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Bulk constitutive relations for cracked materials

CZ. EIMER (WARSZAWA)

WITHIN the frame of continuum infinitesimal theory of a medium with stable random cracks
which may open or close (unilateral internal constraints), given in Paper [1], effective form of
constitutive equations (1.1) is derived. The geometry of cracks is characterized by their total
area and the probability density distribution after direction which suffices for calculation in
the case of no interaction of cracks. In calculation one separates macro-strains (called "addi-
tional”) brought about by response forces at closed cracks. Detailed calculation is carried out
for isotropic crack system.

W ramach kontynualnej, infinitezymalnej teorii o§rodka z ustalonym losowym ukladem rys,
ktére moga si¢ otwiera¢ lub zamyka¢ (jednostronne wigzy wewnetrzne), przedstawionej w pracy
[1], wyprowadza si¢ konkretna posta¢ réwnaii konstytutywnych (1.1). Geometria zarysowania
jest scharakteryzowana przez ogélng powierzchni¢ rys i ich rozklad gestoéei prawdopodobiefistwa
podlug kierunku, co wystarczy do przeprowadzenia konkretnych obliczefi w przypadku rys
bez interakcji. Przy obliczeniu wydziela si¢ makro-odksztalcenia (zwane ,,dodatkowymi™)
wywolane sitami reakcji w rysach zamknigtych. Szczegélowe obliczenia przeprowadzono dla
izotropowego ukladu rys.

B pamxax KOHTHHYaIbHOM , HEOHHHTeSHMAILHON TEOPHH Cpelbl, MpeictasieHHol B paGore [1],
C YCTRHOBJICHHOM CJTy4alHOH CHCTeMOH PHCOK, KOTOPbI€ MOTYT OTKPHIBATLECA MUK 3aKPBLIBATBCH
(omHOCTOPOHHIE BHYTPEHHHE CBASH), BEIBOOMTCA KOHKDETHBLIN BHJ ONpEeesIONHX YpaBHe-
Hu#t (1.1). Teomerpua cHCTeMbI PHCOK OXapaKTepya0BaHa 00LUel NOBEPXHOCTBIO PHCOK H HX
pacrpe/ieNieHHeM ILTOTHOCTH BEPOATHOCTH II0 HAITPABJICHAIO, WIO JOCTATOYHO JUIA HPOBECHHEA
KOHKPETHBLIX PACYETOB B Cirydae prcok Ges Baammoelicters. [Ipa pacuere BBIAeIIIOTCA MAKPO~
nedopmarmet (HaskiBaeMble ,,AOMOTHATELHLIME '), BHISBAHHLIC CRAIAMH PEaKHH B 3SaMK-
HyThIX pHckax. ITogpoGHbie pacuersl mpoBeeHB! OJIA A30TPOMHON CHCTEMBI PHCOK.

1. Preliminaries, crack geometry

IN PAPER [1]"” we analysed the bulk properties of an elastic material with numerous stable
micro-cracks, randomly distributed, where the cracks may open or close depending on
loads; consequently, the material exhibits unilateral internal constraints. We have shown
that, within the infinitesimal theory, the stress-strain constitutive relations are homoge-
neous but no more additive. The material has been called pseudo-linear elastic and the
relations take the form

(1.1) o = C(e)e, € = S(s)o,
where €,0 are macro-strain and stress tensors and C, S the bulk elastic stiffness and

compliance tensors. The latter are no more constant, instead they are functions of di-
rection in the strain (stress) 9-space,

(1.2) e=

€ gus o
Vee Yoo
(*) The reader is recommended to get acquainted beforehand with the said Paper since it explains
basic ideas presupposed, in the sequel, to be known.
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We have examined the basic properties of the functions C(e), S(s), in particular the restric-
tions imposed by invariance to certain groups of orthogonal transformations (isotropy,
orthotropy). This was done with no recourse to intrinsic geometric properties of the crack
system. Consequently, so far we cannot answer, for example, the question what crack
geometry endows the relations (1.1) with respective symmetry invariance. In general,
the problem which will be studied in the present paper consists in specializing the form
of constitutive relations (1.1) and expressing those by parameters describing crack geo-
metry.

To begin with, we must select a mode of description of the mentioned geometry for
statistically homogeneous crack distributions (assumed throughout in the sequel). Ob-
serve that multipoint correlation functions, as used in the theory of composite media,
are not suitable,.since the cracks unlike say the inclusions, have no finite volume, i.e. are
geometric objects of a zero measure. Bearing in mind that a full description is inexhaustible
(it requires, for example, an infinite sequence of more and more dimensional correlation
functions) we should confine the scope of description according to the following items:
(a) available probabilistic information, (b) precision of mechanical assumptions (sim-
plification about non-interacting cracks, say), (c) problems to be solved e.g. finding bulk
(mean) strain only, not its probability distribution curve. From among many possible
statistics offered by jntegral stochastic geometry, we select the following simple one taking
account of the two main features: (i) the total amout of cracks, (ii) the distribution of
cracks after direction (space orientation).

Consider a crack element assimilated to a surface element with the unit normal vector
n and take into account all crack elements with the orientation m in the unit volume of
the material. The total area of these elements amounts to Pn(n)dw where do is the ele-
mentary solid angle defining a measure on the space of n's (corresponding to a surface
element on the unit sphere); P is the total area of all cracks (of whatever orientation)
in the unit volume; n(n) defines the probability density of cracks with orientation n, sat-
isfying the normalization condition

(13 | a@ydo = 1.

0

The domain of integration £ corresponds to the unit hemisphere with the area 2z since
the cracks are not oriented, i.e. the opposite edges of cracks and senses of n are equivalent
(the crack area is singly counted irrespective of whether for the open or the closed crack).
No particular assumptions about the shape of the function z(n) are made so far, except
for the condition (1.3).

If small cracks (with no long range structures) become more and more scattered, for
P - 0, we arrive at the model of non-interacting cracks. Then the fields produced in the
vicinity of single cracks (and quickly disappearing at larger distances) do not interfere
and may be simply added. The quantities connected with cracks will be seen to depend
proportionally on the crack concentration, hence it will be useful to employ quantities
per unit concentration (P = 1); we call them in the sequel resolved quantities.

If all cracks have a fixed orientation n (x(n) becomes a delta function), we shall speak
of an oriented system of cracks. Constitutive relations and, in particular, elastic constants



BULK CONSTITUTIVE RELATIONS FOR CRACKED MATERIALS 521

for the material with the oriented resolved crack system will be the starting (elementary)
ones in the subsequent argument. Knowing this, next to the description of crack geometry
by means of concentration P and the distribution z(n), we shall be able to find the tensor
functions C(e), S(s) in the relations (1.1). Thus the outlined description will prove to be
sufficient for non-interacting cracks.

2. Field quantities

Consider a unit volume element containing a great many elementary non-interacting
cracks and a reference element of the same material and the same shape without cracks.
Let the reference element be loaded by boundary tractions producing a homogeneous
field of ¢ (second boundary value problem). The cracked element lpaded in the same
manner at the external boundary will show the same macro-stress ¢ while the macro-strain
amounts to € = €,+¢€. where €, corresponds to the plain (non-cracked) material and
€. is the contribution (macro-perturbation) yielded by cracks. On the other hand let
both elements be loaded by the homogeneous macro-strain € produced by suitable displace-
ment at the boundary (first boundary value problem). Macro-stresses in the plain and
the cracked element will be, consecutively, ¢ = 6, and ¢ = 6,46, where o, is the
perturbation produced by cracks. For non-interacting cracks, i.e. for P — 0, the quantities
€.,0, may be looked upon as infinitesimal, however, we spread the validity of results
for finite (not too large) P, in paricular we form resolved quantities for P = 1.

The quantities €., 6. are supposed, in turn, to be composed of two contributing parts
called in the sequel basic (“b”) and additional (“a”), i.e.

(2.1) 6, = 06,+6,, €. = €+E€,.

Basic strains (stresses) are by definition the strains (stresses) which would appear if the
cracks could not close (imagine these are narrow yet not infinitesimal slits). Additional
strains (stresses) are produced by normal forces at opposite boundary surfaces at closed
ideal cracks, i.e. cracks with no friction at rest and at motion. The forces in question may
be looked upon as response forces to unilateral internal constraints (cf. [1]). The slits
loaded in the said manner are equivalent to closed cracks.

For non-interacting cracks the bulk macro-quantities follow from superposition of
the partial macro-quantities relative to partial crack systems. Recall that the partial crack
system is composed of all elementary cracks with the space orientation n, i.e. it forms an
oriented crack system with the area Pn(n)dw. Denote by €™, ¢! (and similarly
€, o, €M, o) respective quantities for the oriented resolved crack system n. Then
the superposition yields for bulk macro-quantities

€ =P f 7t (n) €M (n)dw,

@2 ¢
0. = P [ 2(n)e®@)do

fe]

and analogically e,, ..., where the domair of integration, Q, will be discussed in the
sequel.
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According to Eq. (2.1) we can decompose the functional relations (1.1) as follows:
6 = 6,+0, = 6,46, +0, = [Co+C,+C,(e)]€ = [C+C,(e)]¢,
(2.3) €= €+€ = €+6+€ = [So+S,+S,()]o = [S+S,6)]o,

é = C0+Ca, é = SO+S,,.

The C,, S, elastic tensors refer to the plain (non-cracked) material whereas é, S to the
material with flaws (slits). Both types of the above tensors are material constants since
they do not depend on the state of stress. In particular, ¢, S may be calculated by meth-
ods of the theory of multiphase media for a material with “inclusions” in the form of
flaws. For the isotropic, both material and crack system, we obtain for C, as well as for
C two independent elastic constants albeit the numerical values of those are different.

Instead, the tensors C,, S, for additional quantities depend, apart from geometry, on
the state of stress which makes the cracks open or closed. The discussed tensor functions,
and only these, cause nonlinearity due to local fields produced by unilateral constraint
response forces as if the properties of inhomogeneous material changed according to load;
therefore the theory exceeds the scope of the classical theory of multiphase bodies. In
this respect, the decomposition in oriented crack systems provides a method which re-
quires a possibly most restricted information needed for taking account of the con-
straints. According to these explanations, in the remaining part of the present section we
analyse roughly the tensors C,, S, (incidental here), while the fundamental tensors C,, S,
will be calculated in more detail in Sect. 3.

The constant material tensors C, $ are in principle, supposed to be known. All we
can do within our restricted theory is to derive C;, S, from the more fundamental quan-
tities C{”, S{» for the oriented resolved crack systems m. For general anisotropy, C{"
(and similarly for S{”) is a function of m, C{” = C{"(n), depending on the history of
crack formation and on material anisotropy, i.e. on C, and is supposed to be preassigned.
In the issue C, and C, may exibit different symmetry properties or, even for the same type
of anisotropy, symmetry elements may spatially not coincide.

Consider in more detail the isotropic material (i.e. C, is isotropic) with the non-in-
teracting stochastically homogeneous crack system described by the function 7z(n). Assume
that for any partial crack system m there are no preferred directions orthogonal to n (trans-
versal two-dimensional isotropy). This may occur, for instance, in a composite isotropic
material if crack formation depends only on the normal (to crack plane) traction. Con-
sequently, each oriented crack system is invariant under mirror reflection in any of the
parallel planes n, under any rotation about an axis n and reflection in any plane passing
through this axis. This is the case of monotropy yielded by invariance under rotation
about a hexagonal axis n. With respect to elastic properties this is equivalent to any ro-
tation about n and the above mentioned reflections, the elastic components being inver-
sion-invariant. In Cartesian coordinates with m generating the x;-axis the monotropic
elastic matrix, denoted for a while by C™, contains 5 independent elastic constants and
takes the general form
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5111 C{? Cftss O 0 0
Ch: Cfhs O 0 0
Cidss O 0 0
(n -
(2.4) [CRi = Cis 0 5
Cf?s 0
$(Cy - Cy)) |

and similarly for S. The matrix form (2.4) itself as applied to C;, holds for any n, howev-
er, the theory admits of the terms dependent on m, ie. in general C{Vj = Ci%u (n),
since partial tensors depend on geometry of individual cracks.

Usign Egs. (2.2) and (2.3) we define

2.5) C, = P [ 2(0)C{" () do.

In a fixed Cartesian coordinate system, as used for €, ¢ in Eq. (2.3), we have

(2.6) Cf:(i?u = "Ipnjqn!rnlacl(!np)qru

where C{"qs is provided by Eq. (2.4); n;, are cosines of angles between the fixed x;-axis
and the auxiliary one (x,) and yield the desired orthogonal transformation. In many
cases, for “natural” cracks (i.e. not produced in an artificial manner nor by special pe-
riodic body forces) the tensors C{™ may be assumed as independent of n, i.e. as material
constants. Using Eqgs. (2.5) and (2.6) we obtain

@ Coume = P [ 2@y njg iy deo Cepe,
o

where we integrate over the unit hemisphere according to the explanation following Eq.(1.2).
Analogous formulae hold for S;,. Thus the problem reduces to averaging elastic tensors.
For example, taking account of Eq. (2.4) we calculate (for constant C,)

Cii11 = @1 C{P111+ 8, C{Py25+a3 CiPias +a4 Ci¥a3a +as Cisys,
where

a =P f n(m) (n}, +nt,+n} n}y)do,
o

a; = P fﬂ:(ﬂ)n%lnfgda’
ie]

and so on; one must bear in mind that summation takes place over all the terms Cipy,,
irrespective of symmetry properties, e.g. for a,, C{7},,; appears in terms with the indices
1111, 2222, 1212, 2121.

In the general case partial crack systems have no transversal symmetry and retain
only invariance to mirror reflection in the n plane. Instead of Eq. (2.4) we obtain 13 con-
stants

Cl 111 Cl 122 C{?S 3 0 0 C{Tl 2 ]

CZ 2) 22 Cil.!&):i 3 0 0 an 12

Cs 0 0 cs

2.8 C(ll g 3333 312
@3) [cia foe o
Cl313 0

L C{21a |
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and the components are functions of n; the formula (2.7) is written more explicitly as
2.9) Cois = P [ tupyt i [(0) CErs(@)] do>
2

with tensor components in the brackets according to Eq. (2.8). In general, we integrate
in spherical coordinates and select eventual symmetry axes of the functions of » in the
brackets in Eq. (2.9) as coordinate axes (for details of calculation cf. Section 3).

3. Additional quantities

The concept of a resolved oriented crack system has made it possible to reveal certain
restrictions on the form of the tensors C;, S, (cf. Egs. (2.7) and (2.9)), however we would
rather find the tensors C, S in Eq. (2.3) in a direct experimental test. Unfortunately, the
latter cannot be separated from the quantities C,, S, except, possibly, for some special
modes of loading to be suggested by the theory. Thus the additional terms (which cause
nonlinearity) are crucial for constitutive equations.

The basic assumption for the relation (1.1) is that the cracks be ideal, i.e. conservative,
with no energy dissipation by friction. It follows that only normal-to-crack forces may
appear at crack edges and these are unidirectional (compressive or zero). Consider an
oriented crack system n and cut out a representative unit cube with a facet n. Let the crack
edge be loaded in a just explained man ier. Then, under averaging, all boundary force
vectors cancel except the normal on the facets n. One must realize that, being interested
in additional quantities, we take into account the virtual (separate) action of the said res-
ponse forces while other agencies (say shear stresses) have already been included in ma-
terial and basic quantities (cf. Eq. (2.3)).

Thus the kinematics is altogether provided by the additional strain tensor depending
proportionally on the stress vector o,n where

@3.1) ¢, =n-on

is the intensity of normal forces due to the preassigned bulk stress tensor 6. Let us define
the strain 0™ as the additional strain tensor for the oriented resolved crack system n when
o, = 1. The said quantity may be looked upon as a material constant and the tensor
function n™(n) (supposed to be known) yields the desired information about the prop-
erties of the cracked material in view of additional quantities. Express #™ in the form

(2 A=Y nm@m, J=1,2,3
J

where n; are principal strains and m; principal directions of n™; in general 5, = #,(n), m; =
= my(n).

In particular, for an isotropic (plain) material the tensor (3.2) will coincide with crack
orientation, consequently say m, = n. If, moreover, the cracks are transversally (statis-
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tically) isotropic, the two remaining principal directions will be equivalent, i.e. 7, = 7,
and we obtain

(3.3) N" =nm; @m;+7,(m; @ my+m; @ m3) = 7;m; @ my+7,(/-m; @ m,)
=mn@n+n,(I-n®n) = al+bnQ@n,
=1, b =n-m

and I is the unit tensor of d;;. If, more to it, the above quantities do not depend on m,
we have for all resolved oriented systems

(34 N™ = al+bn @ n.
Analogous formulae may of course be derived for additional stresses.

Using Eq. (2.2) and bearing in mind that at no interaction simple superposition holds,
we come at the bulk quantities

(3.5) €. = P [ a@n®(@) (- on)do.
Q
The region of integration {2 now depends on the stress ¢ (which is crucial for further
analysis) since the integrand strains equal
(3.6) N™m)@m-on) for n-om <0 (cracks closed),

(3.6) 0 for mn-+om >0 (cracks open).

Thus we integrate over all n's satisfying n - on < 0 (o given) i.e. 2 = (o).

Consequently, we obtain €, = €,(6), according to Eq. (2.3); a similar argument holds
for 6, = o,(€). The sign rule is such as to make tension stresses and extension strains
positive, as usual in continuum mechanics.

Let us perform a more detailed calculation of €, for overall isotropy, i.e. for Eq. (3.4)
and #(n) = 1/2n = const (do not confuse the two z's!). Substituting this in Eq. (3.5)
we obtain

€, =-—2};— [aﬂf I(n -un)dw+b! n ® n(n - on)dw),

P
3.7 Eqij = o [ﬂﬁu f”knldw‘"b f ﬂiﬂjﬂkﬂid@] Okt
Q Q

Q = {n:mnoy < 0}.

Express, conveniently, all quantities in the Cartesian coordinates determined by the prin-
cipal directions vg of the stress tensor

(3.8) 6= oxvk®vx, K=1,23,
K
where oy are principal stresses. Then,
n-on = Z og(n vg): = Z oxng,
K K

6 Arch. Mech, Stos. nr 4/79
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where ng = n- vy are directional cosines of m'in the basis vy and hence, from Eq. (3.7),,
in the said basis

Eary = —-2};—; [aé“fz Og f”idﬂ)"'b Zﬂx fﬂ;ﬂ;ﬂidﬂ).
K Q K Q

Now, for overall isotropy, the principal directions of €, and ¢ are expected to coincide
and, in fact, the terms with I # J are readily seen to disappear. Thus only diagonal terms
are left which we assimilate to principal strains; hence, using one-index notation we obtain

3.9 o = 7‘}2 (a f ndo+b f n}nidcu)a‘.
K 2 o
By Eq. (3.6) we integrate over all n's satisfying
(3.10) Dlsink <0, Dmk=1, ng, >0,
K K

where ox has been replaced by normalized dimensionless sx, ), s3 = 1, in accordance
K

with Eq (1.1), the left hand part of the inequality (3.10); being a homogeneous linear
form of ok; therefore €, = €,(s). The equality (3.10), in conjunction with the inequality
(3.10)5, where K, is one (arbitrary) of the indices 1, 2, 3, shows that the region of integration
lies on a hemisphere (cf. explanations to Eq. (1.2)) which has been chosen in coinci-
dence with the basis vy.

Thus the constitutive relation for additional strains in the basis vg takes the form

(cf. Eq. (2.3)

P
£ay = Sark0g = 5— V [acx (s) +bB,x ()] ok,
) N
@3.11)
og = fﬂﬁd&h Pix = fn}nidw,
2 2

the terms ag, B;x being functions of o;:0,:05 = s,:5,:5; and a, b — certain material
constants; the latter depend, apart from elastic properties, on the individual crack geo-
metry. In invariant form

G.12) Sa = Suxvs ®V; ® Vg @ Vx.
J.K

These formulae are analogous to Egs. (3.2) and (3.3) of [1] where the reader is referred
to for detailed explanation. In particular, in an arbitrary orthogonal coordinate system

(cf. [1], Eq. (3.5))
(3.13) Sotjur = Z SaxVsiVsVex¥xi;
7K

¥, ..., are respective cosines of angles between the coordinate axes and principal axes
of the tensor 6. Thus, while the S,,x’s reflect the dependence on the ratio ¢,:0,:05 of
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principal stresses, the remaining factors take account of spatial orientation -of the stress
tensor. The latter is being followed by the strain €, according to the “motion” of the closed
crack system. The integrals involved. i.e. the functions ax(S), f,x(S) in Eq. (3.11) for
different particular cases, are calculated in the Appendix.

4. Final remarks

The outlined theory yields the first approximation solution (for non-interacting cracks);
it enables one to calculate effectively constitutive functions in Eq. (1.1). For simple
crack geometries the latter are determined with accuracy to a few material constants (e.g.
a, b in Eq. (3.11) for overall isotropy). The theory tells us how to determine these cons-
tants experimentally.

For instance, according to the Appendix we know that additional quantities disappear
at overall tension, therefore we are able to determine the tensors C, S; then we find the
constants a, b at overall compression tests (cf. (Eq. A4)). Finally, by formulae in the
Appendix we determine theoretically the constitutive functions for all other modes of
loading. Thus, by means of a few formulae and parameters the theory predicts the be-
haviour of material for infinity of load paths which, by experimental methods, would
require a great many tests for different e’s in Eq. (1.1), and would yield only numerical
approximation. Note that in any case the constitutive tensors in Eq. (1.1) co-rotate with
the stress tensor ellipsoid, cf. (Eq. (3.12)). However, while at overall tension (resp. com-
pression), i.e. in the first (resp. the opposite) octant of the principal stress space of sg
(cf. Appendix, (I) and (II)), they do not depend on the s¢’s and may be represented by
a spherical surface, in the remaining octants they depend on stress, e.g. through the ar-
gument (A.5) (cf. also [1], Fig. 2).

In the present paper we have not analysed the problem of crack increase and propa-
gation which would involve strength properties of the material apart from the elastic
ones. It is obvious that in a step by step construction of the function z(n), according to
the load sequence, subsequent increments would depend on the momentary z(n) and
state of stress. Of course, in general the function z(n) would not suffice and we would
need more information about the relative spatial position of oriented crack elements,
i.e. say multipoint correlation functions. However, the total amount of cracks and distri-
bution after direction are the most fundamental characteristics, thus the theory is seen
to be also the basic tool for approximate solution of that extended problem.

Appendix
Calculation of integrals in the formula (3.11)

It may be shown, under assumptions more general than in the present paper (cf. [1],
Eq. (3.6) and relevant explanations), that constitutive functions, in particular S,;x(s),
can be reduced to two only, say S,;;, S.12. In view of the quoted equalities each of these

6*
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functions takes in general 6 different forms for consecutive subdomains, according to the
signs of arguments, symbolically,

Sa11(81552,83):  Sana(+5 +5 +)s Sars(—» —» =)s Sara(+5 —» =),
Sa11(—> +5 ) Sars(+, +, =)s Sars(—, +,-);
Sa12(S1552583)1  Saa(+, +5 +)s Sarz2(—=5 =5 =) Sar2(+, —, —),
Sa12(—=» +5 +)s Sa12(+, +, )5 Sara(—, +, ).
In virtue of Eq. (3.11) calculation reduces to the three integrals

fn%dcu, fn‘{dw, fnfnidw,
o n o

(A.1)

the first two of which enter into S,,, whereas the first and the third one into S,;,. For
each of these integrals the above sign combinations of s, s;, 53 are to be considered.
Explicit formulae can be derived for uniform lateral stress, i.e. for say arbitrary s, and
5, = §;. In particular, the following cases will be discussed:

(I) Overall tension (not necessarily homogeneous), sx >0, K= 1,2,3. The ine-
quality (3.10), is not satisfied for any ng, consequently £ is an empty set and €, = 0,
all cracks being open (clearly, this holds only under our general assumption of non-in-
teracting cracks).

(II) Overall compression, sx < 0, K = 1, 2, 3. Now Eq. (3.10) is accomplished for all
n’s and £ is the whole hemisphere. Select spherical coordinates (Fig. 1) with do = sing
dp d¥ and take, without loss of generality.

(A2) ng = ny; = cosp, n, = sinpcosd, ny = singsind.

Fia. 1.

Hence
2n nj2

ox(s) = fn?dw = ffcos’:psinq)dq:dﬁ = —f de?f cos? pd(cosg)
é @ 0 0

n
9 1
W 3gr = =
= h!fﬁ -

(with substitution of the new variable { = cosg), i.e. ax does not depend on s.
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The integrals B,x reduce to the following ones:
i =2 2
ntdw = cos*gsinpdodf = —2 cos*pd(cosg) = —m,
nflw 5” psingdy nof gd(cosg) = <

nf2
fn,nldm ff(mnq;cosv?)’cos‘qasmqodq;dﬂ fcos’ﬁdﬂf sin’pcos’pdp
o
1, 111 (1 1 Ll
= [—2— sindcosd + ?ﬁ]a [-ITS (—5— cosSqa—Tcos3¢—2cos¢)]o =15

Both results can be combined into the following one:

2
(A.3) fix = G 7 (1426,x)
and consequently, according to Eq. (3.11),
(A4) g,y/P = (a 5 )o'+ 125 bjgox, o= —;—tro
This holds for overall compression: thus in the (—, —, —) octant of the coordinates

(5, 52,53) we have obtained an apparently linear-elastic relation with coefficients on

respective spheres.
(IIT) “Mixed” conditions for (s,,s,,s;) of the type (+, —, —) and (—, +, +)
where we assume s, = 53 (uniform lateral load). According to Eq. (3.10); we have

case (+; i | ""): 1 < ‘—(”z'l'ﬁa)s §2 = 83 < 0’

case (—, +,+): ni> | | n3+n3), s,=5;>0.

Substituting Eq. (A.2) we obtain

(+,—,—): <tgq3 or ep>q:ro=arctg]/i,
: ! I |s2]

(=5 +,4): I>t899 or ¢<%=amt3]/%l'
2

Thus integration is performed over the part of the unit sphere cut-out by the spherical
cone ¢ = g, and the following results are obtained:
case (—, +, +)
2

Po
fn'fda) =2 f cos’gsingdp = — ~23f cos®glfe = =3 n(1—cos’e,),
0

b

fn‘,‘dm = 2.7:f cos*psingdy = —2n f {4d¢ = ?“(1 —c0s*9o),
el 0 1
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2n [ %o
fn}nidw = f cos’ﬂdﬂf sin’pcos’psingdyp = n f (cos*@ —cos?g)d(cosg)
Q 0 0 o

i 4
=a [ @-t)a= 15 (2= 5¢08°p +3cos%po);
1
case (+, —, -)

Jn}dw = - %cos’qﬂ;f = .i_ncosﬁpo,

nf2 0

[ntdo =27 [ costpsingdp = —22 [ t4dt = %ncos’%,
a ¥o cosgp

[i]
fn%uidw =n f (&*-tHdt = % (5cas® po—3cos®po).
o Cospo

(IV) Mixed conditions of type (+, +, —) and (—, +, —) with 5, = 5, and 5, = 53,
respectively, according to the two last terms in Eq. (A.1). However, in that case a direct
calculation of the relevant integrals, for s, = s,, turns out to be more convenient. Thus
we calculate

fn%dw, fn}dw, fn%ngdw
2 2 2

in coordipates and under conditions of (III) (in view of s, = s; the respective integrals
for ny have the same value).

case (""9 +, +)

2% %
fnida: = ff(singocosﬂ)’sinqodtpdﬂ = f cos’t?d’ﬂf sin*pdyp
Q é 9 /] 0

Po

=n [% cos’ep-—cosqo] (2—3cosp,+cosgy),

ula

]

2n
[ ndo = [ [ (sinpcosdy'singdgdd = [ costddd f“ sinpsing dp
Q é @ 0 0

2n Po
= [ cos?d(1—sin*®)dd [ (1—cos’g)*sinpdp = [—%(—i—sinw-—ﬂ)
0 0

[ -2rse9d = - Fale- 2o Lo

]Jmm
0 1

E .
i sindcos®— 5 )

= % (8—15cos g, + 10cos®p, — 3 cos®,),
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[mintdo = [ [ (sinpcos®)*(singsind)*sinpdpdd
o 0 ¢

2n Po 1 1 2x COMpo
- f coszﬂsin’#dﬂf (1—cos? p)’sinpdp =-§—[Tsin4ﬁ—§] f (1-222+2%d¢
0 0 %2

- % (8—15c0s 9o + 10cos®p, — 3c0s*o);
case (+, — —)
:!,u. ,'n 7
f 2dw = foos’ﬁdﬂ f sinpdp = n ——cos’np—coscp] =-3,—(3cos¢o-—cos’%),
Po

Q

2 al2
fn‘,‘dw= f cos*ddd f sin*psinpdp = —-——n[C =03+ = C’I
a 0
= —2%- (15cos @, — 10cos®p, + 3cos’y,),
fn,n_-,dw = f cos?dsin*ddd f sin‘psinpdp = — —[C——C3+— C’]
Q cospo

- -go— (15c0s @0 — 1008 @, +3cos*@,).

All integrals under (II) and (IV) are seen to be certain polynomials of the argument

(A.5) cos (arctg l/g_)

and, according to Eq. (3.11), so are the components of S,x.

(V) The general case of unequal s, , 5,, 5;. The analysis leads to elliptic-type integrals
which can be calculated numerically, so we restrict ourselves to one example. Suppose
5, <0, 5, > 53 > 0; the condition (3.10); reads

5;(cosp)? +5,(singcos #)? + 55 (singsind)* < 0,
ie.
5, c08%3 +535in?d < |54|cotg?p,
or

@ < arccotg"/l cos?d + ——--sm’ﬂ arcotg(By/1-x2sin?9),

52 2 S2—8
— — Kt = .
A ]/131| J 52

This time the domain of integration is cut out by an elliptic cone since, in Cartesian
coordinates (cf. Fig. 1).

5% +539% < |s|e*cotg?p = |sy| 22,
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where p is the generating radius of the ellipse (the same follows also immediately from
Eq. (3.10), upon replacing the ngs by x, y, z, respectively).
Let us calculate, for example,

fnfdm = f fcos’q;sinqadfpdﬂ = - f[ fcos‘¢d(cosqa)]d0
o 4 9 :

[

2n ¢ cosp(f) 2 1 2n
= _of[ f C’dﬁ]d#-:—j—:r— ?Df cos3p(d)db

2
f cos?[arcotg (B 1—xZsin2d) ] do

ml-—-

.
=3

(further numerical calculation).
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