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Material functions of creep of nonlinear viscoelastic anisotropic 
plastics 

S. OCHELSK.I (WARSZAWA) 

THB PllESENT paper presents an analysis of results of wide experimental studies of creep of 
three plastics with anisotropy of different degree and kind, in a plane stress state and with 
a COD1Piex history of loading. An approximation of the relation between deformations and 
a functional of speed of change of stress for a viscoelastic material, by means of a polynomial 
reptesentation of material functions, was proposed. A method of determining material fun(> 
tions was given anCil then, basing on experimental results, the functions were determined for 
the three plastics taken for testing. The influence of various parameters 9n the properties of 
the material functions were studied in detail. The material functions determined by this method 
display first of all the nonlinear properties of materials and allow to determine the degree of 
their nonlinearity. 

Praca przedstawia anal~ wynik6w z przeprowadzonych obszemych, doSwiadczalnych bada6 
pelzania w plaskim stanie napr~nia i zloi:onej historii obci!P:enia trzech tworzyw o r6Zoym 
stopniu i rodzaju anizotropii. Zaproponowano aproksymacj~ prawa mi~ deformacjami 
a funkcjonalem z pr~oSci zmiany napr~:ienia mateiialu lepkospr~ego, reprezcn~ 
wielomianow' funkcji materialowych. Podano metod~ wyznaczania funkcji materialowycb. 
a nast@Die na podstawie wynik6w do8wiadczalnycb, wyznaczono je dla trzech tworzyw•przy­
.ktych do bada6. Szczeg61owo zbadano wplyw r6tnycb parametr6w na wlasnoSci funkcji ma­
terialowych. Funkcje materialowe okreSlone " metod' cbarakteryzu~ przede wszystkim wJas­
no&ci nieliniowe material6w i pozwalaj' okre81ic stopien ich nieliniowoSci. 

Pa6oTa upe~CTaBJVIeT 8BaJIH3 peay,m,Ta'l'OB, ll3 upoBe~eRHhlX o6IIDlPm.IX, 3KarepBMeJI'I'&JJiallbl 
~OB8.HHA UOJiaytiCC'l'Jil B nJIOCKOM muipJDKCHIIOM COCTO~ H CO CJIO>KBOA HCTOpRel Ha;. 
rpy>l(eHWI, -rpex MaTepiWIOB c pa:mol crenem.10 H po~oM 8HII30TpOnHH. IIp~o>KeD IIIIIpo­
KCifM&qWIS&KOHa Me>K,Zcy ~e4K>p~ H $ym<llBOH8JIOM CKOpocTI! ll3MeHCHB.fl Hanp$DKem!JI 
B.fi3Koynpyroro MaTepaana, MHOro'IJieHHbiM npe~craBJieHBeM MaTep~ $~. IIpH­
Be.QeB MeTO~ onp~eJICHWI MaTepll8JII>HbiX $ymaudi, 8 3aTCM B8 OCBOBC 3KCUepHMCB"'''UDtii&IX 
peay,m,TaTOB, OHB onpe~enem.I .lVl.fl '!pCX MaTepiWJOB npHWITbiX .lVl.fl BCCJie~oBa.BHI. 11oAP')6-
HO BCCJICJJ;OBaHO BJDJ.RHHe pll3HbiX IIapaMeTpOB H8 CBOitCTB8 MaTCpH8JIJ>HbiX ~~. Ma­
TepH8JIWihle $yBKI.t~U~, onpe~enemn.Ie 3TUM MeTo.n;oM, xapaKTepH3YJOT npe~e Bcero ueJIB­
ueiH&Ie CBoiicrBa MaTepHanoB u nosBoJVIIOT onpe~e.mrn. creneBL ia uemmdblocrH. 

1. Introduction 

IN THE P.llESENT paper a method is proposed for the determination of material functions; 
it is concerned· with creep tests in a plane state of stress in a complex history of loading 
of materials, anisotropic and viscoelastic, of nonlinear characteristics. In describing the 
creep effect· it was assumed that this method would be additive in terms of three ex­
perimentally determined functions: material functions, creep functions and a function 
describing anisotropic properties. 

As it is well known, nearly all the real materials after a certain history of creep in­
ducing loading behave in a different way than in the case where there is no loading history,. 
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that is, with a zero loading history. Thus materials remember the effects of former actions 
of loading. In connection with this fact, in order to obtain a better agreement · of theoretical 
curves with experimental ones, it _ is proposed in papers [1, 2] to improve ·the theory by 
introducing reinforcement parameters. 

On the other hand, in [3] it is assumed that the velocity of creep deformation at a jump 
change of loading depends not only on the actual value of deformation but also on the 
scale of the accumulated damage at the time of the change of loading. In [4] a method 
was proposed for dividing the material sensitive to change in the loading path into several 
groups by analyzing the forms of the constitutive functional. 

In the case of viscoelastic materials, these problems have been considered by STAF­

FORD (5]; here the results from creep tests at constant loading are extrapolated to tests 
with a jump change of loading. In order to describe more adequately the results from 
tests with a jump change of loading, the mentioned author introduces into the equations 
various forms of combination of stress. acting before and after a jump is completed. 

For elastic-plastic materials, the influence of plastic pre-_deformations on mechanical 
properties was studied in [6], in other words, the reaction of a material which underwent 
plastic pre-deformations was analysed. In [7] a possibility of describing the decay of 
memory of material is analysed by introducing into the constitutive equations a para­
meter slowing down the deformation history. 

Although, many authors have worked on the problem of effects of the loading history 
of a material, the material functions have not been determined in a unique way for any 
real material. 

In the present paper an attempt has been made to determine the material functions 
of viscoelastic anisotropic plastics basing on results obtained from study projects carried 
out for the case of a jump change of loading. 

1 Program and results of experimental iuvestigations 

For experimental investigations three types of plastics were used with different ani­
sotropy degree and kind. The plastics were obtained from polyester and epoxy resins 
and glass fibres in the form of continuous bands, cloth and mat. Hardened resins and 
glass fibres differ substantially in physical-mechanical properties. 

The first plastic was composed of layers of glass cloth and of polyester resin, and the 
second - of glass cloth layers interchanged with layers of glass mat and epoxy resin. 
The directions of warp in all these plastics were the same. The third plastic was composed 
of continuous glass bands paraleJly interchanged with epoxy resin bands. 

The plastic number 1 is strongly anisotropic and the plastic number 2- only slightly. 
The plastics 1 and 2 have in their structure three mutually perpendicular symmetry planes 
and -the plastic number 3 - only one isotropic plane. 

The technology of production of the plastics and samples and devices used for tests 
were described in papers [8] and (9]. 

The prograins of study of creep of plastics included a jump change of loading at various 
values of stress and at various increments of stress jump. Changes in loading occurred 
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at different time spans. Therefore, elaborated programs make it possible to study in a 
precise way different responses of the ·material to the given loading history; this is ne­
cessary for the determination of the material functions. 

The programs of study included axial tension of samples and tension with twist. The 
tension was carried out for q; = 0~ n/12; n/6; n/4; n/3; 5n/12; and n/2, where q; denotes 
the angle between the main axis of anisotropy (x-axis) and the direction of normal stress. 
The tension with twist was carried out for the following.values of the ratio of the normal 
to tangent stress k = 0;25; 0.5; 1.0; oo which correspond to q; = 2n/27; n/8; 3n/17; 
n/4, where q; denotes the angle between ·the principal axis of anisotropy and the principal 
direction of stress. The axial tension of samples in any direction q; :1= 0 was considered 
to be a plane state of stress (O'xx' u,,, O'x1). 
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FIG. 1. Programs of loading. 

Samples were loaded by various values of constant stress during 3600 kS and by 
a one-step and a three-step change of stress according to the programs presented in Fig. 1. 
A jump change of stress for a n-step test can be described by the equation 

(2.1) 

5* 
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where H(t)- Heaviside function; i = 1, 2, ... , n; a0 = 0; 11 == 0. In FiJ. 1 the stress 
values a" a1., ••• , O'v correspond to the following values of destructing stress: 0.2; 0.3; 
0;4; 0.5; 0.6. In the programs the foll~ values of time of stress change were provided: 

t2 = 9.0, 90.0, 360.0, 

13 = 18.0' 180.0, 720.0' 
t. = 27.0, 270.0, 1080.0 kS. 

In the studied plastics the stress velocity (a) inftuences substantially the rel.ations ·. 
between stress, deformations and time ( s( a, t) ), and thus in the tests a constant speed 
of pre-stressing and of stress change was assumed 0.4905 MPa/S. 

All the samples to be tested according to the programs of Fig. 1 had a zero loading 
history. Moreover, no stress states in the samples, which could have been created during 
their production, were observed. Tests for checking those states were carried out by the 
.reflection elastooptic method. 

The principal mechanical indicators, for destruCting stres~ and elastic constants, were 
represented in terms of the angle 9'· The angle fJ is formed by the principal axis of ani­
sotropy (the warp direction in cloth or roving bands) and the principal direction of stress. 
Hence, by means of the angle 9' the anisotropic properties of plastics in the target plane 
have been described. 

R,. MPo a 
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a.wv MPa 

1DO !00 
ox.,MPa 

Plo. 2. Strength of plastics: a) The tension stre.astlt as depending on the direction of loadiug. b) Strenstb 
of plastics in a plane stato of stress. 
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Figure 2 presents the results of strength tests of plastics, and Figs. 3, 4 and 5 the elastic> 
constants of the plastics as dependent on the lfJ angle. 

Tests of three plastics in a plane state of stress and with different assumed loading 
histories (see Fig. 1) resulted in a deformation history described by the following relations: 

£ MPa 

FIG. 3. Coefliclents of IODgitudinal elasticity as depending on the direction of tension. 

G MPa 

~--~--~--~~--~--~-~ 
~m ~/6 71/4 ~/3 s11112 1r12 '~ 

Flo. 4. Cod:JJcie.nts of transversal elasticity as dependiq on the direction of Ioadiq. 

FIG. 5. Poisson's coefficients as depending on the direction of.tenSion. 
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e" = eJCJC(ai, ·rpt, t1, t) for a1 = const, k = 1, 2, ... , 4, 

e, = e11(at, fPt, t1, t) fPt = const, k = 1, 2, ... , 11, 

(2.2) lt = const, k = 1 , 2, ... , 9, 

e¥1 = ex,(al, fPt, lt, t). 

Bu, ••• , 6z, are COmponents Of the deformation tensor including instant deformations 
(s0) and creep deformations (s,), i.e. 

(2.3) s11 =si1o+s,1,, i,j=x,y,z. 

As it has already been mentioned, xyz represent the axis of a rectangular coordinate 
system and they coincide with the principal axis of anisotropy of the tested plastics. In 
a coordinate system xyz, defined in such a way, a plane state of stress (azz• a,, a¥1) 
cannot generate any deformations s,z or Bz•. 

The values of deformations, as mean values of 3 to S tests, served for the construction 
of creep diagrams resulting from the realization of particular loading programs. In all, 
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Fro. 6. Deformations along the x·axis (B.x.x) as functions of time, obtained at tension of Plastic 1 in 
direction lfJ = 0, at loadings as in fig. 1. 
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351 sets of diagrams were obtained. In Figs. 6 and 7, as an example, two sets were pre­
sented which concern results obtained at tension in the directions t:p = 0 and twist of 
Plastic 1 for t2 = 360, t3 = 720 and t4 = 1080 kS. The form of the relations presented 
here is typical for viscoplastic bodies. 
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FIG. 7. Functions e1r7(t, d) resulting from twist of Plastic 1 at loading as in Fig. 1. 

Strongly anisotropic properties of Plastic 1 are described in Fig. 8. In Fig. 9 iso­
chronic creep curves are presented and from them it follows that the relations between 
stress and deformation are nonlinear and the nonlinearity is stronger at larger stress 
and at stress acting in the directions t:p ::1= 0. 

The anisotropic structure of the tested plastics and their viscoelastic properties make 
certain factors influence strongly the results of rheological tests. A precise analysis of the 
influence of the sample shape, of sign of normal stress, of glass concentration in a plastic 
and of temperature, on the rheological characteristics for a plastic of a composition 
similar to that of Plastic 1, were given in paper [10]. 
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o experimental 
results · 

0 ~/12 1T/6 :r/-4 'Jr/3 51t/12 '1/t rp 

.FIG. 8. Along-axis elongations as isochronic functions of the direction of tension of Plastic 1 by means 
of a 39.24 MPa stress. 
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FIG. 9. Isochronic curves of creep resulting from tension of Plastic 1 in the direction rp = 0, n/12, n/4. 

3. Proposed method of determiniDg material fuaetions 

For a simple viscoelastic material with memory, the constitutive equation expressing 
the most general relation between deformations and the functional of the speed of stress 
change, for the one-dimensional case, has the form 

(3.1) e(t) = ~ ( du( T) )' • 
dT 0 

http://rcin.org.pl



MATEJUAL PUNC'DONS OP A CREEP OP NONLINEAR VJSCOELAmC .ANJIOTilOPIC PLASI'ICS 66S 

where ff is a functional; if it is continuous and linear, then we can obtain an integral 
Boltzmann representation of a linear viscoelastic material. 

For anisotropic viscoelastic materials of nonlinear characteristics the dependence of 
the intensity of deformation on the intensity of stress was assumed to be one-dimensional. 
When the process is isothermal and the loading history is composed of n-1 steps, Eq. 
(3.1) can be approximated by means of a polynomial representation and it can take the 
form 

IJ 

(3.2) C,.(n1 , n2 , ••• , a,.; th t2 , ••• , t,, t; rp) = 2 W1C1(nJt tit t, rp), 
J-1 

where: 
1) C,. is a constitutive functional which remembers full informaijon on the jump 

history of stress and satisfies the requirements of PIPKIN and ROGERS from [11]; 
2) in the general case 

(3.3) 

with W1 = 1. 
The functions W1 fulfilling the condition (3.3) are material functions and they determine 

the sensitivity of the material to the size and time of stress jumps. Assuming a specific 
creep law for a material, we can obtain a corresponding form of the relation (3.2). 

The function C1(n, th t, rp) represents a creep law found from tests at: 

a"= const for k = 1, 2, ... , 4, · 

'" = const for k = 1, 2, ... , 11 

and this Jaw for the relation between the deformation intensity and the stress intensity 
was assumed in form of the equation 

(3.4) 

or 

(3.5) 

Equation (3.2) for the creep deformation intensity takes then the form 

.. 
(3.6) e,(t) = e(t)-e0 = 2 Wp4.(a, rp)1(t-t1)1fl<">. 

1•1 

The relation (3.4) describes well the results of tests at stationary loadings. In the 
relation (3.4) the values of the functions A( a, rp) and M(n, rp) were determined by 'the 
method of least squares using the creep tests results of the three plastics taken for testing. 
The stress intensity was calculated from a formula which is correct for isotropic materials. 
The function A( n1, cp) characterizes anisotropic properties. The method of determining 
creep functions and anisotropic functions was described in detail in [13]. 

Anisotropic properties can also be accounted for by determining the coefficients of 
anisotropy in the equation of stress intensity as proposed in [13]. 
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For a creep test with a two-step loading change, assuming that t 1 = 0, f/Jt = const, 
we can write Eq. (3.6) in the form 

'(3.7) e1(t) = A(a.)tM<cr•>+ Wl.(a., a1., t:JA(a11-a.) (t-tJM<cru-cra) 

+ W3(a., 0'1h O'nh 12 , t3)A(a111-a1.) (t-t3)Al<crm-cra>. 

In Fig. 10· a method is presented for the extrapolation of results of creep tests at 
stationary loadings onto results obtained at jump changes of loading. It follows from 

t 

t 

Pia. 10. A araphic interpretation of the creep description by means of material functions. 

that figure that actual deformations at time t present the sum of results of stress increases 
from former time intervals. 

The material functions described by Eq. (3.3) were determined from the condition 
that the sum of squares of ·differences between experimental deformations and those 
calculated from Eq. (3.6) be the smallest possible one. For the program with a one-step 
stress change _we obtain 

(3.8) 

, 
J; (e,(tJ)up·-s(a., t1)- W2e(a1., t1-t:J)2 =min.· 
J•l 

The expression in Eq. (3.8) reaches its minimum value at 
, 

(3.9) 
2 (e,(tJ)exp- A(a.)tM<cra>)(A(a11 - a.) (t1- t:J )M<cru-cra) 

w2 = J-=• • , 
2 {A(au--0'.) (tJ-t:JM<cru-cra>)2 
J=l . 

Similarly, for results of the program with a two-step change of stress we ·determine 
w3 using the values of w2 already found, and so on. 
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Flo. 11. Dependence of material functions on values of the stress jump for Plastic 1 under load a.1/11., = 0.2S, determined from elements of the deforma• 
tion tensor aDd the intcmity of deformation. 
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For experimentally found values of deformations (Eq. (2.2)), for times t1 , t2 , ••• 

•• • , tJt ••• , t,. values of W were to be found according to programs of loading with a three­
fold change of loading time and for three kinds of plastic and that made 11 583 values 
found. The calculations were carried . out on a computer. 

The numerical analysis of the obtained values of material functions W was reduced 
to determining the depende~ce of W on the following parameters: 

type of the elements of the deformation tensor and the intensity of deformation; 
direction of ·the loading (angle tp); 
value of the increment of stress jump L1a = (a1-a1_Jfade•u., where a1- stress 

values for 1~;_ 1 < t < t1" adcstr.- destructing stress values; 
stress values a = a,:fadcm. in the interval 1~:_ 1 < t < t1; 

time of the interval At= t~;-t~;_ 1 ; 

time of the stress jump t1 ; 

deformation increment (L1e) in the interval t1 _ 1 < t < t1 ; 

mean values of deformation (e111) in the interval .t"_ 1 < t < t~;; 

work of the full history of stress (Ea1(e111)1); 

increment of the stress work (L1a1(e111)1) in the interval t~r.- 1 < t < t~r,. 
In order to study the dependence of the function Won the elements of the stress tensor 

E;u, e17 , Eu, e~, and on the stress intensity, the values of the function W, determined 
from Eqs. (3.9) us.ing the relations (2.2), are presented in diagrams W(L1a, e;u), W(L1a, e,,), 
W(.L1u, en), W(L1<1, e~1). These relations do not differ from each other substantially. 
Also, . the functions W(Lia, e,) obtained from the relations between the deformation in­
tensitY and the stress intensity had similar diagrams. These relations are presented in 
Fig. 11 for the case of a loading a~1fau = 0.25 for Plastic 1. 

In Fig. 12 the function W was displayed as dependent on the direction of loading 
( tp) of the Plastic 1. Every point of the diagram corresponds to a mean value calculated 

w 
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o z/12 

0 
0 0 0 0 

Flo. JZ. Functions Was depending on direction of loading for Plastic 1. 

from 216 values of W obtained for <p =constant. No clear change of W with tp can be 
seen; it was obtained for the studied plastics that W(<p) = const although a small increase 
of W with tp growing from zero to n/4 can be observed. 

Substantial changes of W with jump changes of stress (L1(j), as displayed in Fig. 13, 
reveal the sensibility of the studied plastics to jump changes of loading. The jump changes. 
of stress in accordance with programs of Fig. 1 in time began with larger stress at Lla 
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Fio. 13. Functions Was depending on values of-the stress jump (Lia) for Plastic 1. 
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and continued to a smaller one at -L1a, what resulted in larger values of W(ja) than 
W(- L1a) calculated for the same absolute values of arguments. It was observed that 
the relations W(L1a) and W(- L1a) follow the same pattern when the jumps of stress end 
at the same values of stress. Thus, in further considerations the same dependence of 
W(L1a) for L1a > 0 and L1a < 0 was assumed. 

The function W depends strongly on the stress value within the interval t~c_ 1 < t < t1 , 

what indicates strong nonlinearity of the deformation history in terms of loading. The 
relations W(a) for the studied plastics are displayed in Fig. 14. 
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FIG. 14. Function Was depending on the actual value of stress Ci = d/d4eatr. in the interval tt- 1 < t < '" 
for Plastic 1. 

The decrease of values of W with growing time of (L1t) and time of the stress jump 
(t1) are shown in Figs~ 15 and 16. 

The functions W as depending on the increment of creep deformation within the 
interval t"_ 1 < t <. t" and on the mean values of deformation in the interval have a similar 
form as the functions W(L1a) and W(a). Qualitative differences in relations presented in 
Figs. 13 and 17 as well as 14 and 18 stem first of all from differences in the definition 
of coordinates (L1a and L1e as well as a and em). 
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Fro. 15. Function Was depending on t = lt-lt.- 1 for Plastic l. 

It follows from the dependence of W on the increment of stress work and on the 
sum of works of stress from precedent time intervals that the function W does not possess 
the properties of a consolidation parameter. If W were only a function of the work of 
stress, then the points on the diagrams of Figs. 19 and 20 would be distributed more 
uniformly. 

From comparison of the relations W(L1G), W(a), W(L1t)~ W(t) as presented in Figs. 13 
through 16, obtained for the three studied plastics, it can be seen that they are qualitatively 
similar. However, a quantitative comparison shows that the functions W determined for 
l>lastic 1 assume the largest values depending on the structure and the type of components 
of the plastic. 

It is not difficult to note that the larger the values of W the stronger the nonlinearity 
of the material. For a linear viscoelastic Boltzmann material: W = 1, but it is not true 
that the material is nonlinear when W = 1, unless an additional assumption is made, 
namely that the relation . (3.4) is linear. 

In order to simplify the mathematical description of the function W it can be assumed 
that 
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(3.10) 

W(9') = const, 
W(Lta) = W(-Lta), 

W(ta:) = const, 

because they vary only slightly. ~t was assumed that the function W depends only on the 
jump of stress, the eild value of stress after a jump and on the time of the interval of 
stress. 

Among a large number of studied forms of the function the best description of the 
obtained relations W(L1a, a, At) is given by the following equation: 

(3.11) W = Fexp(kiL1al +plal+mLft), 
(3.12) W = FIAala:@)"t"'. 

The constants F, k, p, m in Eq. (3.11) were determined by the method of least squares 
and the results are given in [8]. 

For a mathematical description of creep effects of plastics obtained from the realiza­
tion of the tests' programs (Fig. 1), the constitutive relations valid for the case of station­
ary loadings [14, 12, 8] can be used taking into account the relations (3.6) and (3.12). 

We describe now the determination of material functions for Plastic 1 in the case 
when the relation (3.4) is linear. 

If a division of rheological deformations into linear an~ nonlinear ones according to 
paper [15} is possible, then the linear deformations can be described by means of the 
Boltzmann integral representation of a linear viscoelastic material, and the nonlinear 
deformations by means of material functions. The material functions, as defined in the 

6* 

http://rcin.org.pl



676 s. OclmLSD 

present paper, describe first of all the nonlinear properties of a material. For linear 
materials the functions take the value of 1 and thus such a description is physically mean­
ingful and practically relevant. 

As a boundary between the linear and nonlinear regions for the ~ studied plastics, 
stress values equal to 20% of the destructing stress were assumed and this corresponds 
to a horizontal form of the curves (Fig. 21). Assuming an exponential form of the creep 

0.002 

Linear 
region 

0.1 0.3 

360 

Gl 
180 

90 t, 

36 Ep 

t='llks 

a-4 as 
6=a;/6dtJ61r. r1 

I <>l I ~ I .. 
tz t 

ft t 
Flo. 21. Creep function as dependin& on stress 
intensity for Plastic 1 und« loadin& a.,faa = 0.25. 

FIG. 22. Graphic interpretation of the relation 
(3.14). 

kernel in the Boltzmann equation, we obtain . a relation between the intensity of stress 
and the intensity of deformation in the linear form 

(3.13) 

The material functions were determined in a similar manner as in the preceding case 
with a change that, in general, W1 =F 1. After the relation (3.13) has ~n taken into 
account we write Eq. (3.6) in the form 

(3.14) 
I 

e1(t)-e,(O) = 2 W1Y(91) (aJ-f1J_ 1) (t-11)11
• 

)=1 

Figure 22 explains in a graphical way the method consifting in summing up the de­
formations of particular steps of loading. Actual deformations for time t present a sum 
of deformations of former intervals from the linear region (e(a}J t)£), enlarged by cor-
responding values of the material functions WJ. ' 

The found relations W(L1a), W@), W(L1 t), W(t), which were presented. in [8], are 
similar in diagrams as those given in Figs. 13, 14, 15 and 16, but the functions Win 
Eq. (3.14) assume larger values. 
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4. Final remarks · 

The approxitila.tion . of the constitutive functional (3.1) by the polynomial representa­
tion (3.6) assumed in the present paper and the isolating of the anisotropic and creep 
material functions in these equations is in agreement with present day tendencies in 
describing certain classes of materials. These functions describe in · a unique way the 
properties of the tested material and thus supply directions for comparing materials. 

The material functions determined for the three plastics characterize the relevant prop­
erties of materials, and first of all, the degree of their nonlinearity. By means of the 
material functions an extrapolation of data from creep tests at stationary loadings onto 
multi-step tests was carried out. 

The presented method of determining material functions can be successfully applied 
to determine. functions related to the memory effect of other classes of materials. 

Comparatively simple constitutive equations can be obtained due to the coincidence 
of diagrams of material functions as determined from the relation between the deforma­
tion intensity and the stress intensity as well as those resulting from the relations obtained 
from the elements of the stress tensor (Fig. 11 ). 

For the . purpose of determining the material functions, the anisotropic one and the 
creep one, only the relation of dependence of the deformation intensity on time can be 
used. This relation was obtained from results of tests of materials at tension in different 
directions q; because it is similar to the relation of deformation intensity e1(t) determined 
in a plane stress state. This observation simplifies substantially experimental studies. 

Since the material functions as described in the present paper for linear materials 
take the value of 1, it is purposeful to assume Eq. (3.13) which at constant stress describes 
linear viscoelastic deformations; then, nonlinear deformation are described by Eq. (3.14) 
by means of material functions. Such a description has a sound physical foundation. 
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