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Bulk constitutive relations for cracked materials 

CZ. EIMER (WARSZAWA) 

WITHIN the frame of continuum infinitesimal theory of a medium with stable random cracks 
which may open or close (unilateral internal constraints), given in Paper [1], effective form of 
constitutive equations (1.1) is derived. The geometry of cracks is characterized by their total 
area and the probability density distribution after direction which suffices for calculation in 
the case of no interaction of cracks. In calculation one separates macro-strains (called ,addi
tional") brought about by response forces at closed cracks. Detailed calculation is carried out 
for isotropic crack system. 

W ramach kontynualnej, infinitezymalnej teorii osrodka z ustalonym losowym ukladem rys, 
kt6re moM si~ otwierae lub zamykac Uednostronne wi~zy wewn~trzne), przedstawionej w pracy 
[1], wyprowadza si~ konkret~U~ postac r6wnan konstytutywnych (1.1). Geometria zarysowania 
jest scharakteryzowana przez og611Ul powierzchni~ rys i ich rozldad ~toSci prawdopodobienstwa 
podlug kierunku, CO wystarczy do przeprowadzenia konkretnych ooliczen W przypadku rys 
bez interakcji. Przy obliczeniu wydziela si~ makro-odksztalcenia (zwane ,,dodatkowymi,) 
w:ywolane silami reakcji w rysach zamkni~tych. Szczeg6lowe obliczenia przeprowadzono dla 
izotropowego ukladu rys. 

B paMKax KOHTmiya.JibHOH, HH<l>UHHTeSHMam.Hoii TeOpiBf cpe,l:tbi, npe~C'ta.BJiemroii B pa6oTe [1), 
C YC11lHOBJieHHOH CJiyqaHHOH CKCTeMOH pHCOK, KOTOpbie MOryT OTKpbiB&TbCH KJlK 38Kpb1BaTbC.Jl 
(O~OCTOpomme BHyTpeHHI!e CBH3K), BbmO.n;HTCH KOHKPeTHbiH BH,l( onpe~eJIJIIOIIUIX ypaBHe
:mrli (1.1). reoMeTpiUI CHCTeMbi pHCOK oxapaKTepH30BaHa o6~eii nOBepXHOCTLIO pUCOK H :HX 
pacnpe~eJieHHeM nnOTHOCTU aepo.RTHOCTU no HanpaBJieHHIO, triO ~OCTaTotmo ~ npoae~eHH.st 
KOHKpeTHbiX paClleTOB B cnyqae pKCOK 6ea B38MMO~eHCTBWI. llpH paClleTe BbmeJimOTCH MaKpO
~e<l>op~ (Ha3bmaeMble ,~onoJIHBTem.HbiMH''), Bbi3BaHHbie CWiaMH peaKURH B 38.MK
Hy'I'biX PHCKax. llo~Hble paClleTbi npoB~eHbi ~ H30TpOIIHOH CHCTeMbi pKCOK. 

1. Preliminaries, crack geometry 

IN PAP.ER [1]<1) we analysed the bulk properties of an elastic material with numerous stable 
micro-cracks, randomly distributed, where the cracks may open or close depending on 
loads; consequently, the material exhibits unilateral internal constraints. We have shown 
that, within the infinitesimal theory, the stress-strain constitutive relations are homoge
neous but no more additive. The material has been called pseudo-linear elastic and the 
relations take the form 

(1.1) a = C(e)E, E = S(s)a, 

where E, a are macro-strain and stress tensors and .c, S the bulk elastic stiffness and 
compliance tensors. The latter are no more constant, instead they are functions of di
rection in the strain (stress) 9-space, 

(1.2) 

(1) The reader is recommended to get acquainted beforehand with the said Paper since it explains 
basic ideas presupposed, in the sequel, to be known. 
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We have examined the basic properties of the functions C(e), S(s), in particular the restric
tions imposed by invariance to certain groups of orthogonal transformations (isotropy, 
orthotropy). This was done with no recourse to intrinsic geometric properties of the crack 
system. Consequently, so far we cannot answer, for example, the question what crack 
geometry endows the relations (1.1) with respective symmetry invariance. In general, 
the problem which will be studied in the present paper consists in specializing the form 
of constitutive relations (1.1) and expressing those by parameters describing crack geo
metry. 

To begin with, we must select a mode of description of the mentioned geometry for 
statistically homogeneous crack distributions (assumed throughout in 'the sequel). Ob
serve that multipoint correlati._on functions, as used in the theory of composite media, 
are not suitable,-since the cracks unlike say the inclusioD:s, have no finite volume, i.e. are 
geometric o~jects of a zero measure. Bearing in mind that a full description is inexhaustible 
(it requires, for exampl~, an infinite sequence of more and more dimensional correlation 
functions) we should confine the scope of description according to the following items: 
(a) available probabilistic information, (b) precision of mechanical assumptions (sim
plification about non:interacting cracks, say), (c) problems to be solved e.g. finding bulk 
(mean) strain only, not its probability distribution curve. From among many possible 
statistics offered by jntegral stochastic geometry, we select the following simple one taking 
account of the two main features: (i) the total am out of cracks, (ii) the distribution of 
cracks after direction (space orientation). 

Consider a crack element assimilated to a surface element with the unit normal vector 
n -~nd take into account all crack elements with the orientation n in the unit volume of 
the material. The total area of these elements amounts to Pn(n)dw where dw is the ele
mentary solid angle defining a measure on the space of n's (corresponding to a surface 
element on the unit sphere); P is the total area of all cracks (of whatever orientation) 
in the unit volume; n(n) defines the probability density of cracks with orientation n, sat
isfying the normalization condition 

(1.3) J n(n)dw = I. 
Cl 

The domain of integration Q corresponds to the unit hemisphere with the area 2n since 
the cracks are not oriented, i.e. the opposite edges of cracks and senses of n are equivalent 
(the crack area is singly counted irrespective of whether for the open or the closed crack). 
No particular assumptions about the shape of the function n(n) are m~de so far, except 
for the condition (I .3). 

If small cracks (with no long range structures) become more and more scattered, for 
P -+ 0, we arrive at the model of non-interacting cracks. Then the fields produced in the 
vicinity of single cracks (and quickly disappearing a~ larger distances) do not interfere 
and may be simply added. The quantities connected with cracks will be seen to depend 
proportionally on the crack concentration, hence it will be useful to employ quantities 
per unit concentration (P = 1); we call them in the sequel resolved quantities. 

If all cracks have a fixed orientation n (n(n) becomes a delta function)~ we shall speak 
of an oriented system of cracks. Constitutive relations and, in particular, elastic constants 
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for the material with the oriented resolved crack system will be the starting (elementary) 
ones in the subsequent argument. Knowing this, next to the description of crack geometry 
by means of concentration P and the distribution n(n), we shall be able to find the tensor 
functions C(e), S(s) in the relations (1.1). Thus the outlined description will prove to be 
sufficient for non-interacting cracks. 

2. Field quantities 

Consider a unit volume element containing a great many elementary non-interacting 
cracks and a reference element of the same material and the same shape without cracks. 
Let the reference element be loaded by bounaary tractions producing a homogeneous 
field of a (second boundary value problem). The cracked element loaded in the same 
manner at the external boundary will show the same macro-stress a while the macro-strain 
amounts to E = Eo+ Ec where Eo corresponds to the plain (non-cracked) material and 
Ec is the contribution (macro-perturbation) yielded by cracks. On the other hand let 
both elements be loaded by the homogeneous macro-strain E produced by suitable displace
ment at the boundary (first boundary value problem). Macro-stresses in the .plain and 
the cracked element will be, consecutively, a = a0 and a = a 0+ac where O'c is the 
perturbation produced by cracks. For non-interacting cracks, i.e. for P-+ 0, the quantities 
Ec, ac may be looked upon as infinitesimal, however, we spread the validity of results 
for finite (not too large) P, in paricular we form resolved quantities for P = l. 

The quantities Ec, ac are supposed, in·tum, to be composed of two contributing parts 
called in the sequel basic ("b") and additional ("a"), i.e. 

(2.1) O'c = O'b+O'a, Ec = Eb+Ea• 

Basic strains (stresses) are by definition the strains (stresses) which would appear if the 
cracks could not close (imagine these are narrow yet not infinitesimal slits). Additional 
strains (stresses) are produced by normal forces at opposite boundary surfaces at closed 
ideal cracks, i.e. cracks with no friction at rest and at motion. The forces in question may 
be looked upon as response forces to unilateral internal constraints (cf. [1]). The slits 
loaded in the said manner are equivalent to closed cracks. 

For non-interacting cracks the bulk macro-quantities follow from superposition of 
the partial macro-quantities relative to partial crack systems. Recall that the partial crack 
sysfem is composed of all elementary cracks with the space orientation n, i.e. it forms an 
oriented crack system with the area Pn(n)dw. Denote by E~11 >, 0'~11> (and similarly 
Ei"', 0'~11 >, E~">, 0'~11>) respective quantities for the oriented resolved crack system n. Then 
the superposition yields for bulk macro-quantities 

(2.2) 

Ec = P J n(n)E~11>(n)dw, 
Cl 

O'c = P J n(n)a~11>(n)dw 
!J 

and analogically E11 , ••• , where the domain of integration, !J, will be discussed in the 
sequel. 
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According to Eq. (2.1) we can decompose the functional relations (1.1) as follows: 

a= a0+ac = a0+ab +aa = [C0 +Cb+Ca(e)]E = [C+C,.(e)]E, 

(2.3) E = E0 +Ec = £0+£b+Ea = [S0 +Sb+Sa(e)]a = [S+Sa(s)]a, · 

The C0 , S0 elastic tensors refer to the plain (non-cracked) material whereas C, S to the 
material with flaws (slits). Both ty:Pes of the above tensors are material constants since 
they do not depend on the state of stress. In particular, C, S may be calculated by meth
ods of the theory of multiphase media for a material with "inclusions" in the form of 
flaws. For the isotropic, both material and crack system, we obtain for C0 as well as for 
C two independent elastic constants albeit the numerical values of those are different. 

Instead, the tensors C4 , Sa for additional quantities depend, apart from geometry, on 
tb.e state of stress which makes the cracks open or closed. The discussed tensor functions, 
and only these, cause nonlinearity due to local fields produced by unilateral constraint 
response forees as if the properties of inhomogeneous material changed according to load; 
therefore the theory exceeds the scope of the classical theory of multiphase bodies. In 
this respect, the decomposition in oriented crack systems provides a method which re
quires a possibly most restricted information needed for taking account of the con
straints. According to these explanations, in the remaining part of the present section we 
analyse roughly the tensors Cb, Sb (incidental here), while the fundamental tensors c., S4 

will be calculated in more detail in Sect. 3. 

The constant material tensors C, S are in principle, supposed to be known. All we 
can do within our restricted theory is to derive cb' sb from the more fundamental quan
tities C~">, St"> for the oriented resolved crack systems D. For general anisotropy, q;•> 
(and similarly for S~">) is a function of D, C~"> = C~">(D), depending on the history of 
crack formation and on material anisotropy, i.e. on Co and is supposed to be· preassigned. 
In the issue C0 and Cb may exibit different symmetry properties or, even for the same type 
of anisotropy, symmetry elements may spatially not coincide. 

Consider in more detail the isotropic material (i.e. C0 is isotropic) with the non-in
teracting stochastically homogeneous crack system described by the function n(D). Assume 
that for any partial crack system n there are no preferred directions orthogonal to D (trans
versal two-dimensional isotropy). This may occur, for instance, in a composite isotropic 
material -if crack formation depends only on the normal (to crack plane) traction. Con-

. sequently, each oriented crack system is invariant under mirror reflection in any of the 
parallel planes D, under any rotation about an axis D and reflection in any plane passing 
through this axis. This is the case of monotropy yielded by invariance under ro~ation 
about a hexagonal . axis D. With resPect to elastic properties this is. equivalent to any ro
tation about D and the above mentioned reflections, the elastic components being inver
sion-invariant. In Cartesian coordinates with D generating the x3-axis the monotropic 
elastic matrix, denoted for a while by c<">, contains 5 independent elastic constants and 
takes the general form 
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C1"}tt c1~>22 Ci"/33 0 0 0 
Ci11ltt C1"l33 0 0 0 

(2.4) [Cf:j~,] = 
CH33 0 0 0 

C1~t3 0 0 

C1~t3 0 
t (C<n> c<n> ) 2 1111- 1122 

and similarly. forS. The matrix form (2.4) itself as applied to Cb, holds for any n, howev

er, the theory admits of the terms dependent on n, i.e. in general C~"/11" = c~·l11" (n), 
since partial tensors depend on geometry of individual cracks. 

Usign Eqs. (2.2) and (2.3) we define 

(2.5) Cb = P f n(n)C1">(n)dw. 
D 

In a fixed Cartesian coordinate system, as used forE, a in .Eq. (2.3), we have 

(2.6) C;,<r)lcl = n,pn)qntcrnrsC~11Jqru 

where C~"Jqr& is provided by Eq. (2.4); nip are cosines of angles between the fixed x1-axis 
and the auxiliary one (xp) and yield the desired orthogonal transformation. In many 
cases, for "natural" cracks (i.e. not produced in an artificial manner nor by special pe
riodic body forces) the tensors C~"> may be assumed as independent of n, i.e. as material 
constants. Using Eqs. (2.5) and (2.6) we obtain 

(2.7) cb il"' = P f n(n)n,p n1q n~crnrs dwCL"J11r, 
D 

where we integrate over the unit hemisphere according to the explanation following Eq.(l.2). 
Analogous formulae hold for Sb. Thus the problem reduces to averaging elastic tensors. 
For example, taking account of Eq. (2.4) we calculate {for constant Cb) 

where 
c1111 = al c~~)lll +a2 c~~)122 +a3 c~~)133 +a4 c~~~33 +as c~~~13' 

a1 = P J n(n)(nt1 +nf2 +n~~n~2)dw, 
D 

a2 = P J n(n)n~ 1 n~2 dw 
D 

and so on; one must bear in mind that summation takes place over all the terms c~:~rs 
irrespective of symmetry properties, e.g. for a 1 , C~1\ 11 appears in terms with the indices 
1111, 2222, 1212, 2121. 

In the general case partial crack systems have no transversal symmetry and retain 
only invariance to mirror reflection in the n plane. Instead of Eq. (2.4) we obtain 13 con-

stants 

Cf'?tt Ci'?22 C1"}33 0 0 C1"tu 
C~"i22 C~"i33 0 0 C!"i12 

(2.8) [C,<jj,] = C1~33 0 0 C1~t2 
C!~23 C!~13 0 

C1~t3 0 
C1~u _ 
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and the components are functions of n; the formula (2. 7) is written more explicitly as 

{2.9) Cbt11r;L = P j n,,niqnk,nls [n(n) C~';Jq,s{n)]dw 
!J 

with tensor components in the brackets according to Eq. (2.8). In general, we integrate 
in spherical coordinates and select eventual symmetry axes of the functions of n in the 
brackets in Eq. (2.9) as coordinate axes (for details of calculation cf. Section 3). 

3. Additional quantities 

The concept of a resolved oriented crack system has made it possible to reveal certain 
restrictions on the form of the tensors CbJ Sb (cf. Eqs. (2.7) and (2.9)), however we would 
rather find the tensors C, S in Eq. (2.3) in a direct experimental test. Unfortunately, the 
latter cannot be separated from the quantities C0 , Sa except, possibly, for some special 
modes of loading to be suggested by the, theory. Thus the additional terms (which cause 
nonlinearity) are crucial for constitutive equations. 

The basic assumption for the relation (1.1) is that the cracks be ideal, i.e. conservative, 
with no energy dissipation by friction. It follows that only normal-to-crack forces may 
appear at crack edges and these are unidirectional ( compressive or zero). Consider an 
oriented crack system n and cut out a representative unit cube with a facet n. Let the crack 
edge be load~ in a just explained man Ler. Then, under averaging, all boundary force 
vectors cancel except the normal on the facets n. One must realize that, being interested 
in additional quantities, we take into account the virtual (separate) action of the said res
ponse forces while other agencies (say shear stresses) have already been included in ma
terial and basic quantities (cf. Eq. (2.3)). 

Thus the kinematics is altogether provided by the additional strain tensor depending 
proportionally on the stress vector O'nD where 

(3.1) 

is the intensity of normal forces due to the preassigned bulk stress tensor a. Let us define 
the strain 'IJ<n> as the additional strain tensor for the oriented resolved crack system n when 
O'n = 1. The said quantity may be looked upon as a material constant and the tensor 
function 'IJ<n>(n) (supposed to be known) yields the desired information about the prop
erties of the cracked material in view of additional quantities. Express Yl<n> in the form 

(3.2) 'IJ<n> = .J; 1J1m1 ® mJJ J = 1, 2, 3, 
J 

where 1J1 are principal strains and m1 principal directions of 'IJ<nl; in general 'YJJ = 1J1 (n), m1 = 
= m1 (n). 

In particular, for an isotropic (plain) material the tensor (3.2) will coincide with crack 
orientation, consequently say m1 = n. If, moreover, the cracks are transversally (statis-
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tically) isotropic, the two remaining principal directions will be equivalent, i.e. rJ 2 = rJ3 

and we obtain 

(3.3) YJ<"> = 1'/tml ® m1 +1'J2(m2 ® m2 +mJ ® m3) = 1'/tml ® m1 +1'J2(/-m1 ® m1) 

= rJ1D ® n+1}2(1-n ® n) = a,.l+b,.n ® n, 

a,.= 1]2, b = 1J1-1J2 

and I is the unit tensor of 61i. If, more to it, the above quantities do not depend on n, 
we have for all resolved oriented systems 

(3.4) YJ<"> = al + bn ® n. 
Analogous formulae may of course be derived for additional stresses. 

Using Eq. (2.2) and bearing in mind that at no interaction simple superposition holds, 
we come at the bulk quantities 

(3.5) Ea = P J n(n)YJ<">(n) (n · an)dw. 
D 

The region of integration D now depends on the stress a (which is crucial for further 
analysis) since the integrand strains equal 

(3.6) 

(3.6) 

YJ<">(n)(n ·an) 

0 

for n ·an < 0 (cracks closed), 

for n ·an> 0 (cracks open). 

Thus we integrate over all n's satisfying n ·an< 0 (a given) i.e. D = D(a). 
Consequently, we obtain Ea = Ea(a), according to Eq. (2.3); a similar argument holds 

for a a = a a( E). The sign rule is such as to make tension stresses and extension strains 
positive, as usual in continuum mechanics. 

Let us perform a more detailed calculation of Ea for overall isotropy, i.e. for Eq. (3.4) 
and n(n) = 1/2n = const (do not confuse the two n'sl): Substituting this in Eq. (3.5) 
we obtain 

Ea =· ~ [a J I (n • an)dw+b J n ® n(n · an)dw], 
D D 

(3.7) 

D = {n: n"n,a111 < 0}. 

Express, conveniently, all quantities in the Cartesian coordinates determined by the prin
cipal directions vK of the stress tensor 

(3.8) a=}; crKvK ®vx, K = 1,2,3, 
K 

where crK are principal stresses. Then, 

n ·an =}; crK(n ·vK)2~ =}; crKni, 
K K 

6 Arch. Mech. Stos. nr 4n9 
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where ng = n • vx are directional cosines of n· in the basis Vx and hence, from Eq. (3.7)1, 

in the said basis 

Now, for overall isotropy, the principal directions of Ea and a are expected to coincide 
and, in fact, the terms with I =F J are readily seen to disappear. Thus only diagonal terms 
are left which we assimilate to principal strains; hence, using one-index notation we obtain 

(3.9) eaJ = ~ 2 (a J nidw+b J nJnidw) aK. 
K D D 

By Eq. {3.6) we integrate over all n's satisfying 

(3.10) ~sxni < 0, 
K 

where ax has been replaced by normalized dimensionless sK, 2 si = 1, in accordance 
K 

with Eq (1.1), the left hand part of the inequality (3.10)1 being a homogeneous linear 
form of aK; therefore Ea = E0 (s). The equality (3.10h in conjunction with the inequality 
(3.1 0)3 , where K0 is one (arbitrary) of the indices 1 , 2, 3, shows that the region of integration 
lies on a hemisphere (cf. explanations to Eq. (1.2)) which has been chosen in coinci
dence with the ba~is "x. 

Thus the constitutive relation for additional strains in the basis ""takes the form 
(cf. Eq. (2.3)) 

(3.11) 

£111 = 2 SuK.aK = ;: 2 [a<XK(s)+bfJJK(s)]ax, 
K K 

<XK = J nidw, 
D 

the terms <X", {JJK being functions of a1 : a2 : a3 = s 1 : s 2 : s 3 and a, b - certain material 
constants; .the latter depend, apart from elastic properties, on the individual crack geo
metry. In invariant form 

(3.12) Sa=~ SaJK"J ®vJ ®vx ®vK. 
J,K 

These formulae are analogous to Eqs. (3.2) and (3.3) of [1] where the reader is referred 
to for detailed explanation. In particular, in an arbitrary orthogonal coordinate system 
(cf. [1], Eq. (3.5)) 

(3.13) sQ ijlcl = ~ saJK,Ji,J/"Kic"x'; 
J,K 

"Jh ... , are respective cosines of angles between the coordinate axes and principal axes 
of the tensor a. Thus, while the SoJx's reflect the dependence on the ratio a 1 :a2 :a3 of 
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principal stresses, ·the remaining factors take account of spatial orientation of the stress 
tensor. The latter is being followed by the strain E, according to the "motion" of the clo~ 
crack system. The integrals involved. i.e. the functions aK(S), P1K(S) in Eq. (3.11) for 
different particular cases, are calculated in the Appendix. 

4. Final remarks 

The outlined theory yields the first approximation solution (for non-interacting cracks); 
it enables one to calculate effectively constitutive functions in Eq. (1.1). For simple 
crack geometries the latter are determined with accuracy to a few material constants (e.g. 
a, bin Eq. (3.11) for overall isotropy). The theory tells us how to determine these cons
tants experimentally. 

For instance, according to the Appendix we know that additional quantiti_es disappear 
at overall tension, therefore we are able to determine the tensors C, S; then we find the 
constants a, b at overall compression tests (cf. (Eq. A4)). Finally, by formulae in the 
Appendix we determine theoretically the constitutive functions for all other modes of 
loading. Thus, by means of a few formulae and parameters the theory predicts the be
haviour of material for infinity of load paths which, , by experimental methods, would 
require a great many tests for different e's in Eq. (1.1), and would yield only numerical 
approximation. Note that in any case the constitutive tensors in Eq. (1.1) eo-rotate with 
the stress tensor ellipsoid, cf. (Eq. (3.12)). However, while at overall tension (resp. com
pression), i.e. in the first (resp. the opposite) octant of the principal stress space of sK 
(cf. Appendix, (I) and (11)), they do not depend on the sK's and may be represented by 
a spherical surface, in the remaining octants they depend on stress, e.g. through the ar
gument (A.5) (cf. also [1], Fig. 2). 

In the present paper we have not analysed the problem of crack increase and propa
gation which would involve· strength properties of the material apart from the elastic 
ones. It is obvious that in a step by step construction of the function n(n),_ according to 
the load sequence, subsequent increments would depend- on the momentary n(n) -and 
state of stress. Of course, in general the function n(n) would not suffice and we would 
need more information about the relative spatial position of oriented crack elements, 
i.e. say multipoint correlation functions. However, the total amount of cracks and distri
bution after direction are the most fundamental characteristics, thus the theory is seen 
to be also the basic tool for approximate solution of that extended problem. 

Appendix 

Calculation of integrals in tbe formula (3 .11) 

It may be shown, under assumptions more general than in the present paper (cf. [1], 
Eq. (3.6) and relevant explanations), that constitutive functions, in particular SGJK(s), 
can be reduced to two only, say S.11 , S,12 • In view of the quoted equalities each of these 

6* 
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functions takes in general 6 different forms for consecutive subdomains, according to the 
signs of arguments, symbolically, 

Satt(St, S2, s3): Sau( +, +, + ), Sau(-, -, - ), Sau(+, -, - ), 

Sal! (- , + , + ), Sau ( + , + , -), Sau (- , + , -); 
(A .I) 

So12(St,S2,s3): Sa12(+, +, +),So12(-, -, -),Sa12(+, -, -), 

Sa12(-, +, +),Sa12(+, +, -), Sa12(-, +, -). 

In virtue of Eq. (3.11) calculation reduces to the three integrals 

J n~dw, J nfdw, J n~n~dw, 
D D D 

the first two of which enter into S1111 whereas the first and the third one into Sa12. For 
each of these integrals the above sign combinations of s1 , s2 , s3 are to be considered. 
Explicit formulae can be derived for uniform lateral stress, i.e. for say arbitrary s1 and 
s2 = s3 • In particular, the following cases will be discussed: 

(I) Overall tension (not necessarily homogeneou.s), sK ;;?; 0, K = 1, 2, 3. The ine
quality (3.10)1 is not satisfied for any nK, consequently !.l'is an empty set and Ea = 0, 
all cracks being open (clearly, this holds only under our general assumption of non-in
teracting cracks). 

(11) Overall compression, sK < 0, K = l, 2, 3. Now Eq. (3.10) is accomplished for all 
n' s and !J is the whole hemisphere. Select spherical coordinates (Fig. l) with dw = sin tp 
dtp d{) and take, without loss of generality. 

(A.2) nK = n1 = cOSfP, n2 = sinqJcos{), n3 = sintpsin{). 

FIG. 1. 

Hence 
2n n/2 

aK(s) = J n~dw = J J cos2tpsinqJdqJd{) = - J d{) J cos2 fPd(costp) 
D 8 tp 0 0 

0 

= -2n J C2 dC = }:__ n 
1 3 

(with substitution of the new variable C = cos tp ), i.e. cxK does not depend on s. 
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The integrals {J1K reduce to the following ones: 

n/2 

J ntdw = J J c~s4 qJsinqJdqJd{} = -2n J cos4qJd(cosqJ) = ~ n, 
D D rp 0 

2n n/2 

J n~n~dw = J J (sinqJcos0)2cos2qJ sinqJdqJd{} = J cos20d{} J sin3qJcos2qJdqJ 
D D rp 0 0 

[ 
1 1 ]

211 

[ 1 ( 1 1 )]fC/
2 

2 = -sinOcos{}+ -{} - · - cos5q;--cos3qJ-2cosqJ = -n 
2 2 0 16 5 3 0 15 . 

Both results can be combined into the following one: 

(A.3) 

and consequently, according to Eq. (3.11), 

(A.4) e.1 /P =(a+ ~)a+ I~ bdJKaK, 

This holds for overall compression: thus in the (- , - , -) octant of the coordinates 
(s 1 , s2 , s3) we have obtained an apparently linear-elastic relation with coefficients on 
respective spheres. 

(Ill) "Mixed" conditions for (s1 , s2 , s3 ) of the type ( +, -, -) and (-, +, +) 
where we assume s2 = s3 (uniform lateral load). According to Eq. (3.10)1 we have 

case ( +, -, - ): n~ < ls2 l (n~+n~), s2 = s3 < 0, 
St 

case(-,+,+): 

Substituting Eq. (A.2) we obtain v-(+,-,-): St 2 St 

js21 < tg qJ or qJ > (/Jo = arctg TsJ , 

(-,+,+): ~ > tg2qJ or 'P < 'Po = arctg V Is, I . 
s2 s2 

Thus integration is performed over the part of the unit sphere cut · out by the spherical 
cone qJ = l{Jo and the following results are obtained: 

case (- , + , +) 

~ ~~ 2 . 
J ntdw :::::: 2n J cos4 qJsinqJdqJ = -2n J t'dC = S n(l-cos5qJ0), 

D 0 1 
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2n 9'o 9'o 

J n~n~dco = J cos21Jd{} J sin2tpcos2tpsintpdq> = n J (cos4tp-cos2tp)d(costp) 
D 0 0 0 

case(+,-,-) 

C05cpo 

= n J (~-C2)dC = ~ (2-5cos3tp0 +3cos5 tp0); 

t 

n/2 0 

J ntdw = 2n J cos4 q>sintpdtp = -2n J C4 dC = ~ ncos5tp0 , 

D 9'o COicpo 

0 

J n~nidw = n J (~-C2)dC = 1~ (5C<¥3 tp0 -3cos5tp0). 

D COicpo 

(IV) Mixed conditions of type ( +, +, -) and (-, +, -) with s1 = s2 and s1 = s3, 
respectively, according to the two last terms in Eq. (A.l). However, in that case a direct 
calculation of the relevant integrals, for s2 = s3 , turns out to be more convenient. Thus 
we calculate 

J nidw, 
D 

in coordinates and under · conditions of (Ill) (in view of s2 = s3 the respective integrals 
for n3 have the same value). 

case(-,+,+) 

2n 9'o 

J nJdco = J J (sintpcosiJ)2 sintpdtpd{) = J cos2{)d{} J sin3q>dtp 
D f cp 0 0 

2n 9'o 

J n1dw = J J (sintpcosiJ)4sintpdtpdD = J cos4fJd{} J sin4 q>sinq>dq> 
D f cp 0 0 

= r cos2U(l - sin2 U)dD l (!-COS
29')2sin 'I'd 'I' = [ -+ ( ! sin4U- D) 
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J nin~dw = J J (sinpcosD)2 (sinpsinD)2 sinq>dpdD 
D {} 9' 

2n n/2 3 [ 2 1 ]0 f n~ dw = f cos4DdD f _ sin4 psinpdp = - 4 n C- "3 C3 + S C5 

D 0 9'o COif'o 

n 
= 60 (15cosp0 -10cos3p 0 +3C0$5p 0): 

All integrals under (Ill) and (IV) are seen to be certain polynomials of the argument 

(A.5) cos (arctg vt:l) 
and, according to Eq. (3.11), so are the components of SuiC· 

(V) The general case of unequal s 1 , s 2 , s 3 • The analysis leads ~o elliptic-type integrals 
which can be calculated numerically, so we restrict ourselves to one example. Suppose 

.r1 < 0, s2 > s3 > 0; the condition (3.10)1 reads 

s1 (cosp)2 +s2 (sinpcosD)2 +s3 (sinpsinD)2 < 0, 
i.e. 

or 

<p < arccotgv ,::I cos2D+ ,;:I sin2D = arcotg(pJ"l-x2sin2D), 

2 s2-s, "'=---. s2 

This time the domain of integration is cut out by an elliptic cone since, in Cartesian 
coordinates (cf. Fig. 1 ). 
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where e is the generating radius of the ellipse (the same follows also immediately from 
Eq. (3.10)1 upon replacing the n~s by x, y, z, respectively). 

Let us calculate, for example, 

(further numerical calculation). 
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