> - lr.,Q "ro lr.A u<i> - lA u<i> 
~"ea. a.fJ a. fJ - E« «fJ fly Y - ep fJ , 

afte~ the transformation, we obtain the following difference scheme 

1 T u<B> =- (u<t>+u<2>+u<3>+u<4>)- --[lA (uCt>+u<4> fJ 4 fJ fJ fJ fJ 4h {Jy y y (5.8) 

- u~2>- u~3>) + 2 Apy(u~3> + u~4>- u~1>- u~2>)] + TNp. 

If we use a 5-point pattern and calculate according to the interpolation formula 

(5.9) 
Tc<"> T le~"> I 2 lu~M«> = u~o>_ 4~ Ll~;up+ 4h Ll~;up, 

we obtain the following difference scheme: 

(5.10) 11$.8 ' = IJ$.0'- :, {'A«~~M''-u~'.')+ 2A.,.(u~2,:_u~4') 

- 1.Q«ilJc~1'J 1rup7LI ~ u,.-•.a.,. Jc~2'J 2ru~~yLI ~ u,} + TN0 • 

The scheme (5.8) is a generalization of the Courant-Isaacson-Rees scheme for the 
two-dimensional case. 

Using the proposed approach, we can also obtain the schemes of the second order 
of accuracy. Here it is necessary to use the 9-point pattern (Fig. lb) and Eq. (5.5) for 
the four directions of the normal v. In particular, we may obtain, for instance, the scheme 
of Wendroff-Lax. The characteristic schemes for boundary and angular points are given 
in the works [7, 16], where the stability of the proposed schemes is also proved. 

6. Numerical solution of the problems. Results of calculations 

On the basis of the method describing above a series of problems of an elastic-plastic 
flow occurring at the dynamic loading of the axi-symmetrical bodies were solved. The 
behaviour of the material was described by the equations given in the present work for 
the case of an ideal elastic-plastic material at p,1 = const, cx1 = const, c, = const, l1 = 
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= A:1 (/f), k = k(O) (the form of these functions is given further). For the calculations. 
the differential scheme of the first order of accuracy (5.8) was used which allowed to per­
form ·calculation at the discontinuous boundary conditions without introducing artificial 
viscosity. The approximate viscosity of the difference scpeme automatically assured the 
"smoothing" of the discontinuities over several spatial cells. 

For the estimation of the accuracy of the scheme some problems were solved which 
showed that the accuracy of the calculations was quite acceptable even in the case of 
a relatively small number of points. Thus, in calculating the Lamb's problem on the 
propagation of the harmonic ways in the infinite band of an elastic material, the com­
parison with the analytical solution showed that the error at the step h = 1/32 and the 

Courant number "= T~o = 1.0 was above 3% after 100 steps over t. The comparison 

with the solution of elastic-plastic one-dimensional problems, obtained by means of the 
direct one-dimensional method of characteristics, showed that the discrepancies were of 
the same order. It should ·be noted that the proposed method is quite economic as the 
scheme uses a minimum number of points. 

6.1. The Impact of the round cyUnder with a rigid wall 

As an example of the non-steady flows with two spatial variables, the problem of the· 
impact with the constant velocity at the end\ of the elastic-plastic cylinder was considered~ 
This problem is of great interest and has been considered by many authors from variou& 
aspects and for different medium models. 

Figure 2 presents the relations of the velocity 'Vz- at the speed of the impact V0 = 0.01c0 

(c5 = {A(0)+2,u(O)}/e) on the axis of the cylinder r = 0 at different moments of time. 

-aao~---------1.~.o------------2~D--------3.~.o------4~.o------£~o--------&~o~----z-t~R~~ 

FIG. 2. 
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tfto (t0 = R0 /c0 ). We see that the solution before the arrival of the waves reftected from 
the lateral surface of the waves has the form of a step function propagating with the 
speed c0 • Then, after the dilatation waves arrive, the problem becomes more complex. 
A characteristic feature is the presence of an elastic precursor almost unchanging over 
the amplitude and moving with the speed c0 • The velocity profile behind it differs much 
from the correwonding profile in the elementary beam theory and also from the solution 
of the elastic problem for a cylinder. 

An essential difference of an elastic and elastic-plastic solution is also observed when 
the shock wave is reflected from the free end of the cylinder. 

Figure 3 shows the dependence of the axial velocity flz/V0 on ~ for the cylinder of 
~ finite length for Z 0 /Ro = 4. For tft0 > 4 the profile character becomes different. The 

~/V, 

1.0 2D 

FIG. 3. 

t•5. 

3.0 z/R0 

axial velocities after !he reflection from the free surface of an elastic precursor give 
a "splash" almost of the same amplitude as in an elastic material. If, however, the reflec­
tion of the basic disturbance in elasticity gives approximately the double velocity value 
in plasticity, the increase of the mean · over the length of axial velocity is only 5-10%. 
This result was obtained earlier in solving the considered problem by means of other 
numerical methods and for other models in the works [17-19]. 

In Fig. 4 we can see how tlie contact stress au on the axis of the bar changes in time. 
At the beginning it changes from the value corresponding 'to the plane wave to a certain 
value near the value fot the uniaxial stress state. Relative to this value, oscillations occur 
with the period of I'J 4R0 fc0 , equal to the period of the wave reflected from the free 
lateral surface of the cylinder. The influence of the wave reflected from the cylinder sur­
face in the vicinity of the axis is rather important because of the concentration in the 
converging wave. At the increase · of the impact velocity the amplitude of the oscillations 
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increases, so that it exceeds. the constant value on which it was superimposed. As a result, 
much earlier than the shock wave reflected from the free end of the cylinder arrives in 
the section z = 0, there appear regio.Q.s where the stresses become equal to zero and where 
the velocity fJz exceeds V0 , that is, the local "jump aside" takes place and it soon starts 
"stricking" to the wall again; this is repeated with the period ,.., 4R0 /c0 • 

The origin of this phenomenon is conditioned by the fact that at V0 ,.., 0.1c0 the 
maximum value of the pressure becomes much greater than the components of the stress 
deviator limited by the yield circle. In this case, owing to the proximity of the stressed 
state to the spherical one, the radial movement begins to play the same role, as the move­
ment in the axial direction, and the picture differs substantially from the one predicted 
by the one-dimensional theory. 

In the course of time, in the vicinity of the cylinder axis, there appear zones of con­
siderable tension stresses, what indicates the possibility of destruction in these regions. 

6.2. Deformatlng of a drcular plate under impulsive Joadlug 

Let us consider some results of the calculation of the deformation process of a circular 
plate (Fig. 5) under the action of pressure impulse. The dimensions of the plate, the 

4 Arch. Mcch. Stos. nr Sn9 
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distribution of the pressure over r and t are shown in Fig. 5. The modulus values A.1 and 
p 1 corresponded to aluminium and were taken from the work (18]. The relation k = k(8) 
was accepted in the form (20]: 

{ 
1 if . 8/80 E;; 1.31, 

k = ko 1-(8/80 -1.31)/5.91 if 8f8o > 1.31. 

o L---1/;-!--'3 -~-....:.r/J~'Ro 

FIG. 6. 
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In Fig. 5 the shape of the plate is shown at the moment of load relieving (approxima­
tely six runs of the sound wave over the thickl,less) and at a later moment of time (t/t0 ~ 
~ 35). It can be seen that the charac~r of the deformation at the beginning and at a later 
stage of motion are considerably different. Up to the moment t/10 ~ 6, the movement 
of the loaded part of the plate is translatory at · high speed while the nonloaded part is 
very slowly 'attracted into motion .as the velocity of the transverse plastic wave is not 
high; only for t ~ 10t0 does the section r = R0 start to move in the direction of the 
axis z. In the zone of transition from the loaded to the unloaded part of the plate, high 
gradients of velocity Vz arise {Fig. 6) and, consequently, high velocities of the shear strain 
as well. In case of high pressures and large mass of the free parts of the plate, the de­
struction of the plate in this region is possible on account of the shear strain. In the zone 
of the load application, approximately to the depth 2/3h, a stressed state appears near 
the state of uniform compression. After the stressed state changes abruptly, the compres­
sion turns to stretching (Fig. 7). Figure 6 shows how the distribution of the velocities 
Vz changes after load relieving. 

We can see that the region of high gradients is spread, the form of the deformed plate 
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changes, see (Fig. 5), the fractures are being smoothed and a great but smooth enough 
bending of the plate takes place on account of inertial forces. 

The calculations made show that at impulsive loading by means of pressure of the 
order (20-30)k it is impossible to use hydrodynamic approximation. This is so since the 
behaviour of the material is similar to the ideal fluid only at the stage of high pressure 
action and in the region where it is applied. In the nonloaded parts of the plate and in 
the whole plate after pressure relieving the material behaves as an essentially plastic body 
and this influences the strain of the whole plate. 

In Fig. 8 the temperature distribution along the radius is shown. 
The temperature change at the pressures considered is seen to be small and does not 

pronouncedly influence the strain. 

6.3. Deformation of a conic thick shell 

Consider the numerical results of the problem of the deformation of a thick-walled 
conic shell by normal pressure suddenly applied to the surface. The geometric dimensions 
and pressure distribution are shown in Fig. 9. 

Unlike the previous problem, here the irutial form of the body in the Euler system 
of coordinates (R, Z) occupies a non-rectangular region, that is why the initial Lagrangian 
system should be chosen so that in this system the domain is rectangular 0 ~ r ~ R0 , 

~/Vo rp-so· 
p•70k ~-a1C0 
t-2.46 

16 

14 

12 

10 

8 

6 

4 

2 

o 0.25 astf 0.15 r/R'o 

FIG. 10. 



V. I. KONDAUR.OV AND V. N. KUKUD1ANOV 

0 ~ z ~ Zo, i.e. at t = 0 it is n~essary to assurne that R(r, z, 0) = rsinrp, Z = z+rcos<p. 
Figures 9b and 9d show how the nature of the deformation of a conic shell changes with 
the angle f· For this shell with a small opening angle <p = 30~ near the axis there appears 
a zone of a great uniform compression. On the inner surface z = H the particle velocities 
Vz -or the material are very ·high and in excess of the propagation velocity of the elastic 
waves. The velocity distribution Vz over the generator of the cone at a different z is shown 
in Fig. 10. Moving off the axis, the radial velocity component VR. becomes predominant 
and the material from the periphery moves to the axis. The stressed state away from the 
axis differs from the state of uniform compression. 

At large angles ( <p = _ 60°, Fig. 9d) the effect described is much weaker for the load 
under consideration. Simultaneously, in the region of load application squeezing of the 
shell takes place, and at small thicknesses and large angles even the "turning out'; of the 
cone is possible. 

In the vicinity of the axis, where there are large velocity gradients, there appear large 
distortions of the net and this leads to computational difficulties. Calculations had to 
be made at a small integration step. 

The accuracy control was effected for the energy balance to be observed. The relative 
ertor in the problem of the plate and the gentle cone did not exceed 1%. The relative 
disbalance in the problem of the cone and strongly pronounced cum.mulation reached 10%. 
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