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Material functions of creep of nonlinear viscoelastic anisotropic
plastics

S. OCHELSKI (WARSZAWA)

THE PRESENT paper presents an analysis of results of wide experimental studies of creep
Ihreeplasmsmthmwotropyofdxﬂ'erentdegreeandhnd,maplamstmssmiemd
a complex history of loading. An approximation of the relation between deformations
a functional of speed of change of stress for a viscoelastic material, by means of a polynomial

representation of material functions, was proposed. A method of determining material ﬂ.mo-
tions was given and then, basing on experimental results, the functions were determined for
thclhmplasucstakenfortestmg ThemﬂuenoeorvmompmametemonthepromrtHof
the material functions were studied in detail. The material functions determined by this method
d&g&y first of all the nonlinear properties of materials and allow to determine the degree of

ir nonlinearity.

Eéa.

Praca przedstawia analizg wynikow z pmprowadzonych obszernych, doswiadczalnych badaf
pelzania w plaskim stanie napreZenia i zlozonej historii obcigzenia trzech tworzyw o réinym
stopniu i rodzaju anizotropii. Zaproponowano aproksymacj¢ prawa miedzy deformacjami
a funkcjonalem z predkosci zmiany naprezenia materiatu lepkosprezystego, reprezentacja
wielomianowa funkcji materialowych. Podano metod¢ wyznaczania funkcji materiatowych,
a nastepnie na podstawie wynikéw doswiadczalnych, wyznaczono je dla trzech tworzyw-przy-

jetych do badathi. Szczegblowo zbadano wplyw réinych parametréw na wlasnoéci funkcji ma-
terialowych. Funkcje materialowe okreSlone ta metods charakteryzuja przede wszystkim wias-
nosci nieliniowe materialéw i pozwalaja okresli¢ stopied ich nieliniowosci.

PaloTa mpeacrasiser aHAH3 PE3YILTATOR, H3 NPOBENCHHLIX 00MMPHLIX, IKCIEPAMEHTAILHBLIX
HCC/IeIOBAHHI TOI3YYECTA B IUIOCKOM HANDPSDKCHHOM COCTOAHHH H CO CINOXKHOH HcTopHed Ha-
TPY)KEHAA, TPEX MATEPHAIIOB C PAsHON CTeleHbIO M pofoM aHmsorpomuH. IIpemmoicena ampo-
KCHMALIHA SaKOHA MEXAY AedopManmamn 1 (GYHKIHOHANOM CKOPOCTH H3MEHCHHA HANPSDKCHHA
BASKOYIIPYIOr'o MATEPHAA, MHOTOWICHHBIM IIPECTABJICHACM MATCPHAGHBIX Gymunwl. IIpa-
BEJICH METOJ| ONpeNe/icHNA MaTePHANBHLIX (GYHKINA, 8 SaTeM HA OCHOBE IKCICPHMEHTANLHBIX
PE3Y/IETATOB, OHH ONpPENe/IeHs] A TPEX MATEPHANIOB IPHHATHIX AnA Hecaenopanmit. [Toxpob-
HO HCC/ICIOBAHO BIIAAHHE PasHEIX MAPaMETPOB HA CBOMCTBA MATepHANLHBLIX (yHKIm. Ma-
TepHANBHELIC (DYHKIMH, OOpeciecHHbIE 3THM METONOM, XapaKTEPH3YIOT NPEXIS BCEro HerH-
HeliHple CBONCTBA MATEPHANOB M MOSBOJAIOT ONPENENHTE CTENCHb MX HEIHHEHHOCTH.

1. Introduction

IN THE PRESENT paper a method is proposed for the determination of material functions;
it is concerned with creep tests in a plane state of stress in a complex history of loading
of materials, anisotropic and viscoelastic, of nonlinear characteristics. In describing the
creep effect it was assumed that this method would be additive in terms of three ex-
perimentally determined functions: material functions, creep functions and a function

describing anisotropic properties.

As it is well known, nearly all the real materials after a certain history of creep in-
ducing loading behave in a different way than in the case where there is no loading history,
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that is, with a zero loading history. Thus materials remember the effects of former actions
of loading. In connection with this fact, in order to obtain a better agreement of theoretical
curves with experimental ones, it is proposed in papers [1, 2] to improve the theory by
introducing reinforcement parameters.

On the other hand, in [3] it is assumed that the velocity of creep deformation at a jump
change of loading depends not only on the actual value of deformation but also on the
scale of the accumulated damage at the time of the change of loading. In [4] a method
was proposed for dividing the material sensitive to change in the loading path into several
groups by analyzing the forms of the constitutive functional.

In the case of viscoelastic materials, these problems have been considered by STAF-
FORD [5]; here the results from creep tests at constant loading are extrapolated to tests
with a jump change of loading. In order to describe more adequately the results from
tests with a jump change of loading, the mentioned author introduces into the equations
various forms of combination of stress acting before and after a jump is completed.

For elastic-plastic materials, the influence of plastic pre-deformations on mechanical
properties was studied in [6], in other words, the reaction of a material which underwent
plastic pre-deformations was analysed. In [7] a possibility of describing the decay of
memory of material is analysed by introducing into the constitutive equations a para-
meter slowing down the deformation history.

Although, many authors have worked on the problem of effects of the loading l:ustory
of a material, the material functions have not been determined in a unique way for any
real material.

In the present paper an attempt has been made to determine the material functions
of viscoelastic anisotropic plastics basing on results obtained from study projects carried
out for the case of a jump change of loading.

2. Program and results of experimental investigations

For experimental investigations three types of plastics were used with different ani-
sotropy degree and kind. The plastics were obtained from polyester and epoxy resins
and glass fibres in the form of continuous bands, cloth and mat. Hardened resins and
glass fibres differ substantially in physical-mechanical properties.

The first plastic was composed of layers of glass cloth and of polyester resin, and the
second — of glass cloth layers interchanged with layers of glass mat and epoxy resin.
The directions of warp in all these plastics were the same. The third plastic was composed
of continuous glass bands paralelly interchanged with epoxy resin bands.

The plastic number 1 is strongly anisotropic and the plastic number 2 — only slightly.
The plastics 1 and 2 have in their structure three mutually perpendicular symmetry planes
and the plastic number 3 — only one isotropic plane.

The technology of production of the plastics and samples and devices used for tests
were described in papers [8] and [9].

The programs of study of creep of plastics included a jump change of loading at various
values of stress and at various increments of stress jump. Changes in loading occurred
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at different time spans. Therefore, elaborated programs make it possible to study in a
precise way different responses of the material to the given loading history; this is ne-
cessary for the determination of the material functions.

The programs of study included axial tension of samples and tension with twist. The
tension was carried out for ¢ = 0; n/12; =[6; n[4; =[3; 5x[12; and =/2, where ¢ denotes
the angle between the main axis of anisotropy (x-axis) and the direction of normal stress.
The tension with twist was carried out for the following values of the ratio of the normal
to tangent stress k = 0.25; 0.5; 1.0; oo which correspond to ¢ = 2x/27; =/8; 3=/17;
7r/4, where @ denotes the angle between the principal axis of anisotropy and the principal
direction of stress. The axial tension of samples in any direction ¢ # 0 was considered
to be a plane state of stress (0xx, 0y, Oxy).
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FiG. 1. Programs of loading.

Samples were loaded by various values of constant stress during 3600 kS and by
a one-step and a three-step change of stress according to the programs presented in Fig, 1.
A jump change of stress for a n-step test can be described by the equation

@1 o)) = D) (03 —0j- ) H(—1y),

ki
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where H(t) — Heaviside function; i = 1,2, ...,n; 0o = 0; ¢, = 0. In Fig. 1 the stress
values oy, oy, ..., Oy correspond to the following values of destructing stress: 0.2; 0.3;
0.4; 0.5; 0.6. In the programs the following values of time of stress change were provided:

t, = 9.0, 90.0, 3600,

t; = 18.0, 180.0, 720.0,

ty = 21.0, 270.0, 1080.0 kS.

In the studied plastics the stress velocity (o) influences substantially the relations
between stress, deformations and time (e(o, f)), and thus in the tests a constant speed
of pre-stressing and of stress change was assumed 0.4905 MPa/S.

All the samples to be tested according to the programs of Fig. 1 had a zero loading
history. Moreover, no stress states in the samples, which could have been created during
their production, were observed. Tests for checking those states were carried out by the
reflection elastooptic method.

The principal mechanical indicators, for destructing stress and elastic constants, were
represented in terms of the angle ¢. The angle ¢ is formed by the principal axis of ani-
sotropy (the warp direction in cloth or roving bands) and the principal direction of stress.
Hence, by means of the angle ¢ the anisotropic properties of plastics in the target plane
have been described.

Re §MPa a

6, MPa

Fia. 2. Strength of plastics: a) The tension strength as depending on the direction of loading. b) Strength
of plastics in a plane stato of stress.
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Figure 2 presents the results of strength tests of plastics, and Figs. 3, 4 and 5 the elastic’
constants of the plastics as dependent on the ¢ angle.

Tests of three plastics in a plane state of stress and with different assumed loading
histories (see Fig. 1) resulted in a deformation history described by the following relations:

E §MPa

i
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FiG. 3. Coecflicients of longitudinal elasticity as depending on the direction of tension,
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FiG. 5. Poisson’s coefficients as depending on the direction of .tension.



&xx = Exx(Ok, @1, iy 8) for oy =const, k=1,2,...,4,
&yy = Eyy(Ok, Pr, tis ) pr=const, k=1,2,..,11,
(22 E5z = E2:(0k, P1s L5 1) th =const, k=1,2,...,9,
Exy = Exy(Ohs Prs tes 1)
£xy ++v» Exy are components of the deformation tensor including instant deformations
(s0) and creep deformations (g,), i.e.
(2.3) &y = eijoteip, Lj=Xx,5,2.

As it has already been mentioned, xyz represent the axis of a rectangular coordinate
system and they coincide with the principal axis of anisotropy of the tested plastics. In
a coordinate system xyz, defined in such a way, a plane state of stress (0., )y, 0xy)
cannot generate any deformations &,, or &;,.

The values of deformations, as mean values of 3 to 5 tests, served for the construction
of creep diagrams resulting from the realization of particular loading programs. In all,
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Fi1a. 6. Deformations along the x-axis (s.:) as functions of time, obtained at tension of Plastic 1 in
direction @ = 0, at loadings as in Fig. 1.
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351 sets of diagrams were obtained. In Figs. 6 and 7, as an example, two sets were pre-
sented which concern results obtained at tension in the directions ¢ = 0 and twist of
Plastic 1 for ¢, = 360, #; = 720 and ¢, = 1080 kS. The form of the relations presented
here is typical for viscoplastic bodies.
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Fic. 7. Functions &,,(?, ) resulting from twist of Plastic 1 at loading as in Fig. 1.

Strongly anisotropic properties of Plastic 1 are described in Fig. 8. In Fig. 9 iso-
chronic creep curves are presented and from them it follows that the relations between
stress and deformation are nonlinear and the nonlinearity is stronger at larger stress
and at stress acting in the directions ¢ #* 0. :

The anisotropic structure of the tested plastics and their viscoelastic properties mak
certain factors influence strongly the results of rheological tests. A precise analysis of the
influence of the sample shape, of sign of normal stress, of glass concentration in a plastic
and of temperature, on the rheological characteristics for a plastic of a composition
similar to that of Plastic 1, were given in paper [10].
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F16. 8. Along-axis elongations as isochronic functions of the direction of tension of Plastic 1 by means
of a 39.24 MPa stress.

pd

).

el
oofs g
8
£
g
p-TA
¢=0
000 - 2 £/ Y pem/r2 ‘5"@@
8 9 5
x'(ps
wl ] /5 ,
1 | 1
50 00 150 g [MPa]

FiG. 9. Isochronic curves of creep resulting from tension of Plastic 1 in the direction ¢ = 0, /12, n/4.

3. Proposed method of determining material fimctions

For a simple viscoelastic material with memory, the constitutive equation expressing
the most general relation between deformations and the functional of the speed of stress
change, for the one-dimensional case, has the form

@31 ety=9 (d;?) );.
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where J is a functional; if it is continuous and linear, then we can obtain an integral
Boltzmann representation of a linear viscoelastic material.

For anisotropic viscoelastic materials of nonlinear characteristics the dependence of
the intensity of deformation on the intensity of stress was assumed to be one-dimensional.
When the process is isothermal and the loading history is composed of n—1 steps, Eq.
(3.1) can be approximated by means of a polynomial representation and it can take the
form

(32) Cu(o'l y 025 2oy O rl: fzs voey bny f; ?) = Z chl(ajx 'j: ‘) v);
J=1

where:

1) C, is a constitutive functional which remembers full information on the jump
history of stress and satisfies the requirements of PIPKIN and RoGERrs from [11];

2) in the general case

(3.3) W), = Wy01,03,...,055 ty, ta, w.os b3 )

with W, = 1.

The functions W fulfilling the condition (3.3) are material functions and they determine
the sensitivity of the material to the size and time of stress jumps. Assuming a specific
creep law for a material, we can obtain a corresponding form of the relation (3.2).

The function C,(o,t,,1, ¢) represents a creep law found from tests at:

gy=const for k=1,2,..,4,
gr=const for k=1,2,..,11

and this law for the relation between the deformation intensity and the stress intensity
was assumed in form of the equation

(3.4) & =& = A(oy, )M
or
(3.5) Ci(o, 1, t,9) = A(0, 9) (‘_‘L)M“)'
Equation (3.2) for the creep deformation intensity takes then the form
(3.6) &(t) = e(t)—eo = ), WyA(0, )t—t)*.
J=1

The relation (3.4) describes well the results of tests at stationary loadings. In the
relation (3.4) the values of the functions A(o;, p) and M(o;, ¢) were determined by the
method of least squares using the creep tests results of the three plastics taken for testing.
The stress intensity was calculated from a formula which is correct for isotropic materials.
The function A(oy, ¢) characterizes anisotropic properties. The method of determining
creep functions and anisotropic functions was described in detail in [13].

Anisotropic properties can also be accounted for by determining the coefficients of
anisotropy in the equation of stress intensity as proposed in [13].
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For a creep test with a two-step loading change, assuming that ¢, = 0, ¢, = const,
we can write Eq. (3.6) in the form

B.7) &) = A(o)1MP+ Wy(oy, oy, 1) A(oy—oy) (=1 )M
+ W3(01, o, Oy, 12, 13) A(O— o) (2= 1;)MCm=0,
In Fig. 10 a method is presented for the extrapolation of results of creep tests at
stationary loadings onto results obtained at jump changes of loading. It follows from
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FiG. 10. A graphic interpretation of the creep description by means of material functions.

~

that figure that actual deformations at time ¢ present the sum of results of stress increases
from former time intervals.

The material functions described by Eq. (3.3) were determined from the condition
that the sum of squares of differences between experimental deformations and those
calculated from Eq. (3.6) be the smallest possible one. For the program with a one-step
stress change we obtain

(33 Z (85(t))exo—&(01, 1;)— W€ (0n, 1;—1,))* = min.
J=1
The expression in Eq. (3.8) reaches its minimum value at

(3.9) W jg": (Sp(fj)n:n"‘ A(op)t™ (ﬂ))(A(o'"— a) (t - tz))ﬂ{tn—-gl)

Z (A (ou "'".O'l) (=)™ (':l-ﬂl))z

J=1

Similarly, for results of the program with a two-step change of stress we ‘determine
W3 using the values of W, already found, and so on.
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Fia. 11. Dependence of material functions on values of the stress jump for Plastic 1 under load 0yy/0sx =0.25, determined from elements of the deforma-

tion tensor and the intensity of deformation.
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For experimentally found values of deformations (Eq. (2.2)), for times #,,1s, ...
wees By oeey 1, values of W were to be found according to programs of loading with a three-
fold change of loading time and for three kinds of plastic and that made 11 583 values
found. The calculations were carried out on a computer.

The numerical analysis of the obtained values of material functions W was reduced
to determining the dependence of W on the following parameters:

type of the elements of the deformation tensor and the intensity of deformation;

direction of ‘the loading (angle ¢);

value of the increment of stress jump AT = (0p—0x_)/Gaens., Where oy — stress
values for #;_, < t < t;, Ogesry. — destructing stress values;

stress values ¢ = 03/0ges(., In the interval #;,_, < t < &;

time of the interval At = t;—t;_,;

time of the stress jump #;;

deformation increment (4¢) in the interval #,_, < ¢ < 1;;

mean values of deformation (e,) in the interval #;_; < f < #;;

work of the full history of stress (Zoj(em););

increment of the stress work (do;(em);) in the interval fy_; < t < ;.

In order to study the dependence of the function W on the elements of the stress tensor
€xx Eyy, €15, Exy and on the stress intensity, the values of the function W, determined
from Eqs. (3.9) using the relations (2.2), are presented in diagrams W(47, &), W(47, ¢,,),
W(43, ¢..), W(47T, ¢,,). These relations do not differ from each other substantially.
Also, the functions W(A7, ¢;) obtained from the relations between the deformation in-
tensity and the stress intensity had similar diagrams. These relations are presented in
Fig. 11 for the case of a loading o,,/0,, = 0.25 for Plastic 1.

In Fig. 12 the function W was displayed as dependent on the direction of loading
(@) of the Plastic 1. Every point of the diagram corresponds to a mean value calculated
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Fi16. 12. Functions W as depending on direction of loading for Plastic 1.

from 216 values of W obtained for ¢ = constant. No clear change of W with ¢ can be
seen; it was obtained for the studied plastics that W(g) = const although a small increase
of W with ¢ growing from zero to /4 can be observed.

Substantial changes of W with jump changes of stress (47), as displayed in Fig. 13,
reveal the sensibility of the studied pléstics to jump changes of loading. The jump changes.
of stress in accordance with programs of Fig. 1 in time began with larger stress at 4



FiG. 13. Functions W as depending on values of the stress jump (47) for Plastic 1.
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and continued to a smaller one at — A5, what resulted in larger values of W(Jg) than
W(—A43) calculated for the same absolute values of arguments. It was observed that
the relations W(40) and W(—A4c) follow the same pattern when the jumps of stress end
at the same values of stress. Thus, in further considerations the same dependence of
W(d40) for Ao > 0 and 47 < 0 was assumed.

The function W depends strongly on the stress value within the interval f;_, < < #;,
what indicates strong nonlinearity of the deformation history in terms of loading. The
relations W(o) for the studied plastics are displayed in Fig. 14.
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FiG. 14, Function W as depending on the actual value of stress ¢ = 0/0geq,, in the interval fi_; < 2 < 1
for Plastic 1.

The decrease of values of W with growing time of (4¢) and time of the stress jump
(t;) are shown in Figs. 15 and 16.

The functions W as depending on the increment of creep deformation within the
interval #;_; < t < #; and on the mean values of deformation in the interval have a similar
form as the functions W(40) and W(o). Qualitative differences in relations presented in
Figs. 13 and 17 as well as 14 and 18 stem first of all from differences in the definition
of coordinates (4d and de as well as o and &,).
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FiG. 15. Function W as depending on ¢ = r,—1,_, for Plastic 1.

It follows from the dependence of W on the increment of stress work and on the
sum of works of stress from precedent time intervals that the function W does not possess
the properties of a consolidation parameter. If W were only a function of the work of
stress, then the points on the diagrams of Figs. 19 and 20 would be distributed more
uniformly. _

From comparison of the relations W(4a), W(a), W(dt), W(t) as presented in Figs. 13
through 16, obtained for the three studied plastics, it can be seen that they are qualitatively
similar. However, a quantitative comparison shows that the functions W determined for
Plastic 1 assume the largest values depending on the structure and the type of components
of the plastic.

It is not difficult to note that the larger the values of W the stronger the nonlinearity
of the material. For a linear viscoelastic Boltzmann material: W = 1, but it is not true
that the material is nonlinear when W = 1, unless an additional assumption is made,
namely that the relation (3.4) is linear.

In order to simplify the mathematical description of the function W it can be assumed
that :
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Fic. 16. Function W as depending on the time of the stress jump for Plastic 1.
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F16. 20. Function W as depending on the sum of stress works for the intervals 75, 15, ..., 1, < f for
Plastic 1,
W(p) = const,
(3.10) W(d40) = W(—40),
W(tx) = const,

because they vary only slightly. It was assumed that the function W depends only on the
jump of stress, the end value of stress after a jump and on the time of the interval of
stress.

Among a large number of studied forms of the function the best description of the
obtained relations W(A45, 3, At) is given by the following equation:

(3.11) W = Fexp(k|4d|+p|o|+mAat),

(3.12) W = F|AG|*(o)"t™.

The constants F, k, p, m in Eq. (3.11) were determined by the method of least squares
and the results are given in [8).

For a mathematical description of creep effects of plastics obtained from the realiza-
tion of the tests’ programs (Fig. 1), the constitutive relations valid for the case of station-
ary loadings [14, 12, 8] can be used taking into account the relations (3.6) and (3.12).

We describe now the determination of material functions for Plastic 1 in the case
when the relation (3.4) is linear.

If a division of rheological deformations into linear and nonlinear ones according to
paper [15] is possible, then the linear deformations can be described by means of the
Boltzmann integral representation of a linear viscoelastic material, and the nonlinear
deformations by means of material functions. The material functions, as defined in the

6*
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present paper, describe first of all the nonlinear properties of a material. For linear
materials the functions take the value of 1 and thus such a description is physically mean-
ingful and practically relevant.

As a boundary between the linear and nonlinear regions for the studied plastics,
stress values equal to 20% of the destructing stress were assumed and this corresponds
to a horizontal form of the curves (Fig. 21). Assuming an exponential form of the creep

J4
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180 &
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Linear | Nonlinear 90 ty " g
! region i
0001 3% &) :f:“
I ﬂ:?: I
- 172k ¥
; 1 ' =
| .5 =(e
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Fig. 21. Creep function as depending on stress FiG. 22. Graphic interpretation of the relation
intensity for Plastic 1 under loading 0,,/0x = 0.25. (3.14).

kernel in the Boltzmann equation, we obtain a relation between the intensity of stress
and the intensity of deformation in the linear form

(3.13) Ei—t10 = 0, A() Y.

The material functions were determined in a similar manner as in the preceding case
with a change that, in general, W, s 1. After the relation (3.13) has been taken into
account we write Eq. (3.6) in the form

1
(.19) at)=e(0) = ) Wy¥(@) ()= 0-,) (=)~
J=1

Figure 22 explains in a graphical way the method consigting in summing up the de-
formations of particular steps of loading. Actual deformations for time ¢ present a sum
of deformations of former intervals from the linear region (e(c,, t).), enlarged by cor-

responding values of the material functions W;.

The found relations W(45), W(a), W(At), W(t), which were presented in [8], are
similar in diagrams as those given in Figs. 13, 14, 15 and 16, but the functions W in
Eq. (3.14) assume larger values.
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4. Final remarks

The approximation of the constitutive functional (3.1) by the polynomial representa-
tion (3.6) assumed in the present paper and the isolating of the anisotropic and creep
material functions in these equations is in agreement with present day tendencies in
describing certain classes of materials. These functions describe in a unique way the
properties of the tested material and thus supply directions for comparing materials.

The material functions determined for the three plastics characterize the relevant prop-
erties of materials, and first of all, the degree of their nonlinearity. By means of the
material functions an extrapolation of data from creep tests at stationary loadings onto
multi-step tests was carried out.

The presented method of determining material functions can be successfully applied
to determine functions related to the memory effect of other classes of materials.

Comparatively simple constitutive equations can be obtained due to the coincidence
of diagrams of material functions as determined from the relation between the deforma-
tion intensity and the stress intensity as well as those resulting from the relations obtained
from the elements of the stress tensor (Fig. 11).

For the purpose of determining the material functions, the anisotropic one and the
creep one, only the relation of dependence of the deformation intensity on time can be
used. This relation was obtained from results of tests of materials at tension in different
directions ¢ because it is similar to the relation of deformation intensity &,(f) determined
in a plane stress state. This observation simplifies substantially experimental studies.

Since the material functions as described in the present paper for linear materials
take the value of 1, it is purposeful to assume Eq. (3.13) which at constant stress describes
linear viscoelastic deformations; then, nonlinear deformation are described by Eq. (3.14)
by means of material functions. Such a description has a sound physical foundation.
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