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Coherent turbulent struetures as critical points in unsteady flow 

B. J. CAN1WELL (STANPORD) 

'l'uuULENT ftows which are normally thought of as self-similar in space are re-examined in 
terms of a functional form which assumes similarity in time. It is suggested that such an assump
tion can provide a framework within which the coherent motions of turbulent shear ftows can 
be analyzed in a unified way. Structural features, large eddies and so forth come out as critical 
points in a phase plane plot of particle trajectories. Some of the analytical properties of un
steady critical points are derived. 

Przeplywy turbulentne, traktowane zwykle jako samopodobne w prustrzeni fizycznej, roz
watane 9'l tutaj przy uZyciu formy funkcjonalnej za.kladaj~j podobieilstwo w czasie. Pro
ponuje si~, aby to ostatnie zaloZenie traktowae jako podsta~ teorii umoZliwiajllcej jednoliUl 
an~ sp6jnych ruch6w dla turbulentnych przeplyw6w Scinajllcych. Cechy strukturalne, dme 
wiry, etc., ukazujll si~ jako punkty krytyczne na wykresach trajektorii C74stek w plaszczyinie 
fazowej. Wyprowadzono kilka cech analitycznych niestacjonarnych punkt6w krytycznych. 

Typ6yneB'l'Hhle TelleJDVI, TJ)aK'fOB8.BBlde o6Jd11Bo K8K aBTOMo~e.m.Jihlc B ci»BSIACCKOM npo
crpaBCTBe, paCCMaTJ)HB8JO'fCS ~eeL npa HCJIOJJI,30B8Billl ci»~OIIBJJWioA cl»oPMhl, DpeAUOJia• 
I'8JO~eH DOAOOHC BO BPeMCBH. n~, 11T06ld 3TO nOCJieABee :QPCAUOnO>KCBHC TPBKTO
BBT& 1<8K OCBOBY TeOPHB ABIOtnei B03MO>KBOCT& OAHOpoAHOI'O 8B8JD138 CBJJ3BhiX ~emdi 
,ttJUI ryp6yneBTiihiX TC11CBHii c,ABBI'B. CTpy:KTypHhle CBoicma, ooJJidiiRe BJIXPH R T. ~. no
BBJIJIJOTCJI K8K :Kp11'1'1ACCKHC T0111<H BB ~ Tpae:KTOpd ~ B c}Jaso:soA IIJIOCI(o

CTH. BhiBe~CRO BCCI<OJIId(O 8JIBJIBTil1lecJQIX CBOiCTB B~OB&pu&JX :KpHT1111CCKBX TOliCI<. 

t. lntrodactioD 

FLum motion can be studied from two distinct points of view. From the l..agrangian 
point of view the object of study is the moving fluid or, more precisely, its discrete particles 
which fill in a continuous manner some moving volume occupied by the fluid. In this 
view the primary variables of interest are particle trajectories and the various vector and 
scalar quantities characterizing the motion are examined as functions of time and of 
those data which distinguish one particle from another. As such data one may take, for 
example, the Cartesian coordinates of the fluid particles at some initial time. 

From the Eulerian point of view, the object of study is not the fluid itself but a fixed 
space which is filled with a moving fluid. The primary variable of interest is the velocity 
:field and the quantities characteriZing the motion are considered as functions of time 
and space . 

.. 
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708 B.J.C~ 

The two formulations are connected through the parametric equations for particle 
paths: 

t 

x(t) = x0 + J u(x(s),y(s),z(s),s)th, 
to 

t 

(1.1) y(t) = Yo+ J v(x(s),y(s), z(s), s)th, 
to 

t 

z(t) = z0 + J w(x(s), y(s), z(s), s)th. 
to 

Information about particle paths carries with it complete information about the 
velocity field by simple differentiation of the above equations and, in principle, know
ledge of the velocity field can be used to calculate particle paths. 

If a frame of reference can be found in which the fiow is steady, then the particle 
path equations reduce to an autonomous system with integral curves which coincide 
with the streamlines of the velocity field referred to the same frame. A number of authors 
have. made use of this fact to explore the properties of solution trajectories in a variety 
of steady fiow situations. OswATITSCH (1958) and LIGHTHILL (1963) classified certain 
critical points which can occur in the neighborhood of a rigid boundary. PBRR.Y and 
FAIIlLIE (1974) reviewed critical point analysis in·a general way and applied the technique 
to 'the problem of three-dimensional separation. They placed special emphasis on the 
fact that the method provides a wealth of topological language which is particularly well 
suited to the unambiguous description of fiuid ftow patterns. More recently HUNT, ABELL, 

PE'rERKA and Woo (1978) applied critical point theory to fiow visualization studies of 
bluff obstacles. 

Hthe fiow is unsteady, then the integration ofEqs. (1.1) may be extremely complicated. 
Moreover, the physical interpretation of the integrated particle paths involves severe 
conceptual as well as analytical difficulties. If the integration is carried out over a volume 
of particles, then each point in space will be traversed by an infinite set of trajectories, 
each with a different slope corresponding to the passage of particles through the point 
at successive instants of time. The issue is further complicated by the fact that the pattern 
of particle paths, like the pattern of streamlines, depends on the frame of reference. Whereas 
our intuition tells us that physical phenomena should be describable in ·an invariant 
.way, independent of the incidental motion of an observer. 

Recently this problem has received new attention in· connection with large scale co
herent motions in turbulent shear fiows. The main characteristics of these so-called huge 
eddies are that they convect with the main fi9w and grow in size with length scales in the 
streamwise and cross-stream directions which, in most cases, are of the same order. They 
carry fiuid with them and their induced m'Otions. entrain additional fiuid. 

The situation is this: the essential feature of free turbulence is growth and it now 
appears that an important element of this is local growth by moving and interacting 
large eddies. This suggests the need for a description of turbul~nce which focuses on the 
fluid composing the large eddy rather than on some fixed volume which is only momen-
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tarily occupied by it. As a first approximation it seems appropriate to choose a frame 
of reference which translates with some preferred point in the eddy. This approach can 
sometimes lead to a simplified qualitative description of the flow. However, , the choice 
of convection speed can be an ambiguous and subjective process and, as noted above, 
conclusions regarding the physical processes taking place in the flow ought not to depend 
on this choice. What is needed is an approach which is Eulerian in the sense that govern.:. 
ing equations are written in terms of familiar spatial variables but Lagrangian in the 
sense that trajectories of fluid particles can be described in a simple and invariant way. 

Now it is axiomatic in the study of turbulence that some method be used which simplifies 
the complex, fluctuating motions which compose all such flows. The usual procedure is 
to take a simple long time· average thereby removing any explicit time dependence. Here 
we shall replace· this with an assumption that part of the unsteady motion in turbulent 
shear flows ·is truly coherent. Flows which are normally considered to be self-similar in 
space will be re-examined in terms of a functional form for the dependent variables which 
assumes similarity in time. The limited objective of this paper is to explore some of the 
consequences of this assumption and to see whether it can provide a framework within 
which the coherent motions of turbulent flows can be usefully described. 

The first and most important consequence of the assumption is that the particle path · 
Eq. (1.1) can be reduced to an autonomous system (CANTWELL 1978) as in steady flow. 
Moreover, the resulting phase plane pattern of particle trajectories is invariant under 
certain transformations o( a moving observer (CAN1WELL, COLES and DIMOTAKIS 1978). 

A second consequence is that, as in Reynolds averaging, some of the physics of tur
bulence is lost. The large eddies that are observed in mixing layers (BROWN and RosHKO 
1974), wakes (BEVILAQUA and LYKOUDIS 19'i\1) and jets (CROW and CHAMPAGNE 1971) 
interact with each other. In mixing layers and jets the interactions are strong and occur 
with great rapidily whereas in wakes the interactions occur infrequently so that the eddies 
retain their identity over many characteristic lengths of the flow (T ANEDA 1959). In either 
case a vortex observed now will, with the passage of sufficient time, be incorporated into 
a vortex of larger scale. Under the assumption of this paper the coherent part of the 
unsteady motion is to be thought of as the ultimate result of many such interactions. In 
this sense the coherent motion is unseen in an instantaneous picture of the flow, just as 
the long time averaged flow is unseen. It is an average over many interactions of an un
steady motion which is at a scale larger than the eddies which are actually observed. 

However, it is not an average referred in the usual sense to a laboratory observer; 
for this would s~mply retrieve the ordinary Reynolds averaged velocity field. Rather, it. 
is an average referred to an observer in a contracting space with distances which are 
scal,ed by some power of time as determined by the global parameters which govern the 
flow. In two dimensions we can think of this as an average referred to an observer who 
is receding out of the plane of the flow at a rate which fixes (in his view) the position 
and size of the various structural features of the flow. See CANTWELL, COLES and DIMo
TAKIS (1978) for a specific example of ·this averaging process. See also TuRNER (1964) 
where a similarity form is used to plot particle trajectories in a rising and expanding 
Hill's spherical vortex. 
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We consider incompressible, constant property flows governed by 

au} = 0 
ax} ' 

(2.1) 
au, au, 1 ap 1 a1:IJ 
-+uJ-= ---+---, at axj e ax, e ax} 

B.J. CANrwBtL 

where the stress terms have been purposely left undefined. For turbulent flows the stresses 
would involve products of fluctuations averaged over a. suitably defined ensemble. 

Similarity -and group-theoretical methods have often been used to reduce the com
plexity of the equations of fluid motion and an interesting early discussion of this subject 
may be found in BIRKHOFF (1950). Here we use invariance of the system (2.1) under the 
two parameter group of stretchings and translations to construct similarity variables of 
the following form: 

(2.2) 

x1-V1t 
E, = ~tt ' 

u,-v. 
U,(,) = M"tt-1 . ' 

( TIJ 
T,J E) = eM2"tli-2' 

where M is a parameter of the motion for a given flow and ex and k .are chosen so that 
M"tl: has the dimensions of a length. 

Upon application of the transformation (2.2) the system (2.1) becomes 

a~ =O 
aE1 ' 

(2.3) 

and the particle path Eq. (1.1) become 

dE, 
(2.4) d.,; = U;(E)- kE" 

where T = Int. 
Critical points of the system (2.4) occur where 

(2.5) Ut( E) = kE 1. 

H a non-steady similarity assumption is to have any applicability at all to turbulent flows, 
then it should satisfy the minimum requirement of giving spatial· growth and decay laws 
of characteristic lengths and velocities which correspond with those with which we are 
already familiar. In this context we will consider flows where there is a uniform velocity 
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to the right in the x-direction so that V= (uco, 0, 0) and flows where there is no ex
ternally imposed velocity V = (0, 0, 0). Consider the trajectory of a critical point shown 
schematically as a stable focus in Fig. 1. If we take E1 in the direction of the external 

. ----..u_ 

FIG. 1. 

flow and E2 and E3 as cross-stream directions, then in physical coordinates the trajectory 
of the critical point is given by 

Xc(t} = EtcMa.t"+ucot, 

(2.6) Yc(t} = E2.cMa.t", 

Zc(t} = E3cM01t". 
H we take lJ = y y: + z: as a cross-stream length scale and u0 = Uco- Xc as a character
istic streamwise velocity, then two cases may be distinguished. 

CASE 1. Jet-like flows (uco = 0). Solving for t in terms of Xc we have t - x:'" and 

(2.7) 

CASE 2. Wake-like flows (uco #: 0). Here we require k ~ 1 so that for large time 
Ucot ~ E2cMa.t1'._ In this approximation the imposed free stream decouples streamwise 
convection from growth so that Xc - t and 

(2.8) 
tJ- ~, 

H the parameter M has the units Lmr-", then we can solve for ex and kin terms or m 
and n so that the similarity variable E 1 is dimensionless. The result is 

ex = 1/m, 
k = nfm. 

(2.9) 

Using the relations (2.7), (2.8) and (2.9) plus the parameters which are used to charac
terize various turbulent shear flows we can construct Table 1. The exponents in x which 
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Table 1 

Class Flow Parameter -~- k 
Exponent in x 

Comment ex 
s•ons ~ Uo 

Wake- n;dxing layer Uo L11 1 1 1 0 velocity difference u1-u:z. 

Lik-e turbulent spot uo Lr-• 1 1 1 0 free stream velocity u00 

plane wake uo ~,v £2T-1 1/2 1/2 1/2 -1/2 2-D far wake approxima· 
(laminar) tion, viscosity 
plane wake Uo ~ £Zl1 1/2 1/2 1/2 -1/2 2-D far wake approximation 
round wake Uo ~2 L'T-t 1/3 1/3 . 1/3 - 'l./3 3-D far wake approximation 
grid initial period of decay, 
turbulence f46' £'12 1/7 2/1 2/7 -S/1 Loitsianskii invariant 

Jet-Like plane plume guo~ · L''l' 1/3 1 0 2-D buoyancy flux, units of 
g £12 

round plume guo (J2 £4T-' 1/4 3/4 -1/3 3-D buoyancy flux, units of 

, g LT-2 

vortex sheet fJ iir-t 2/3 2/3 -1/2 rollup from an impulsively 
rollup started sharp edge~ fJ is the 

potential flow parameter 
(KADBN 1931) 

plane jet roc5 L''l2 1/3 2/3 -1/2 2-D momentum flux 
round jet uic52.,, L4r-z 1/2 1/2 1 -1 3-D momentum flux, 
(laminar) £2T-1 viscosity 
round jet uic52 L4'l2 1/4 1/2 1 -1 3-D momentum flux 
radial jet u~c5z,, £4T-2 1/2 1/2 -1 3-D momentum flux, 
(laminar) £2T-1 viscosity 
radial jet uoc52 £4T-2 1/4 1/2 1 -1 3·D momentum flux 
line vortex u08,, £2T-1 1/2 1/2 1 -1 circulation, viscosity 
(laminar) 
line vortex uoc5 £2j1 1/2 1/2 1 -1 circulation 
vortex pair w~' L''l' 1/3 1/3 1 -2 'l.·D impulse, w-vorticity 
vortex ring wc54 £4T-1 1/4 1/4 l -3 3-D impulse, w-vorticity 

are a consequence of the relations (2. 7) and (2.8) are the same as the usual values found 
in standard texts. The· new element here is that these two columns can be genera~ from 
the single column of k values. Note the convenient ordering of the flows in terms of 
monotonically changing values of k. Note further that flows with k = 1 could be clas~ 
as wake-like or jet-like and that for this case the large time approximation is unnecessary. 

It is clear from the above that each of the flows listed in Table 1 can be described 
by a single global time scale. This is precisely what is required by the form of Eqs. (2.2) 
where lengths in all three coordinate directions are normalized by the same power of 
time. MoreQver, from the analysis of the trajectory of the critical point it is clear that 
growth rates of structural features are not distinct from their convection rates; they are 
connected through the constant k. They are part and parcel of the temporal evolutionary 
process by which the fluid responds to externally imposed forces. In this respect we are 
able to include in our analysis flows where the velocity field (relative to a certain frame 
of reference) is perfectly steady since time is always a parameter along particle paths 
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and a global time scale or, to be more precise, a constant whose dimension are a length di
vided by some power of time, may often be defined whether the flow is steady or unsteady. 

It is important that the flow be reducible to only one global parameter or, if two 
parameters are involved, that they have commensurable units. For example, the laminar 
round jet has two parameters; Jwith units (L4T- 2) and, with units (L2 T- 1), both of which 
lead to the same value k = 1/2. · As a second example the plane turbulent jet has the 
single parameter J with units (L3T- 2

) which leads to k = 2/3. We can turn the previous 
analysis around and arrive at the same k from the usual growth and decay laws 

y "' x, 
dx _! 
-"'X 2 
dt ' 

which upon integration lead to 

X "' t2f3, 

y "' t2/3. 

Both of these flows evolve in the x and y directions with the same power of time and 
can be accommodated by the system (2.2). 

A counter example would be . the plane laminar jet with parameters Jjy'; with units 
(L2T- 312) and , with units (L2T- 1) which lead to k = 3/4 and k = 1/2, respectively. 
We can solve for streamwise and transverse time scales along particle paths from 

which lead to 

dx _"' x-1/3 
dt , 

X "' t 3/4, 

y""" tl/2. 

Here it is necessary to make a boundary layer approximation to accommodate a length 
in the streamwise direction which grows according to the inertial time scale and a length 
in the transverse direction which- grows with the viscous time scale. The plane laminar 
jet can not be accommodated by the system (2.2). 

Essential to all of the above is the assumption that for turbulent flows the large scale 
motions are independent of"· This assumption is intimately connected with the depend
ence of the flow Reynolds number on time 

Re = Uo ~ "' kM2a. t2t-1. , , 
For flows with k = 1/2, inertial and viscous times scale together and the assumption is . 
unnecessary. For flows with k > 1/2 the inertial time will dominate at all but the smallest 
scales. However, flows with k < 1/2 will tend to follow a viscous scale as time increases. 
In particular, the assumptions of this paper will break down in the case of the round ·· 
turbulent wake where the large times . required for simllarity are inconsistent with Rey
nolds number independence of the large scales. 
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1 lmariaace of tile pattera or particle patlas 

Under the assumption of non-steady similarity, the global parameter M determines 
the appropriate value of k. Once k has been determined, the rate of convection and growth 
of structural features in the flow (critical points, turbulent interfaces, etc.) is determined. 
If we choose to move (non-uniformly) with a coordinate system which remains attached 
to some preferred feature, then, in the moving coordinate system 

(3.1) 

x~ = xi+a,M«tt, 

t' = t, 
ui = u1+a1kWti-l, 

p' =p, 

Ttj = TtjJ 

and the similarity variables in moving coordinates are 
(. = Et+a, 

(3.2) 
U;(E') = U,(E)+ka, 
P' (E') = P(E), 

711(E') = T,1(E) 

where a1 is a dimensionless rate of motion in the x, direction. 
It is clear from the above that the pattern formed by the velocity vector field will depend 

on the a1• This is true whether one plots the u1 field in physical coordinates or the U, field 
in similarity coordinates. Similarly, the pattern of particle displacements, dx, in physical 
coordinates will depend on the a1• However, the pattern of particle displacements in sim
ilarity coordinates, dE, is independent of the a;. This follows from 

(3.3) u.(E)-kE. = U~(E')-ka,-kE~+ka, = UI(E')-kE •. 

Equation (3.3) is an ·important result for it states that the location and character of a 
critical point in similarity coordinates is fixed by the dynamics governing the flow and 
by the choice of a value fork (which is a consequence of the units of M) and not by the 
incidental choice of speed for a moving observer. The pattern of particle paths is invariant 
under translations in the E 1• 

4. Uusteady critical points in the plue 

The following is a generalization to arbitrary values of k of the analysis in CANT
~L, CoLES and DIMOTAKIS (1978) for k = 1. See PERRY and F AIR.LIE (1974) for a similar 
analysis of critical points in steady flows. 

In two dimensions, (Eh E2) ..-. (E, TJ) and (Uh U2) ..-. (U, V), Eqs. (2.4) are 

dE 
d-r = U(E, TJ)-kE = F1(E, TJ), 

(4.1) 
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If the flow is regular in the neighborhood of a critical point (Ec, fJe), then near the point 

Eqs. (4.1) can be linearized as 

[
dEl [-~1 oF1I l d-r = --aEJee.fJe --a:iJ ee,fle [E-Eel =[ab] [E-Ec] = [A] [E-Ec]. 

.!!!1_ oF21 oF21 11-1Jc c d fJ-'1/c fJ-'1/e 
d1: . oE ee. fie 07J O:e. 'le 

(4.2) 

The velocity, vorticity and rate of strain· fields in the neighborhood of the point are 

U = Ucc+M01tl:-l(kE+a(E-Ec)+b(7J-1Jc)), 

fJ = M01t1- 1(c(E-Ec)+d(7]-1Jc)+kfJ), 
(4.3) 

w = t-1(c-b), 

( 

t~l ) _ t-1(a+k) T(b+c) 

s,J- t-1 • 
T (b+c) t-1(d+k) 

The fluid velocities at the critical point are 

(4.4) 
Uc = Ucc +kM01tlc-lEc, 
'De== kMa.tlc-1'1/c• 

In this way the similarity coordinates of a critical point are directly related to the velocity 
history of the fluid at the point. 

The character of the critical point is determined by the negative of the trace p =r ·· 

= ~(a+d) and determinant q =ad-be of the matrix A. From continuity 

(4.5) p= 2k. 

The presence of dissipation in real flows insures length scales which increase with time 
and for this reason negative values of k do not occur. The determinant of A is related 
to the vorticity and strain fields in the neighborhood of the critical point by · 

(4.6) q = !J2-S2+k2, 
1 

where Q _ = wt/2 and S = t(- Dets11)
2. The eigenvalues of A are 

1 

ll = -k-(k2-q)2, 
1 (4.7) 

l2 = -k+(k2-q)2 

and are real only ifS;::.-. I!JI. IfS= I!JI, then l 1 = l2 = -k. We can conveniently display 
the various possibilities for the critical points in a plot of p (or k) versus q (Fig. 2). 

The separatrices through a saddle or node have slopes 

(4.8) c 
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k<O not allowed 

~:t 
I 
I 

• (11) 

•(N} 

• OSIIen. ViSCIJUI ~rteJ- k•1h 
A Plane Turbulent Jet k·2/3 

• Plane Mixing Layer k•1 
• Turbulent Spot, Contwell, CoJes 

and Dirnotokis (1178) k•1 

FIG. 2. 

and the included angle, 8, between the separatrices is given by 

1 
2(b-c) n 

1 = -s-· 
[- (k+a) (k+d) + ( b;c rr cos8 = 

B. J . . CANrwm.L 

The angle between the separatrices through a saddle reflects a balance between rotational 
motion, D, and straining motion S. If IDI < S, the fluid exhibits saddle behavior. As 
the ratio increases through one (q > k2), the angle passes to zero; the vorticity dominates 
and the fluid begins to exhibit focal behavior. If the vorticity is zero, the angle is 9Q0

• 

We can illustrate some of the ideas just presented ·with some simple examples .. 
EXAMPLE 1. The viscous Oseen vortex. In cylindrical coordinates . 

"" = _!__(1-e-r2/4.t\." = 0 
., 'lnr " r ' 
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where r is the circulation of the vortex. We can put this in the form of the ·system (2.1) 
1 1 

by multiplying and dividing by M2i2 where M = 4,, H we define R = r/,.; 4-vt , the 
particle path equations become 

dR R dO r (1-R2) 

d-r = - T; TT = 8w R2 

near the critical point R = 0 

dR R dO r 
d-r = - T; d-r = 8w · 

In Cartesian coordinates with 

E = xfy'4,t and 1J = y/{4;1, 

[;]=[i ~f][:l 
The critical point is a stable focus with q = ( ~ ) 

2 

+ ! (Fig. 3). 

FIG. 3. 

EXAMPLE 2. The plane mixing layer. Choose a stream function of the form 

'i' = ( "• ~"•} y+ ( "•~"• )xF(ayfx), 

where u1 and u2 are the velocities on the high and low speed sides and a is a dimension
less rate of spread parameter. The function F is defined so that F' ( oo) = 1 and F'(- oo) = 
= -1. As in Example 1 we can recast this steady flow in unsteady terms with M = 
= u1 -u2 = L1u, ex= 1 and k = 1 so that 

'i' = Llu
2t{i;. + ;" F(0'7j/E)}, 
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where A = 
111

-
112 

, E = xfiJIIt and fJ = yjiJ11t. Using this form the particle path equa
llt-112 

tions become 

IJ 

dE 1 F" 
-=-+--E d-r 21 2 ' 

drJ F 1JF' -=--+--'1 
d-r 2a 2E 

Flo. 4. 

I 
I 
I 
I 
I 
I 
1 
I 
I 

1/2).+1/2 

with a critical point whose coordinates (E c, 'le) trace out the dividing stream line of the 
layer (1JciEc = V/U). In the neighborhood of the critical point the matrix of slopes be
comes 

ro = _!_ ( - _!!__) ( fJ; + 1) F" (a .!k_). 
t 2Ec Ec Ec 

For any F which depends only on the ratio fJIE the critical point is a star with q = 1 

(Fig. 4). If, for example, we choose F = ln2cosh ( "; } which assumes fl(± <X>) = 0, then 

the equations for Ee and 'le become 

"1: = -lln(2cosh ( .. t)). 
l. = ;l + ~ taol+ ~:). 
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For the case u2 /u1 = 1/JI'f the critical point occurs at (~c' 'le) = (0.945, -0.32/a) which 
corresponds to a dividing streamline at ayc/Xc == -0.34. Notice that we could have 

treated this ftow as wake-like with u«J = "1 
; "

2 
• 

EXAMPLE 3. The plane turbulent jet. Choose a stream function of the form 

1 

., = (!:-r F(<)· 
where J is the momentum ftux of the jet with units L 3 r- 2 and a is a dimensionless rate 
of spread parameter. The function Fis defined so that F(O) = 0, F'(O) = 1 and F"(O) = 0. 
We can recast this stream function into unsteady form with M = J, ex = 1/3 and k = 2/3 
so that 

V'= J•l•t•l'{a-IEIF(a z)}. 
where E = xfJ113t 213, 1J = yfJ113t 213• Using this form the particle path equations become 

1 1 

dE = a2 E- 2 F' - '!:_ E 
dT 3 ' 

FIG. s. 

A critical point of the above equations occurs at (Ec, 'le)= ((3/2)213a113
, 0). The matrix 

of slopes in the neighborhood of (Ec, 1Jc) is 
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Upon substitution of Ec the determinant 

1 (2. 
2 

q= -9+ T) · 

The critical pointis a node with q =:= ~ . The angle between the separatrices is 90° (Fig. 5). 

Fro. 6. 

CANTWELL, COLES and DIMOTAKIS (1978) identified four critical points in the turbulent 
spot by fitting 'P = u'! tg(xfuCX) t, yfuCX) t) to measurements on the plane of symmetry. 
There were two saddles and two foci shown schematically in Fig. 6. Values of qat each 
critical point are plotted in Fig. 2. 

6. Concluding remarks 

The consequences of the assumption of non-steady similarity include a reduction in 
the !lumber of independent variables by one and a connection between characteristic 
lengths and velocities in a turbulent flow via the parameter k. Perhaps most important 
is the fact that structural features of the velocity field are brought out automatically 
without reference to an observer who translates with any particular feature. 

An operational property of the systems (2.2) and (2.3) is that the entire flow is con
tained within a finite domain near the origin in similarity coordinates. This is clear from 
the particle path equations (2.4) where the U1 are limited by the velocity of the fastest 
moving particles in the flow. Far away from the origin the particle displacements are 
dominated by the velocity induced by the receding observer: kE 1• This feature may make 
the systems (2.2) and (2.3) particularly well suited to computational methods. 

·The examples of the turbulent shear layer and turbulent plane jet are included here 
to demonstrate that such flows can be formulated as unsteady but similar in the sense 
of the system (2.2). Normally, these flows are measured by a laboratory observer who 
takes a long time average at a fixed position in physical coordinates (x, y) with the func
tion F(ayfx) the empirically measured result. However, from the results of Sect. 2, it is 
clear that another kind of average is possible. Operationally this would be a long time 
average referred to a receding observer who looks at the flow quite literally through the 
zoom lens of a camera(!). The rate of zoom is adjusted to match the value of M and the 

(1) The zoom lens analogy was first suggested by D. CoLES (private communication). 

http://rcin.org.pl



CoHBRBNT roJUIULBNT STllUcn,nu!S AS CIU11CAL POINTS IN UNfti!ADY JILOW 721 

averaging time of the experiment is limited by the physical size of the apparatus which 
contains the flow. 

TurbuletJ.t flows are normally thought of as having infinite extent in space and time. 
Here we have taken an alternate view in which the flow is thought of as having been 
started at some initial time. Fluctuations in this evolving flow field are assumed to follow 
the same time scale as the coherent motion and are averaged by an obserVer who 
recedes out of the plane of motion at a rate which is determined by the global parameter 
which governs the flow in question. The receding observer fixes the slopes of particle 
trajectories by merely adding a virtual velocity vector kE1 to each point in his field of view. 
It seems reasonable to conjecture that experimental solutions based on through-the
zoom-lens averaging or theoretical solutions of the system (2.3) will exhibit a dependence 
on E and 1J which is much more complex than the simple ratio 1J I E (cf. the turbulent spot). 
Such solutions are likely to contain critical points and in this regard the system (2.3) 
along with some appropriate model for the TiJ is a promising candidate in the search 
for large eddy solutions of the equations of motion. 
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