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Rayleigh-Taylor instability of a MaxweU's fluid 

P. D. ARIEL and B. D. AGGARWALA (CANADA) 

THE CHAMC'l'Elt of equilibriwn of an incompressible Maxwell's fluid of variable density has 
been investiptcd. Two density configurations have been considered: (i) two superposed fluids 
of different uniform densities, (ii) a fluid layer having exponentially varying density. In the 
latter case, an approximate solution has been obtained using the variational principle which 
characterizes the solution. For unstable arrangement it is shown that the stress rel~tion 
timC leads to an increase in the rate at which the arrangement departs from equilibiium. It 
is further demonstrated that it is ~ible to have periodic motion in a MaxweU's fluid for 
some disturbances for which it is not possible to excite waves in a Newtonian fluid. 

Rozwaia si~ r6wnowa~ nieScWiwej cieczy Maxwella o zmiennej ~toSci. Rozpatrywane ~ 
dwie 52'£Zeg6lne konfiguracje ~oSci: (i) superpozycja dwu cieczy 0 romych, jednorodnych 
~o4ciach, (ii) warstwa cieczy o wykJadni~ zmiennej ~to§ci. Dla tego ostatniego przy
padku otrzymano ro~llZ8Jlie przybliZonc, wykorzystujllc odpowicdnill zasad~ wariacyjWl. 
Dla ukJadu niestatecznego wykazano, 7.e czas relaksacji prowadzi do wzrostu szybkoSci 
oddalania ~ od stanu r6wnowagi. Pokazano teZ, 7.e w cieczy Maxwella mozliwy jest ruch 
okresowy dla pewnych typ6w zaburzen, dla kt6rych nie moma wywolaC fat w cieczy Newtona. 

PaccM&TpiiB8C'l'al pauaosecac Hec>KHMaeMoi MaKCBCJIJiosCKoi ~ocm c ucpeMCHBoi unOT
BOCTI»IO. PaCCMO'l'pem.I ADC 'laC'l'HbiC KOB~uryptlmm DJI<miOCTH: 1) cyuepu~ AByx ~
Kocrcl C p83BbiMR, O~Opo~ DJI<mlocmMII, 2) CJioi >KJIAKOC'l'H C 3KCIIOBeJIQil8JIWIO 
DcpeMCHBOJt IIJIO'l'II()CTIIO • .ltJVI 3TOro UOCJICAHCJ'O cnytWI IIOJJyqCBO upu6JIIOKeBBOC pcDieHHC, 
BCIIOJIJ.3YB: COO'l'BeTCTBYIOIItBii sapJWUIOHBhiA up~. .Itwi ueycrohBBoA CBC'I'eMhl no
IWIIIIO, ll'fO BpeMJI penaK~ upBBO~ K pocTy CKopocm y,IUUICBBJI or COC'fOJIIIJUI paBBo
BecJUI. floJC83UIO 'l'O)I(C, ll'fO B M8KCBeJIJlOBCKM >KHAKOCTH B03MO)I(B0 DepBO~ecKOC ABB• 
)I(CJIBC A1U1 BeKO'l'OplaiX TIUlOB BO~emdi, AJV[ KorophiX Bcm.3R BbJ3BaT& BOJIB B DIO'l"'
BOBacoA~. 

1. Introduction 

THE CHAllACTER of equilibrium of ~n incompressible, in viscid fluid of variable density, strat
ified in the vertical direction was investigated by RAYLEIGH (1883) who derived a result of 
general validity, namely, that the stratificatiC?n is stable or unstable as its density decreases 
everywhere or increases anywhere in the upward direction. Further, he obtained explicit 
solutions for two density configurations: (i) one fluid of uniform density topped by another 
fluid of different uniform density, (ii) a fluid having exponentially varying density con
fined between two horizontal planes. 

Taking viscosity of the ftuid into account, HARIUSON (1908) considered the stability 
of two superposed fluids and he obtained the dispersion relation in which the growth 

· rate of the disturbance was expressed as a power series in the coefficient of kinematic 
viscosity. CHANDRASEKHAR (1955) further carried Harrison's work to give a complete 
treatment of the problem. In addition, he demonstrated that the solution w~ character
ized by a variational principle. 
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Maldng use of the variational principle, HIDE (1955) obtained the approximate solu
tions for the two aforementioned density configurations. His results for two superposed 
fluids were in fair agreement with the corresponding exact results derived by Chandrc\
sekhar. REm (1962), however, pointed out that in computing the approximate solution. 
Hide had left out an important term and the closeness he obtained of two solutions was 
fortuitous. This cast doubts on the usefulness of the variational principle. Nevertheless, 
SELIG (1964) derived the variational principle due to Chandrasekhar in a manner which 
was free of any ambiguity. 

Although considerable attention has been paid recently to the instabilities of a non
Newtoniw;t :fluid, it appears that not enough attention has been paid to the Rayleigh
Taylor instability of these :fluids. It is the aim of the present paper to deal with this 
problem. We have investigated the character of equilibrium of a Maxwell's :fluid. Both 
density configurations, first studied by Rayleigh, have been considered. 

2. Formulation of the problem 

Consider a Maxwell's :fluid of density fb depending on the vertical coordinate z stratified 
in the vertical direction. For a Maxwell's :fluid the constitutive equation is 

(2.1) (1 +A~ }ru =2'1/eu. 
where l is the stress relaxation time, fJ is the viscosity of the medium, T 'i is the deviatoric 
stre$s tensor and e,J is the rate of the strain tensor given by 

1 ( au, OUJ) <2·2> eij = 2 OX] + ax, . 
In Eq. (2.2) u1 denotes the velocity at a point. 

The basic equations· of motion are: 
The equation of conservation of momentum 

(2.3) 
dU, op a 

e dt = - ax, + axJ TIJ-gee,. 

The equation of incompressibility 

(24) !!_ + Uj O(! = 0. at ax1 

The equation of continuity 

(2.5) OUJ = 0 
ax~ ' 

where p denotes the scalar pressure, g is the acceleration due to gravity and e, ( = 0, 0, 1) 
is a unit vector in the vertically upward direction. 

The equilibrium state is characterized by u1 = 0. 
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To investigate the character of equilibrium, we give the system a small disturbance, 
which produces a velocity field ui (= u, -v, w). Let the corresponding perturbations in 
e, 1J and p be ~e, ~fJ and ~p, respectively. 

The linearized equations of perturbation are 

au, a a e- = - - ~p+- T iJ- g~eej, at ax, axj (2.6) 

(2.7) 

and 

(2.8) auj = 0 axj . 
Analysing the disturbance in normal modes, we seek the solutions of Eqs. (2.6}-(2.8), 

in which perturbed quantities have the form 

(2.9) (some function of z)xexp(ik~x+ik,y+nt), 

where k~ and k, are the horizontal components of the wave vector k, and n denotes 
the rate at which the system departs from equilibrium. 

The z-component of the curl of Eq. (2.6) can now be written (on making use of Eqs. 
(2.1), (2.2), (2.7) and (2.8)) as 

(2.10) 

where D stands for dfdz, and 

(2.11) 11. = fJ • 
r l+ln ' 

p can be termed as the modified coefficient of viscosity which takes into account the 
effects of the non-Newtonian parameter l. 

On a rigid boundary a ftuid can not slip. Further, following RAYLEIGH (1883), if we 
disregard the phenomenon of surface waves, we can take the vertical component of 
velocity zero at a free surface, thus 

(3.1) w = 0 on a boundary rigid or free. 

Further, on a rigid boundary, in view of the equation of co~tinuity 

(3.2) Dw = 0 on a rigid boundary. 

On a free boundary the tangential stresses T~~: and T1~: must vanish. Now 

T~z = p(Du+ik~w) and r,~: = p(I>v+ik1 w) 
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therefore, 
(3.3) -ik3:T3's-ik7 T7s = p(D2 +k2)w. 

Since w has been assumed to vanish on a free boundary, it follows that 

(3.4) D2w = 0 on a free boundary. 

Should there be discontinuities, as in the present problem, we must require the con
tinuity of velocity, tangential stresses and. pressure at an interface. This amounts to 

(3.5) w, Dw, p(D2 +k2)w 

are continuous across a surface of density distontinuity and the last boundary cpndition, 
namely, the continuity of pressure across the interface can be made to satisfy, if we inte
grate Eq. (2.10) across the interface. This gives 

(3.6) nLI,(eDw)+ gkz Lls(e)w,-LI,I'p(D2 -2k2)Dw] = 0, 
n 

where L1, denotes the jump a quantity experiences in crossing the surface of discontinuity 
z = z, and w, is the common normal component of velocity there. 

It may be remarked here that the eigenvalue problem defined by Eqs. (2.10)-(3.6) is 
exactly similar to the one considered by Chandasekhar, if p is interpreted according to 
Eq. (2.11). We shall, therefore, deal with the next section very briefly. 

4. A variatioaal principle 

Multiplying Eq. (2.10) by w and integrating across the vertical extent of the fluid 
(denoted by L), we obtain the following variational formulation after a series of integra
tions by parts: 

(4.1) n Je[(Dw)2 +k2w2]dz- g=z I Dewldz+ I p{[(D2 +k2)w]2 +4k2(Dw)2}dz = 0 
L L L 

the integrated parts vanishing because of the appropriate boundary conditions. 
Consider a small change 6w in w compatible with the boundary conditions. The cor

responding increment "n in n can be found from Eq. (4.1). We have to the first order 
of smallness. 

(4.2) - ~ . 6n If e[(Dw)2 +k2w2)dz+ g~Z I Dew2dz 
\L L 

+ [ :: ([(D2 +k2)w]2 +4k2(Dw)2)dz} = [ {n[k'ew-D(eDw)] 

- g:• (De)w+ p(D'-k2) 2w+ 2Dp(D2 - k2)Dw+ D2p(D' + k2)w} 8wdz. 

We observe that a necessary and sufficient condition for "n to be zero to the first 
order of smallness for a small variation in w compatible with the boundary conditions 
is that w satisfies the characteristic value problem. Thus the present problem is charac
terized by a variational principle. 
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5. The case of two superposed tlaids of COII$taat deasities separated by a laorizoatal......., 
- aa exact solutioa 

In this section we consider the stability of a Maxwell's fiuid of density e1 occupying 
the region z < 0, topped by another Maxwell's fluid of density ez occupying the region 
z > 0. The two ftuids are' separated by a horizontal interface z = 0. Let the coefficients 
of viscosity and the relaxation times for the lower and upper tluids be 1J1 , l 1 and 1J2 , 12 , 

respectively. 
Following CHANDR.ASEKHAR. (1955) and keeping in mind the new meaning of p as 

defined by Eq. (2.11), the following dispersion relation is derived (cf. Chandrasekhar, 
Eq. (44)): 

(5.1) - [ !! («t-«J+ 1] (<Xzqt +«tq.-k)-4k<Xt«t+ ~
2 

(«tPt-«z•J[«,qt 

where 

(5.2) 

4k3 
-«t qz+k(a1 -a~]+ - 2 (cx1v1 - t:x2 vz)2 (q1-k) (q2 -k) = 0, 

n 

'lt 
CXt =--, et+ez 

fJt 

qf = k2 + _!L, qi = k2 + _!L 
~ ~1. 

and for boundedness of the solution we require 

(5.3) Re(q1) > 0 and Re(qz) > 0. 

We define 

where 

(5.6) 

( 
2)1/3 

Tz = lz : 
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and ql and q2 are now given by 

(5.7) 

For a full discussion of Eq. (5.5) it must be squared repeatedly; which will result 
into an equation of the 26th degree in n. This equation will contain some trivial roots 
and some extraneous roots which will violate the requirement (5.3). The roots left after 
rejecting these spurious roots will be termed as admissible roots. 

If the lighter fluid lies beneath the heavier. fluid, i.e. if a1 < a2 , it will be found that 
Eq. (5.5) has only one admissible root with a positive real part, thereby implying instabil
ity. Indeed this root is positive and its asymptotic behaviour for small and large values 
of k is 

(5.8) 

and 

k-+ 0, 

n-+ (a2 -a1)/2k, k-+ oo. 

It is apparent that n does not depend upon the non-Newtonian parameters either 
' fork-+ 0 or fork-+ oo. Further, we note that n tends to zero for extreme values of k, 

hence a mode of maximum instability must exist which is expected to assert itself in the 
initial course of the motion .. In order to study the effect of the non-Newtonian parameters 

n 

D.f 

0 1.2 

FIG. 1. Dlustrating the influence of non-parameters 
in the unstable case when the heavier ft.uid' lies atop 
the higher ft.uid. The growth rate n is plotted aaainst 
k for cz1 = 0.2, d1 = 0.2, and various values of T1 
and T2. For curves I: T1 = O.S, T.a = O.S; 2: Tt = 
= 1.0, T2 = 0.5; 3: T1 = 0.5, T:.a = 1.0; 4: T1 = 

1.6 k = 1.0, T2 = 1.0. 

T1 and T2 ·on the mode of maximum instability, the positive root of Eq. (5.5) was com
puted on CDC 6000 at the University of Calgary, Canada, for different values of T1 

and T2 • The results are depicted in Fig. 1 in which n has been plotted against k. It can 
be seen that an increase in the value of either T1 or T2 leads to an increase in the value 
of n, the difference being most pronounced at the maxima of the curve, i.e. for the mode 
of maximum instability. Hence we conclude that a non-Newtonian unstable arrange-
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ment departs at a faster rate from equilibrium as compared to a similar Newtonian ar
rangement. 

When the lighter 1luid lies atop the heavier fluid, Eq. (5.5) does not have any admissible 
root with a positive real part, which is to be expected, and we have the stability of the 
system. The discussion of every admissible root for all parameters is somewhat cumber
some, therefore, we have restricted ourselves to the investigation of motion of a single 
Maxwell's fluid occupying the iower z-plane. 

6. Gnrity waves in a MaxweD's , ftuid 

Taking the limit of Eq. (5.1) as ez.-+ 0, at the same time assuming that the coeffiCient 
of kinematic viscosity or the upper fluid remains finite and non-zero, we obtain the follow
ing dispersion relation in the dimensionless form for gravity waves: 

(6.1) T3n7 +3T2n6 +Tn5(3+2kT2+8k2T)+n4(1+6kT2+16k2 T) 

where 

(6.2) 

+kn3(6T+8k+kT3 +8k2Tz+24k3T)+k2n2(2+3kT2 +16k2T+24k3) 

+k2n(3T+8k+8k3 T+l6k4)+k2 (1+8k3) = 0, 

(
g2 )1/3 

T=l- . , 
The assumption that the coefficient of kinematic viscosity of the upper fluid remains 
finite and non-zero when we take the limit is justified on the ground that Eq. (6.1) passes 
to the corresponding relation obtained by Chandrasekhar for the case T = 0. 

When T = 0, i.e. for a Newtonian fluid, Chandrasekhar has demonstrated that Eq. 
(6.1) has only two admissible roots. ·He has further shown that there exists a critical 
value of k (say k.) such that fork< k., these two modes correspond to periodic motion 
and for k > k., they correspond to aperiodic motion. In the latter case Chandrasekhar 
named the two modes as "viscous mode" .and "creeping mode", the "viscous'' mode 
decays rapidly and the "creeping mode" decays slowly. 

Now we make allowance for non-vanishing values of T. In this case it was found 
that Eq. (6.1) has three admissible roots. The asymptotic behaviour ;of these three roots 
is given by 

(6.3) 

and 

(6.4) 

1 11 1 5 1 11 
14.1 i 24 

n2 , n3 = -(2k2 -2 k )± 1(k +2k T-2 k ), k-+ 0 

1 
nt = - 2k' 

n2•3 = - 2~ ±ix0.9SS3 :r, k-+ 00• 
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From the above it follows that periodic motion takes place for both short wave
lengths and large wave-lengths. In constradistinction, for short wave-lengths there is an 
aperiodic motion for a Newtonian fluid. Hence we conclude that one effect of non
Newtonian parameters is to excite waves for disturbances corresponding to short wave
lengths. It may be'further noted that fork~ oo, we no longer have a "viscous" mode. 
Instead, we have what we can term a "Maxwell's" mode which is responsible for oscilla
tory motion fork-+ oo. This mode, however, gives rise to the aperiodic motion fork-+ 0, 
the oscillatory motion being caused by the "creeping" mode. 

Since we have oscillatory motion for both k -+ 0 and k -+ oo, it would be of interest 
to know the nature of the motion for inte~ediate values of k. Keeping this in mind, 
n was computed from Eq. (6.1) for increasing values of T; the results are presentsd in 
Fig. 2. It appears that there exists a critical value of T (say T*) such that forT< T* 

-fll!(n) 

o a-. o.s · 1.2 1.6 k 

FJO. 2. mustratina the variation of - Re(n) the rate of damping of gravity waves with k, the wave-number 
for a Maxwell's fluid for dift'erent values of t, the stress relaxation time. 

we do. not have oscillatory motion in the intermediate range of values of k; however 
for T > T*, waves always arise, therefore we can generalize our earlier observation and 
state that for the value of relaxation time exceeding some critical value, it is always 
possible to excite waves on a Maxwell's fluid for any disturbance. 

7. A continuously stratified fluid of finite depth- an approximate solution 

Consider a layer of a Maxwell's fluid confined between the planes z = 0 and z = d, 
for which e and 1J have the following dependence on z in the undisturbed state 

(7.1) e = eoexppz 
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and 

(7.2) 1J = 71(!0 exppz, 

where p, " and eo are appropriate constants. 
We assume the following trial function for w(z): 

(7.3) w(z) = Wsinlz. 

V anismng of w at the upper boundary requires that 

(7.4) 

where s is an integer. 

ns 
l=d' 

We shall further make the assumption 

(7.5) IPdl ~ 1 

703 

which implies that the density variation in the ftuid is a good deal lower than the average 
density of the ftuid. 

Substituting for e, p and w(z) in Eq. (4.1) and evaluating the integrals, we obtain 
the following eigen-value relation between n and ·k: 

(7.6) 

Equation (7 .6) reduces to the corresponding dispersion relation derived by HIDE 
(1955) for a Newtonian ftuid (l =- 0). 

It will be found convenient to deal with Eq. (7.6) in a non-dimensional form. Meas
uring n and k in terms of (n2s2'P/d2) sec-1 and (nsfd) cm-1, Eq. (7.6) takes the follow
ing dimensionless form: 

(7.7) 

where 

(7.8) 

and 

m3+n2+n(k2+1- G-rk: )- Gk2 =- 0, 
1+k 1+k2 

gpd4 
G= 442' 

1tS71 

,A,n2s2 
(7.9) T = dl 

Here G has the form of the Grashoff number and -r can be regarded as the non-dimen
sional relaxation time. 

7.1. Uastable stratlftaltloa 

If G is positive, i.e. if the density increases in the upward direction, Eq. (7.7) admits 
one positive real root thereby implying instability; the other two roots being either real 
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and negative or complex conjugate with negative real parts. The behaviour of the positive 
root for small and large k is 

(7.10) for k __. 0, 

n-+ Gfk2 for k __. oo. 

So it can be seen, as in the case of two superposed fluids, that the disturbances cor
responding to large or short wave lengths remain unaffected by the non-Newtonian para
meter T. To see the effects ofT on the mode of maximum instability in Fig. 3, n has been 

Fio. 3. Illpstrating the influence of the non-Newton· 
ian parameter in the unstable case of continuously 
stratified fluid. The growth rate n is plotted against 
the wave-number k for G = 2.0 and several values 

ofT. 

0 5.0 10.0 15.0 G 

Fio. 4. lllustrating the behavior of n... The 
maximum growth rate against G, the non· 
dimensional measure of buoyancy forces for dif· 
ferent values of T, the dimensionless stress 

relaxation time. 

plotted against k for G = 2.0 and various values ofT. We observe that an increase in T 
le&ds to an increase in the value . of n and n,., the maximum growth rate. Thus, what we 
stated in the case of two superposed fluids is still valid, namely, that a non-Newtonian 
stratification departs from the steady state at a faster rate as compared to a Newtonian 
stratification. 

To obtain n,., we di(ferentiate Eq. (7.1) with respect to k and set dnfdk = 0. The 
equation governing n,. is 

(7.11) 

The behaviour of n,. against G for different values of T has been exhibited in Fig. 4. 
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1.1. Stable stratlfkatloD 

. If G is negative, i.e. if the density decreases in the upward direction, Eq. (7.8) admits 
either three negative real roots or one negative real root and a pair of complex conjugate 
roots with negative real parts. In any case, the stability of the system is assured. To study 
the manner in which the equilibrium is restored we proceed as follows. 

The cubic 

n3 +bn2 +cn+d = 0 

with real coefficients has three real roots or one real and a pair of complex roots accord
ing to whether 

(7.12) X= _i_(~ -c)3- (d- be + 2b3)2 
- 27 3 3 27 

is positive or negative. 
· On substituting for the coefficients from Eq. (7.7), we find that 

- 4 { -r4kGj T2k'G~ 2 k2Gt 
(7.13) X- - 27T4 (1+k2)3 + (1+k2)2 (2+3-r(l+k )]+ l+k2 [1 

-5-c(l+k2)+6-c2(l+k2)
2]+(l+k2

)
2 

[ -c(l+k2
)- ! ]}. 

where 

(7.14) G1 =-G. 

FIG. 5. Dlustrating the plot of z against k, the wave 
number for several values of T, the dimensionless 

stress relaxation time. 

X can be regarded as a cubic polynomial in G1 • Let any of its zeros be 1/z. In Fig. 5 
z is plotted against k for various values of -r. The curve divides the first quadn.mt in the 
k-z plane into two regions one of which is bounded if T is greater than 1/4. If -r < 1/4, 

a Arch. Mcch. Stos. nr sn9 
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periodic motion is possible in the region lying below the curve, and when 1' > 1/4, 
periodic motion takes place outside the closed region. It can be further seen that if 1' = 'fc 

( == 0.29616), X is negative for all values of k, hence we can conclude that for the values 
of relaxation time exceeding some critical value, waves can always be excited in a Max
well's fluid. 
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