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On constitutive equations and numerical solution
of the multidimensional problems of the dynamics of nonisothermic
elastic-plastic media with finite deformations

V.I. KONDAUROYV and V.N. KUKUDJANOV (MOSCOW)

A siMpLE model of nonisothermal elastic-plastic media subject to finite deformations is de-
scribed. This model is built on the basis of the laws of thermodynamics and the principle of
minimum of irreversible forces. It is shown that the plasticity condition enables us to define
the dissipation function and to obtain the constitutive equations. The results of numerical
calculations of certain axi-symmetrical two-dimensional problems are given.

Opisano prosty model nieizotermicznego oérodka sprezysto-plastycznego poddanego skoficzo-
nym odksztalceniom. Model ten zbudowany jest na podstawie praw termodynamiki oraz na
zasadzie minimum nieodwracalnych sit. Pokazano, ze warunek plastycznosci pozwala zdefi-
niowaé funkcje dysypacji i wyprowadzi¢ rownania konstytutywne. Podano wyniki obliczefi
numerycznych dotyczace kilku osiowo-symetrycznych zagadnien dwuwymiarowych.

Ommcara mpocTas MoJenh HEM3OTEPMHUECKOH YIPYro-ILIACTHYECKOH cpefp! noABeprHyTO
KOHeuHBIM AedopmaimaM. 3Ta MOZAEJs MOCTPOEHA HA OCHOBE 33KOHOB TEPMOOMHAMHMKH H HA
NpHHIMIE MHHAMYMAa HeoGparumbix cwil. ITokasaHo, 9TO yCiIOBHME IUIACTHYHOCTH NOSBOJIACT
onpénennTh QYHKUMIO AMCCHIAMA M BBIBECTH ONpEAEIAIONIME ypaBHeHWA. IIpuBefeHBI
PesyNbTaThl YHC/IEHHBIX PAacyeTOB, KACAIONMXCA HECKOJBKMX OCECHMMETPHYECKHX ABYMEp-
HBIX 3a]a4.

Introduction

IN A seriEs of recent works attempts have been made to obtain equations which would
reflect the main features of the behaviour of elastic-plastic bodies under the conditions
of a dynamic load at finite deformations and would be fit to use in specific calculations
[1-7].

A detailed survey of the papers devoted to the numerical solution of the dynamic
equations of the elastic-plastic media is given in the paper of the authors [7].

In the present work, a simple enough and convenient for practical applications model
of a nonisothermic elastic-plastic medium at finite deformations is given. This model is
built on the basis of the laws of thermodynamics and the quasi-thermodynamic principle
of the minimal irreversible forces. The formulation of the principle in terms of the problem
on the conditional extremum for the rate of dissipation at some restrictions is given. It
is shown that setting the plasticity condition permits to define the function of dissipation
and to obtain the constructive equations of the medium. At small isothermic deformations
the equations produced coincide with the classical equations of Prandtl-Reiss.

A complete system of equations of the considered medium noted in the current La-
grangian and Euler frames of reference is given. The hyperbolicity of the system is proved
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and the expressions for the rates of propagation of weak disturbances are obtained. We
propose to reduce the system of differential equations to a special canonic form contain-
ing the derivatives only in the direction of the bi-characteristics.

The notation of the equations in such a form proves to be very convenient for the
construction of the stable characteristic finite-difference schemes.

The results of the numerical calculations of some two-dimensional axi-symmetrical
problems are given. Some interesting peculiarities in the solution are noted.

1. Kinematics of elastic-plastic deformations

We shall consider the nonsteady flows of the nonstrengthening elastic-plastic bodies,
the material of which is assumed to be homogeneous, isotropic and the deformations
are considered to be finite. To describe the behaviour of the material medium we shall
use, as this is done in the papers of [8], the following frames of reference:

1) a current Lagrangian system £!£2Z° with a mobile basis 3; = 6%’ where r is the

radius-vector of the material particle;

2) the initial Lagrangian system &'#2£° with an immovable basis 3; which, in the
general case, is not the basis coinciding with 3, in the moment of time ¢ = 0 but is often
chosen owing to other considerations. For example, when using Lagrangian methods of
numerical calculation, it is convenient to choose the basis 3; so that the body occupies
a simple region with a regular calculating net in the space &*;

3) the Euler frame of reference x'x2x® with a fixed basis 3;. In the Euler system the
coordinates of particles are variable and are defined by the law of motion

x*=xt(§‘:r)' iak=1»2’39 t>0.

Let v = (ﬂ) = v;3' = ;3" be the velocity vector of the fixed particle, ¢ =
d‘ &! = const

= 09’9’ = 0,;3'3 — the Euler stress tensor, g = g;;3’ = 2,5'3’ — the metric tensor,
o — the material density, V,— the co-variant derivative over the spatial coordinate
x*, d/dt — the complete derivative over the time. Everywhere, if not specially mentioned,
the repeated indices mean summing up along them. As in the paper of [8] we denote the
values referring, accordingly, to the initial and current states by the symbols (°) and (°).

For the purpose of describing the kinematic characteristics of an elastic-plastic rigid
body, we shall use the approach based on the transformation of the basic vectors ac-
companying the process of deformation.

Let the transformation of the co-variant basic vectors 3; of the initial Lagrangian
system into the basis 3, of the current frame of reference be realized by the matrix F(£", 1),

(LD 3, = F{5,.

To describe the kinematics of the finite deformations we shall use the function of the
matrix F which would be the measure of deformation:

) S . R
7 (FEF™=8)y; = 5 E&y—28:i),
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where g, is the matrix of the metric tensor components of the initial Lagrangian system
of reference. In the basis 3 the whole complex of components obtained will then represent
the Almansi tensor of finite deformations. Apart from the tensor of full strains we shall
introduce the tensors of elastic and plastic deformations. T'o describe the two latter tensors
besides the initial and the current systems we shall use the Lagrangian frame of reference
corresponding to the unloaded state. Let us denote the basis of this frame of reference
as 3;, and the metric tensor as & = ;'3 The asterisk over the values will henceforth
denote the unloaded state.

In a number of contemporary works on the theory of plasticity the description of the
e lastic-plastic media is based on splitting the matrix F up into the product of matrices
E and P:

(1.2) F = EP.
The matrices P and E may be interpreted as those of the transformation of the basic

vectors 3, into 3; and 3; into 3,, correspondingly. Using these vectors it is easy to express

the matrix of the tensor e components. Taking the relation (1.2) into account, we have
ey = —;—(EP&PTE’—PﬁPr+P§PT—§)u = ";- (gu—éu)"r-%-(g'u—"éu)-

From this one can see that it is possible to introduce the tensor of the finite elastic de-

formation

(1.3) e® =g 5'Y = —;'(5’ =8y

and the tensor of the finite plastic deformation

(1.4) e? = ¢3!y = —;— (&y—84)3'%.

For the tensors (1.3)-(1.4) the following tensor equality is valid

e = e“)_’_e(’).

This equality is carried out for components with any structure of the indices in the space
of the metric tensor g.

We 'shall also note that the tensors of the elastic and plastic deformations introduced
by the formulae (1.3)-(1.4) are independent of the arbitrary orthogonal transformations
of the unloaded state.

Now we shall define the velocity tensors of elastic, plastic and full deformations in
the following way:

A AgA E ‘} AgA

&9 = gff3's) = o7 3}: 33,
A Agh 33 )A A

(1.5) £® = Py = a—if 9's/,
A apny _ O8gy aga

g =2, = T‘:a‘a’ A

3 Arch. Mech. Stos. nr 5/79



626 V.1 Konpaurov AND V. N. KURUDIANOV

For the velocity tensors of deformation (1.5) the following property holds:
(1.6) €= e +eP,

which is essentially used further for constructing the model of finitely deformed elastic-
plastic bodies.

2. Some thermodynamic relations

Let us assume the state of the particle £ to be fully determined if, for this particle,
we know the spatial position x'(¢', ), the stress tensor oy;, the tensor of the elastic de-
formation e, the absolute temperature 6, the specific (per unit mass) inner energy U
(or some other thermodynamic potential), the specific entropy # and the density of the
medium g. We shall ignore the mass forces, the thermal conduction of the material, and
the mass sources of heat.

For the above values we must observe the local laws of mass conservations:

2.1) o = 8det||2x'/ox’|| = 8(|&ul/IgmD)*"?,
momentum:

T
@2) 0% = Via,
energy:

aU AgEA
2.3) 0 =8,

and the second law of thermodynamics or the postulate of the positiveness of the en-
tropy. Note this in the form of the Clausius-Duhem inequality:

24) on > 0.

We shall consider the set of values e{?, 6 as independent parameters of state. We shall
assume the free energy F = U—0n to be a smooth enough function of the independent
variables of state.

Using the law of the conservation of energy the inequality (2.4) may be written in
the following form:

—.F"—-qé+%&u£u =0
whence it follows

o) [ 1 py_ OF

“d*( wﬁ%”me
The inequality (2.5) leads to the following relations:

oF dF
(2.6) ‘-’”"9329 n=-—g-
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Taking Eq. (2.6) into account, the Clausius-Duhem inequality changes to the so-called
inequality of the internal dissipation:

@7 D =683 0.

The further concrete definition of the model discussed is based on the fact that we
shall restrict our considerations to the isotropic homogeneous medium, the free energy
of which may be represented in the form

28 F=F({I,0), k=1,2,3,

where If are the invariants of the elastic deformation tensor.

Note further that the deviator components of the tensor of elastic deformations are
the values of the order of the ratio of the yield strength to the elasticity modulus. This
ratio for most of the metals equals 10~2-10-2 and the square of it may be ignored as
compared to unity.

Let us also introduce the assumption of the plastic incompressibility of the material
in the form of

29 e=6
or
(2.10) o = o(1-2If +4I5—8I5)' .
After introducing these assumptions, the relations (2.6) may be written in the form
(2.11) Giy = M5, OV I58 15+ 20, (0)2() — ¢, (0) 02,

which is a thermo-elastic relation that takes into account the finality of the volume and
plastic deformations of the material with the elastic characteristics independent of the
preceding plastic deformations.

In Eq. (2.11) we supposed that If has not to influence the connection of the tensor
stress deviator with the elastic deformation deviator. The functions u,(f) and «,(f) may
be defined on the basis of the experimental relations of the shift modulus and of the
coefficient of the linear dilatation with temperature. The function A,(If,0) is restored
according to the relation p = p(p, ) known for many substances [11].

Further, we shall need the relation (2.11) in the differential form. We shall use the
matrix 9a,;/dt as a characteristic of the velocity of the stress tensor change. From Eq.
(2.11) and with the above accepted assumptions, it follows that

33.— ey A A A A A 1 3 A
(2.12) —a:- = Zzﬂ"&'iﬂ' 2u, 85— 2p, 35}’3" a2 08+ ;‘; ;91 0sy,
where
.. OoIf ) . 0y
Ii = __3%’ Sij = Uu—*j—o':'mgu. =4 +ff—3'j;;;
i da e 0(A +2/3u,)
B = ‘u1+1111“'a10, oy = U1+B aﬁl '-11 : 20 it

and the last term may be neglected if 6(9u,/d0) is the value of the order of the yield
strength.

3
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2.1. Plastic domain

Let us note the assumption of the plastic incompressibility of the material (2.9) in
the differential form. Differentiate the equality det P = 1 equivalent to Eq. (2.9) and
obtain
(2.13) tr[PP-1] = 0
From the formula of the non-singular matrix we have

a—idet A =detA-tr(AA-Y).
From Eq. (2.13) it follows that tr ¢ determined by the relation
L o R W
tre® = -i—tr(PgPT+PgP")

turns to zero in the unloaded space 3.
Using the components of the velocity of the plastic deformation & we can write
down Eq. (2.13) in the form

(2.14) dVep =

and express the tensor 4/ using the stress tensor &;;. Really, bearing in mind Eqgs. (1.3)-
(1.5) we may note

due® = —-du(p-.P b Bap+ P5iPPiog) = dY P% gy PPa P17 B = 0.
If we define d" so that the equality
dYP%go P = A8 = 8]
is valid, then, taking (2.13) into account, this equality may be reduced to the form
dY(@u—28n/(1-2/31)) = &

P%Plig.s = S = Bu—28P = (1-2/3ID8u—284,
where €;; is the deviator of the elastic deformations
Convoluting this equality with {g*™+
order of 0(E*€,5), we get

(1 e I‘)) and eliminating the terms of the

A st
@15 =5 p= =230,
Let us consider now the thermodynamic inequality of dissipation (2.7). On the basis of
Eq. (2.14), Eq. (2.7) may be written as
(2.16) D = (8—Bade = e > 0.

Since Eq. (2.16) is valid for any &}, it follows that " is the function of £{?’ and, perhaps,
of some other parameters of the state, i.e.

@.17) P =PUE®..) at D>0.
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Since the constitutive equations of the elastic-plastic medium should not depend on the
scale of time, " are the homogeneous functions of the zero power and, therefore, the
six values of 4" are the functions of the five independent variables, for example, &%/¢%, .
Hence it follows that there exist some constraints for ¥, that is, there exists the loading
surface for which, in the process of the active loading.

(2.18) f@,0)=0, df=0 at D>0.
At stresses satisfying the condition f = 0, df = 0, D = 0 a neutral loading takes place,
and at < 0 and df < 0 an elastic unloading occurs.

The construction of the general theory of plasticity is possible when the single re-
quirement to meet the condition (2.16) is imposed on the functions $".

Nevertheless, it is worthwhile to limit and determine the form of the functions $"
basing on the quasi-thermodynamic principle of the maximum of the dissipation velocity
which, though it does not result from the laws of thermodynamics, seems rather well-
grounded and is widely used in constructing the rheological models of the media [13-14].

We shall give the following formulation of this principle:

For a given g" satisfying the condition (2.18) among any possible £, satisfying the
condition

DEP) = &yg”
(when D is some function of £{}), there exists the unique value &{’, which gives the max-
imum value to the rate of dissipation
uigp
ie.
max g P = §UE®.

Formulating this principle as the problem of finding the conditional extremum, let

us compile the expression

Do = &P +a[DEP) -],
where a is the Lagrangian factor. From the condition dD,/d&] = 0 we find &}:
OD(ER
o&fp
Convoluting with &}y we get the equation for defining a:

(2.19) M =a

i =i

AgjA aD
u ] = —_—
(2.20) ¢eP =a PR

) — *tp)zg) = D(Eg ).
Ellil b 8-.

Since the left hand side of Eq. (2.20) is a homogeneous function of the first order,
then D(&{’) is also of the same kind and, consequently, a = 1.

Now let us turn to the restrictions on the function D(z{P).

From the condition of the existence and similarity of £f; for ‘any given g/ satisfying
Eq. (2.18), it follows that the surfaces D(e{P’) = const are closed and convex. From Eq.
(2.20) it also follows that D(E{) > 0.
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Finally, the condition (2.18) also imposes an essential restriction on the form of the
function D. Let us consider the case when Eq. (2.18) has the form

(2.21) 4"qy = 2k*(0)

representing the assumption that the intensity of the generalized stresses is constant. The
conditions (2.21) and (2.19) impose restrictions on the form of the function D:

D D . . .
222 P 7DE g’ = 2k*(6).
Let us assume that D is the isotropic function 2{’ and depends on the first two invariants
x= &gy, y=ePeDging.
Equation (2.22) may then be written
‘ap\* , oD 4D i
(%) B HrolF) -

Making use of the fact that D is a homogeneous first order function with respect to &P,
let us represent D in the form

p-15e()

where @ is a homogeneous function of a zero order with respect to £{{. Introducing the
notation & = x/}/3y, we shall get an equation for ®:

(2.23) (1—E)P'2 4+ P2 2% = 0
the solution of which is
(2.29) = V2k(ay1-8 +y/1-a% §),

where g is an arbitrary parameter depending on 6.

Apart from Eq. (2.24), Eq. (2.23) has still another solution which is the envelope
of the family (2.24). Excluding ¢ from Eq. (2.24) and from Eq. (2.23) we shall come to
the solution

@.25) & = k7.
Using the condition of the plastic incompressibility (2.14) and neglecting the values

of the order of (k/u,)?, as compared to unity, it is easy to show that for the case of Eq.
(2.24) the dissipation function is

D= kl/g ehgl.

To make sure, one should convolute the equation 3 = dD/defP with g;; and dy;, whence
we find that @ = 0. The function D = k}/2/3:9’g" does not satisfy the condition of the
existence of the maximum velocity dissipation at arbitrary " and will not be discussed.

There remains the dissipation function corresponding to Eq. (2.25) which has the
form

(2.26) D = kY2 (EReRgimgime,
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The relations (2.16) give

2k2 ..
227 3y = 0y+pdy = -""-58"

Convoluting Eq. (2.24) with @ and taking into account that d¥2{f = 0, we shall obtain

B = —57d,y/d"™dhm = —p—(u—p)S3y /30
to the precision of the terms o(k?*/u?).
Thus the condition of plasticity (2.18) and the law of the plastic flow has the form

r-,- 2O,
(2.28)
&) = vy,
where

Gy = (1=9) Gy—p2’8u)s ¥ =Plp,  2* = 5™Smal3p%,

1p=0 when f<0 or f=0, df_aq{,dq;n'f‘ fa'ﬂ<0

To formulate the complete system of equations, it is convenient to express the func-
tion p by means of the stresses and the velocity of the complete deformation. Evidently,
for y we have

|
Y= Ek—zque}f’-

. A 1 A~ A
Since f, = &y —&p and &P = 7+ liky then

AQ§A A 33{" l_yA 33 2 AgIA
WP — (1 ij ) e i ij - -
§Uep = (1-9)s ot T O +3 Ifgey
Using this relation, the formulae (2.12), differentiating the condition of plasticity
(2.18) over time, and taking into account the relation (2.28), after simple enough but
bulky calculations we obtain

1

2 AgIA k?. ) 2 1

S & T=pm

8 aveu],
where

a
K “zP1+P"5%"1'
==
k (A=y)up,

1 2 2
SETREEE |
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To describe the changes of the temperature field we shall use the equation for the
production of the entropy which, in the case where there is no heat conduction, has
the form

on 1 AU

ik
Recollecting the earlier obtained relation = —dF/d0 and designating ¢, =0 % =
2
= 8%’ as the heat capacity at constant strain, after some transformations we get
5 2Ky 02 aga %2 _uny
(2.30) 0= oc. (1-3,) *—: 811“—2,;"4 €7,
where
8, =22 4 0(ca—9p1/96)
poo#’ A-7)ns

The value of If entering Eqs. (2.12) and (2.29) can easily be expressed in terms of
the first invariant &/. In fact, with the assumptions made

@31 It = (dr3/dg) (9e/21) = (1-%1:) &

Introducing now Egs. (2.30)-(2.31) into Eq. (2.29) we shall finally obtain (with the ac-
curacy of 0(k*/u)),

1 A A A A A A A
232 Y= 35 {6156y +a, 54 M6+ a3 85y},
where
k*m Ba, )]( ) .
a =|1—yp— — I H(HH(),
5 [ LA™ ( A=y f| HOED)
l"'y e x>09
= =T High {o, x <0,

_L &_ ._.i e .
% = #x(l-?)(ec. ”(‘ 3 I‘))”"’H‘”’

a0 A
a— - k,g’e;,-&-kzs JEu'f'kas. MS(J,

where
k; = [(1—0,)a,—0a,]/oc.,
ks = (1=9) [(1=8,)a,—8,)/ec., ks = (1—y)*(1—d;)as/ec.
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The equation of elasticity in the differential form (2.12) will now be written as

aa A A
(2.34) a“ {4881+ p2 (888 + 03 0) — 72575y
— B1355™ 51— B2 Sm S8y — @1 8751~ @, 58y} Vat?
where

A=2, (1" %I:)—“zku ¥ =wa[k?, By = pia,y[k?,
B2 = arks, @y = pias/k?, @, = azk;.

The relation (2.34) represents the equations of state noted in the current frame of

reference £'. For the transfer into the Euler system x* it is necessary to use the relations [8]

do do
75) ( g+ V" *"“V"’“)

after which the equations (2.34) are transformed into

d -
_‘%g = {488+ (57 0] + 85 00) — %25y~ P sy 575y,
— B85 5781 — 01 851y~ 02581}V olp— StV 0 — 505V 07,
where

2
B = pa=p =y (1""51;)-

3. Complete system of equations
Using the Euler coordinates the complete system of equations may be written in the

form
& 1
& -t
do
-g;i OV 05— 50V j0° = 54)V 17,
(3.1) o
- (k187 +k,5Y + k3 s5s¥)V 05,
de )
L — pay— etV eV,

where
0Ff = Ag™gy+p(8;8} + 8580 — #25%s)j— P S35y — B 5857 gy — by g¥sy—id, 5%y
The system (3.1) is a system of quasi-linear equations with coefficients depending on the

components of the tensor o;; and the temperature 6
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‘When using the numerical methods of integration connected with the Lagrangian
nets, it is sometimes preferable instead of Egs. (3.1) to apply the system derived from
Egs. (3.1) by substituting the derivatives over x' for the derivatives over the Lagrangian
variables &'. Such an approach assures the simplicity of formulating the boundary and
other conditions essentially connected with the Lagrangian system and, at the same
time, allows the form of the equations to remain simple. This is conditioned by the use
of the dependent variables g;;, oy, v;, e, corresponding to the system x’.

This system of equations has the form

00v*/0t = (90" [0E™) (0™ [0x))+ ™Ity + 6™ T,

d0yy/0t = Qif (9E™|0x") (30 |96™) — Qif vm Iy — (0va/ OE™)
(32) X (5 0E™ 0%+ 5508™ o) P (s1a T+ 53a ),

20/0t = (kyg" +ky s+ kysks™) ((0u,/2E™) (26" /ox")—v,TY),
2e$p/0t = pgy— (20, OE™) (elOE™0x) + e |0x')— o (e T+ ¢T3,
where Iy, are the Cristofell symbols of the Euler frame of reference used.

4. Characteristic properties of the complete system of equations

Let us find the equation of the characteristic surface @(&', £) = 0 of the system (3.2).
For this purpose we use its definition according to which the Cauchy problem posed
on the characteristic surface has no unique solution. This condition is equivalent to the
requirement of the impossibility to define, by means of the considered system of equa-

tions, the normal to the surface derivatives, if, for ¢ = 0, the values of the functions and
the tangential derivatives are known [15].

Let
/( .2 _31)”’ - /( m 09 0g)"
Y= o8 = o[ \& e aE

be the covariant components of the unique spatial normal to the surface ¢ = 0 in the
system &' and the propagation velocity of the characteristic surface in relation to the
medium particles, accordingly.
Let T,y be the partial derivative of a certain value (in particular, the tensor com-
7
ponent) in the direction of the normal v to ¢ = 0, nj = v,—— ;v; be the component of the

spatial normal (which is also a unit vector) to the surface ¢(x™, ) = 0 in the Euler co-
ordinates.
Then, from Egs. (3.2) there follows the system of equations
—QCU1,N— O,y = ...,
'_cau.N—Qﬁ.ﬂuﬂﬁ.N"'(s?nj'i's?”l)”ﬂ.ﬂ = weey

4.1) —cf,x—(k, gu.*.kz,gif.;.k,s;s“’;)w N= e

_c:eﬂ? 2k2 (015 +azsp.s""+a,n“)v.,g+(efg’n,+e}§’n;}v"" =
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where the dots mean the terms which do not contain the normal derivatives T’y and
5 = 550y,

The condition of the equality to zero of the matrix determinant of the system coef-
ficients (4.1) is a necessary condition for the existence of the characteristic surfaces for
the system (3.2). This condition may be written in the form
4.2) cPdet||adi—n'n,+x%s's;+ o, n's;+w, 5'n;+ebj|| = 0,
where p = 7 in the general three-dimensional case and p = 5 in the axi-symmetrical
and plane-deformed states. Here the following notations are introduced:

a = (oc*=p)[(A+p), »*=#[(A+p), o;=d/(d+p),
w; = (@2 +1)/(A+p), &= k[(A+p),
b} . (s}+ﬁlsusms.ﬁ'ﬁzsuswnj)/k'
Using the formula for the determination of the two-matrix sum and withholding the
first order terms over &, Eq. (4.2) may be written as follows:

Jo(@)+¢fi(@) =0,
where
Jo = det||adj+n'nj—x2s's;—w, s;n' —w, s'ny|| = det||m)]|,
fi(a) = tr|| MBI,

Mj is the minor of the matrix element m}.
The solution f,(a,) = 0 is easy to find in explicit form if, instead of the system (4.1)
for ¢ = 0, we consider an equivalent system:

(@o— 14w, S;n*) N+ (325,n° +,) S = ...,
4.3) (—s5a*+ @1 5 )N+ (Go + #25, 8"+, 5,0%) S = ...,
(—Sa8* + @, s*sEsp) N+ (%25%s8 55+ 02 545%) S+ ao B = ...,
where
N =r"ve,y, S =5%n, B=s*0sn,

which is obtained by the convolution of Eq. (4.1) with n*, s* and s%?%, respectively. The
determinant of the system (4.3) turns to zero if

(4.4) aD = 0’ 9(,‘2 = ‘u
and

“45) a = % [1—=%2s%s, — (0, +,)s'n] + HT [x2s;5*

172
— (1 +0,) s — (2 —o,0,) [s'si— (S'ﬂt)zl} .

To find the correction introduced by the term &f; (), we search for the solution in the
form a = ay+ea,. It is easy to see that a, = f;(a,)/fi(a;), where a, is defined by the
formulae (4.3) and (4.4).
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5, Reduction of the system to a bi-characteristic form and construction of the difference
schemes

For further considerations it is convenient to use the matrix form of the complete

system of the differential equations (3.2):

(.1) %“}+"A¢%+N, =0,

where the vector u = {v;, 05,0, e’} is composed of the physical components of the
vector v, of the tensors o, ¢” and . We shall further denote these physical components
by the former symbols with subscripts. There will be no misunderstanding beacause only
physical components are used further. The matrices *A (k = 1, 2, 3) and the vector N,
included in the system (5.1), are the nonlinear functions of u defined by Egs. (3.2).

It is assumed here and further on that the indices given in Greek letters cover the
values from 1 to 16 in the general three-dimensional case and from 1 to 11 in the two-
dimensional case and denote the components of matrices and vectors as well. The Latin
indices may change from 1 to 3 or from 1 to 2, accordingly.

Now let » be a certain fixed spatial normal vector to the characteristic surface. Let
us denote by w the matrix, the lines of which are the left eigenvectors of the matrix 4 =
= ¥4y, of the system (5.1) corresponding to the given v. C; (£ = 1,2, ..., 16) are the
eigenvalues equal to the velocities of propagation of the characteristic surface of the
system (5.1) in the direction of v. Using the definition w, it is easy to obtain the relations
of compatibility
(5.2 Wga* Aup¥y = CeWgbes,  Z(6),

where the sign X means there is no summing up according to the noted indices.

The conditions of compatibility (5.2) which result from the hyperbolicity of the initial
system of differential equations (5.1) permit to transform Eq. (5.1) into a system contain-
ing the derivatives only in the characteristic plane. Moreover, in using some characteristic
planes it is possible to obtain a system in which the derivatives along the bi-characteristics
are included only. Choosing, for instance, a plane with the normals v@ coinciding with
the unit-vectors of the coordinate system £ convoluting Eq. (5.1) with the matrices
'0,s (the index g indicates that the w corresponds to v?) and using the relations (5.1),
we obtain three systems of equations:

6.3) 20049 j:g +=w,ﬂu,,%"5%+=wa,1v, =0, b=1,3,
3w ﬁi—"’m "4 +3wsNy =0, m=1,2
af d,g af h’as- api¥p ’ 3%

where
dup(dss = duy|ot+cPouylots,  Z(g),
¢ is the velocity of propagation of the characteristic surface with the normal v®.
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The systems (5.1) and (5.3) in the general case contain 64 equations from which,
naturally, only 16 are independent. Let us express the terms ‘Aai;, ’A-Ea%, 3A%—
from Eqs. (5.3) using the derivatives along the bi-characteristics and insert the attained
relations into the initial equation (5.1). After this we obtain the equation

S _ o0 a0, B
(5.4) —3‘— = 2 [!Qaﬂ w‘&‘ d?a +N¢], q 1, 2‘ 3
where 12 = [Tw]~!. These equations contain the derivatives only along the bi-charac-
teristics.

Using the initial system of equations in the form (5.4), we can propose a rather general
method of constructing the finite-difference schemes permitting to make a good approxi-
mation of the dependence domain of the differential equations by finite-difference systems.
This method was used for solving the problems with small elastic-plastic deformations
and was described in detail in [16], therefore, we briefly state the basic idea here.

To calculate u in the node H on the n+1 layer, we have to construct characteristic
cones with the top in the point H node up to the cone intersection with the n-layer. By
changing the derivatives along the bi-characteristics included into Eq. (5.4) by finite

Fia. 1.

differences in u® and u™® in the points M, of the intersection of the bi-characteristics
with the n-layer (Fig. 1a), we obtain the following system of differential equations:

(5.5 uf® = Q hlmqslu;ua) + thmwzugw)_ =N,

The values *a™® are defined by means of the values in the nodes of the net using
the interpolation formulae. To obtain the schemes of the first order of accuracy, it is
sufficient to take the interpolation formulae along the directions v**> and v** coinciding
with the axis of coordinates

G

(5.6) MO = U+ Pyt o Ay,
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where
Ayup = uf"’n—uf;”, Aiug = ug“’—2u§“+ uéi— n
and where u} is the value of u, in the nodal points along the straight line on which there
is the point M,.
In the case of the 4-point pattern (Fig. 1a) we confine our study to two terms in
Eq. (5.6) and assume that

. 4 Aiup = _;_[ubl)_l_“éﬂ_u?)_u?)]’
5D W=7 2 s 1
i=1 Ayup = 3 [u§3l+ uﬁ"—uf,"—u},”].

We find *4{® by substituting into Eq. (5.6) and, taking into account
Qe wap U’ = *Quo wag* g, U = *Agpud,
after the transformation, we obtain the following difference scheme

O R L e

—ufP —u$?) + 24,5, (US> + ufP — 1l — uP)]+ Np.
If we use a 5-point pattern and calculate according to the interpolation formula

7 z|cg?)
(5.9 KM = ug®»— m Ayug+ Tdfug,

we obtain the following difference scheme:

(510) P = u.!.°’—T}{*Aa,s(ué“-ué?’)+=A¢a(u5”—u§")

~1Q.5lc8V | wpy AT tty— 220 1c§”|’w,;,..4§u,,} + TN,.

The scheme (5.8) is a generalization of the Courant-Isaacson-Rees scheme for the
two-dimensional case.

Using the proposed approach, we can also obtain the schemes of the second order
of accuracy. Here it is necessary to use the 9-point pattern (Fig. 1b) and Eq. (5.5) for
the four directions of the normal v. In particular, we may obtain, for instance, the scheme
of Wendroff-Lax. The characteristic schemes for boundary and angular points are given
in the works [7, 16], where the stability of the proposed schemes is also proved.

6. Numerical solution of the problems. Results of calculations

On the basis of the method describing above a series of problems of an elastic-plastic
flow occurring at the dynamic loading of the axi-symmetrical bodies were solved. The
behaviour of the material was described by the equations given in the present work for
the case of an ideal elastic-plastic material at u, = const, a, = const, ¢, = const, 4; =
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= 1,9, k = k(0) (the form of these functions is given further). For the calculations.
the differential scheme of the first order of accuracy (5.8) was used which allowed to per-
form calculation at the discontinuous boundary conditions without introducing artificial
viscosity. The approximate viscosity of the difference scheme automatically assured the
“smoothing” of the discontinuities over several spatial cells.

For the estimation of the accuracy of the scheme some problems were solved which
showed that the accuracy of the calculations was quite acceptable even in the case of
a relatively small number of points. Thus, in calculating the Lamb’s problem on the
propagation of the harmonic ways in the infinite band of an elastic material, the com-
parison with the analytical solution showed that the error at the step & = 1/32 and the
Courant number x» = t—? = 1.0 was above 3% after 100 steps over t. The comparison
with the solution of elastic-plastic one-dimensional problems, obtained by means of the
direct one-dimensional method of characteristics, showed that the discrepancies were of
the same order. It should be noted that the proposed method is quite economic as the
scheme uses a minimum number of points.

6.1. The impact of the round cylinder with a rigid wall

As an example of the non-steady flows with two spatial variables, the problem of the
impact with the constant velocity at the end' of the elastic-plastic cylinder was considered.
This problem is of great interest and has been considered by many authors from various
aspects and for different medium models.

Figure 2 presents the relations of the velocity o, at the speed of the impact ¥, = 0.01¢,
(c3 = (4(0)+21(0))/0) on the axis of the cylinder r = 0 at different moments of time

Va/Vy r<0  [V,=107%C,

a9 / ' ?’:;‘g:%
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M | _ \ |
as \\ /X \‘\
a3 \
~.~/ \ o)
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e [ €
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tfto (to = Ro/co). We see that the solution before the arrival of the waves reflected from
the lateral surface of the waves has the form of a step function propagating with the
speed c,. Then, after the dilatation waves arrive, the problem becomes more complex.
A characteristic feature is the presence of an elastic precursor almost unchanging over
the amplitude and moving with the speed ¢,. The velocity profile behind it differs much
from the corregponding profile in the elementary beam theory and also from the solution
of the elastic problem for a cylinder.

An essential difference of an elastic and elastic-plastic solution is also observed when
the shock wave is reflected from the free end of the cylinder.

Figure 3 shows the dependence of the axial velocity ©vz/V, on z for the cylinder of
a finite length for Z,/R, = 4. For t/t; > 4 the profile character becomes different. The
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axial velocities after the reflection from the free surface of an elastic precursor give
a “splash” almost of the same amplitude as in an elastic material. If, however, the refiec-
tion of the basic disturbance in elasticity gives approximately the double velocity value
in plasticity, the increase of the mean over the length of axial velocity is only 5-10%.
This result was obtained earlier in solving the considered problem by means of other
numerical methods and for other models in the works [17-19].

In Fig. 4 we can see how thie contact stress o, on the axis of the bar changes in time.
At the beginning it changes from the value corresponding to the plane wave to a certain
value near the value for the uniaxial stress state. Relative to this value, oscillations occur
with the period of ~ 4R,/c,, equal to the period of the wave reflected from the free
lateral surface of the cylinder. The influence of the wave reflected from the cylinder sur-
face in the vicinity of the axis is rather important because of the concentration in the
converging wave. At the increase of the impact velocity the amplitude of the oscillations
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increases, so that it exceeds the constant value on which it was superimposed. As a result,
much earlier than the shock wave reflected from the free end of the cylinder arrives in
the section z = 0, there appear regions where the stresses become equal to zero and where
the velocity vz exceeds V,, that is, the local “jump aside” takes place and it soon starts
“stricking” to the wall again; this is repeated with the period ~ 4R,/c,.

The origin of this phenomenon is conditioned by the fact that at ¥, ~ 0.1¢c, the
maximum value of the pressure becomes much greater than the components of the stress
deviator limited by the yield circle. In this case, owing to the proximity of the stressed
state to the spherical one, the radial movement begins to play the same role, as the move-
ment in the axial direction, and the picture differs substantially from the one predicted
by the one-dimensional theory.

In the course of time, in the vicinity of the cylinder axis, there appear zones of con-
siderable tension stresses, what indicates the possibility of destruction in these regions.

6.2. Deformating of a circular plate under impulsive loading

Let us consider some results of the calculation of the deformation process of a circular
plate (Fig. 5) under the action of pressure impulse. The dimensions of the plate, the

4 Arch. Mech. Stos. or 5/19
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distribution of the pressure over r and ¢ are shown in Fig. 5. The modulus values 1, and
4, corresponded to aluminium and were taken from the work [18]. The relation k = k(6)
was accepted in the form [20]:

" "l 1 if = 6/6, < 131,
T 1-(6/6,—1.31)/5.91 if 6/6, > 1.31.
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In Fig. 5 the shape of the plate is shown at the moment of load relieving (approxima-
tely six runs of the sound wave over the thickness) and at a later moment of time (¢/f, ~
=~ 35). It can be seen that the character of the deformation at the beginning and at a later
stage of motion are considerably different. Up to the moment ¢/t, ~ 6, the movement
of the loaded part of the plate is translatory at high speed while the nonloaded part is
very slowly attracted into motion as the velocity of the transverse plastic wave is not
high; only for ¢ > 10#, does the section r = R, start to move in the direction of the
axis z, In the zone of transition from the loaded to the unloaded part of the plate, high
gradients of velocity v, arise (Fig. 6) and, consequently, high velocities of the shear strain
as well. In case of high pressures and large mass of the free parts of the plate, the de-
struction of the plate in this region is possible on account of the shear strain. In the zone
of the load application, approximately to the depth 2/3h, a stressed state appears near
the state of uniform compression. After the stressed state changes abruptly, the compres-
sion turns to stretching (Fig. 7). Figure 6 shows how the distribution of the velocities
vz changes after load relieving.

We can see that the region of high gradients is spread, the form of the deformed plate
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changes, see (Fig. 5), the fractures are being smoothed and a great but smooth enough
bending of the plate takes place on account of inertial forces.

The calculations made show that at impulsive loading by means of pressure of the
order (20-30)k it is impossible to use hydrodynamic approximation. This is so since the
behaviour of the material is similar to the ideal fluid only at the stage of high pressure
action and in the region where it is applied. In the nonloaded parts of the plate and in
the whole plate after pressure relieving the material behaves as an essentially plastic body
and this influences the strain of the whole plate.

In Fig. 8 the temperature distribution along the radius is shown.

The temperature change at the pressures considered is seen to be small and does not
pronouncedly influence the strain.

6.3. Deformation of a conic thick shell

Consider the numerical results of the problem of the deformation of a thick-walled
conic shell by normal pressure suddenly applied to the surface. The geometric dimensions
and pressure distribution are shown in Fig. 9.

Unlike the previous problem, here the initial form of the body in the Euler system
of coordinates (R, Z) occupies a non-rectangular region, that is why the initial Lagrangian
system should be chosen so that in this system the domain is rectangular 0 < r < Ry,
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0< z< Z,,ie att = 0it is necessary to assume that R(r, z, 0) = rsing, Z = z+rcosg.
Figures 9b and 9d show how the nature of the deformation of a conic shell changes with
the angle ¢. For this shell with a small opening angle ¢ = 30° near the axis there appears
a zone of a great uniform compression. On the inner surface z = H the particle velocities
vz of the material are very high and in excess of the propagation velocity of the elastic
waves. The velocity distribution vz over the generator of the cone at a different z is shown
in Fig. 10. Moving off the axis, the radial velocity component vz becomes predominant
and the material from the periphery moves to the axis. The stressed state away from the
axis differs from the state of uniform compression.

At large angles (p = 60°, Fig. 9d) the effect described is much weaker for the load
under consideration. Simultaneously, in the region of load application squeezing of the
shell takes place, and at small thicknesses and large angles even the “turning out” of the
cone is possible.

In the vicinity of the axis, where there are large velocity gradients, there appear large
distortions of the net and this leads to computational difficulties. Calculations had to
be made at a small integration step.

The accuracy control was effected for the energy balance to be observed. The relative
error in the problem of the plate and the gentle cone did not exceed 1%. The relative
disbalance in the problem of the cone and strongly pronounced cummulation reached 10%.
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