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Displacement description of dislocation lines
II. Application of cyclic functions

Z. MOSSAKOWSKA (WARSZAWA)

Cycuic functions introduced in [1] are applied to the description of dislocation lines. Displace-
ment equations of a medium are formulated in the class of cyclic functions. Two essentially
different solutions are given for the problem of moving dislocations, corresponding to the cyclic
functions Q3)(x, 1) (¢ being a parameter) and £2)(x, ) defined in a time-space. It may be
demonstrated that the known solutions [7] and [8], treated as representants of a cyclic functions,
are particular cases of a general solution (4.24), (4.23), while the formula given in [6] may be
written in the form (4.18).

Podano zastosowanie funkcji cyklicznych wprowadzonych w pracy [1] do opisu linii dyslokacji.
Sformulowano przemieszczeniowe rownania ofrodka w klasie funkgji cyklicznych. Podano dwa
istotnie rozne rozwigzania dla dyslokacji ruchomych, odpowiadajace funkcjom cyklicznym
£2.3)(x, t), gdzie czas jest parameterm oraz funkcp £24)(x, t) okreslonej w czasoprzestrzeni.
Mozna wykazaé, ze dotychczas znane rozwiazania [7 i 8] traktowane jako reprezentanty funkcji
cyklicznej sa szczegblnymi przypadkami ogoélnego rozwigzania danego wzorami (4.24) i (4.23),
za§ wzOr z pracy [6] mozna przedstawi¢ w postaci (4.18).

ITlaetca nmpHMeHeHAe UHKIHMYECKHX GYHKUR, BBeAeHHEIX B pabore [1], WA omEcannsa JHERE
Jcnokanuit. ChopMyIMpoBaHb! YPABHEHHA CPefibl B HEPEMELLICHHAX B HIIACCE MEHTHYECKHX
ymxamii. IIpeBe/ieHb! IBa CYIUECTBEHHO pasHble PelleHHA [UIA MOMBEDKHBIX MCNOKALEH,
OTBevalolIHe ImKmYeckum GyrHramam 2s)(x, ), Ile Bpems ABJAETCA DAPAMETPOM H
0.4)(x, 1), onNpenesneHHONE B NPOCTPAHCTBE-BpeMeHH. Mo)KHA I0KA3aTh, UTO MIBECTHEIE O CAX
nop peittenus [7] u [8], TpakToBaHHBIe KaK MNpEICTABHTE/M IMKIM4YecKol dyRKuUmH, AB-
JIAIOTCA YACTHBIMH CIydasMu ofluero peitlenms Aaxnoro dopmyname (4.24) m (4.23), dop-
Myny e H3 pabothl [6] MoXxHO mpencTaBHTs B BHAC (4.18).

1. Introduction

THIS PAPER is a continuation of paper [1], which will be referred to as Part I. The cyclic
function {2 constructed there satisfies in a n-dimensional metric space the commutativity
condition of the mixed second derivatives, i.e.
(L1) enos eV, VoQuy= f dStss-sa-2d(x—0) = Jor-se-s,

S{n—.'!}
Here S(,-,, is the (n—2)-dimensional closed surface constituting the boundary of an
oriented (n—1)-dimensional surface. These funtions will be used for constructing the
displacement field produced by a dislocation line in a linear elastic medium.

2. Displacement equations

The equations describing the action of a dislocation line in a linear elastic body con-
sists of the homogeneous equations of motion of the medium

@1 V0 —gii' = 0,
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the constitutive equations

22 a¥/ = Cli¥g,

the geometric equations

(2.3 en = Vauy,

and the Burgers condition

2.4 fan=b, §Vuar=s.
B B

The differential counterpart of the Burgers condition (2.4), is obtained by applying
the Stokes theorem and the identity

1 if L pierces S in positive direction,
2.5) f ds,(x) f 8(x—x")dL!(x") = {—1 if L pierces S in negative direction,
s L 0 if L does not pierce S.

Assuming L = D, § = S where Sj is an arbitrary open surface based on the Burgers
circuit B, and D — the dislocation loop, we obtain from Eq. (2.4)

2.6) IV, = b, § dE¥(x~T) = bt
D

Inserting Eq. (2.3) into Eq. (2.2) and the latter into Eq. (2.1), we should remember that
the solutions are sought for in the class of cyclic functions whose second derivatives do
not commute, the displacement equations of motion will then take the form

(2.7) C“‘"Vtvkug—giij =0.

These equations together with the Burgers condition (2.6) constitute a complete set of equa-
tions describing the dislocation line D in a linear elastic medium. Contrary to what could
be expexted, by replacing Eq. (2.4) with Eq. (2.6) we do not introduce any new condi-
tions (three equations (2.4) are replaced with nine equations (2.6)) since with u = b2+
+1 (2 — cyclic function, %' — generalized functions) the condition (2.6) is reduced to

(2.8) erVyV,Q = ¢,
This condition is satisfied identically, e.g. by the cyclic function 2 = [lws,,l|" ‘-é;-‘; its

representant is given by the formula (I.2.8) (Eq. (2.8) in Part I).
In the theory of elasticity of isotropic bodies the vectorial form of the Lamé equations,
(2.7) is frequently encountered and, namely,

#V2u+(A+p)grad diva—gii = 0,
(29) or
(A+p) grad diva—purotrotu —p” = 0,

which is equivalent to Eqgs. (2.7) for
(2.10) C'M = 2g"g" +u(g™g" +¢"g™).
After substituting Eq. (2.10) in Eq. (2.7) we obtain

L; = puVu;+ AV, Vi + puV, Vi — ity = 0.
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In the indicial notation Eqs. (2.9) have the form
L; = uV2uy+ (A+p) V; Vet — iy = 0,
@11) L = (A+20)V, Vet — ug®e;ep €”™V, V1 — iy
= (A+2w)V, Vit — p ()™ — 07 8")V. Vi ttm— iy
= uV2u+ (A+2u)V; Vit — uVi Vyu* — giiy = 0.
It is now seen that if u is a cyclic function, not only Eqgs. (2.9) are not equivalent to Egs.

(2.7), but also the two equations (2.9) are not equivalent to each other. The following
relation holds true:

(212) L = Li—p(VVi = ViVt = L;—2u(V,Va—V,V))u*
= Lj"ﬁEjﬂbkrl = Ej—-Z,qu;;b"f!.

One property of the field equations (2.7) is important for computational reasons.
Since the Burgers condition (2.6) is not explicitly dependent on time or the material con-
stants, the knowledge of only one cyclic function £ satisfying Eq. (2.8),i.e. €/*V,V,2 = ¢*,
reduces the problem of solution of the Lamé system of equations (2.7) to the classical
problem of elasticity in the domain of generalized functions. Namely, once the “statical”
cyclic function 2(x; D) and the motion of dislocation line D(¢), § = &(/, ¢) are known,
the cyclic function £(x, t) (time being a parameter) is constructed by means of variation
of the € as the function of time
@) W= fext0) &, QxH= fwx L0 .

D D(r)

This function satisfies the condition (2.8). The solution of Egs. (2.7) is assumed in the
form
(2.19) u(x, ) = bQ2(x; t)+u(x, ).
Here u(x, t) is the distribution to be determined from the equation obtained by substi-
tuting Eqgs. (2.14) into Egs. (2.7)

(2.15) : C{ﬁlVnglig—Qaflul’ = AJ,
where
(2.16) A = —Cp YV, Q4+ 320Q

is a known distribution. The solution of Eq. (2.15) is possible if the Green tensor of the
Lamé operator is known.

In the approach presented here the cyclic component of the displacement produced
by a moving dislocation is independent of the line motion history. Displacement u con-
sists of two parts, the first one representing a “photograph” of the actual state which
depends exclusively on the configuration of the pair: “observer x — line D(t)”, while the
other, distributional part d depends on the entire motion history

(2.17) d(x, 1) = — fd'r de(g)G(x—g,z—r)-A(e, 7),
-0 Voo

G is here the dynamical Green tensor of the Lamé operator L. -
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The displacement accompanying the dislocation may assume another form if Q is
replaced with a four-dimensional cyclic function 2, this requires a new interpretation
and new forms of individual terms in the displacement. This problem will be dealt with
in the following section.

3. Dislocation description in time-space

In order to describe a dislocation in a four-dimensional Minkowskian time-space
V4, we must, first of all, define it properly. In the three-dimensional description, when
t is a parameter, the motion of the dislocation loop (configuration of D(t) at each instant
t) is prescribed. The loop D(¢) is a dislocation loop if the corresponding displacement of
the medium satisfies the Burgers condition

3.1) fdu =b foreveryt.
B

In the four-dimensional description we must prescribe, instead of the configuration
D(t), the two-dimensional surface S,, representing in ¥, the motion history of the loop
D(t). S, is determined by two tangent vectors 1 and A, 1 being a vector tangent to the
line D(t) and lying in E3, and A representing the four-velocity vector of the points of the
surface S(,).

The Burgers condition has in this case the same form as (3.1); it should be remembered
that the Burgers circuit is a closed curve in ¥, embracing once the surface S;,. The curve
B in the case of a plane surface S,,, lying in the hyperplane x* = a (Fig. 1) is shown in
Fig. 2 on the cross-section x! = x!. The differential du occurring in Eq. (3.1) has now
the form du; = V,u,dx*, and hence the Burgers condition may be written as [2]

(3.2) § Vawdx= = b,.
B
The differential counterpart of this condition has the form
(3.3) ewwVYVJ u = b[Ja
with
(3'4) J&ﬁ - .{ dS"‘a&“,(x—O.
S@a)

Fic. 1. FiG. 2.
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With « = 4 Eq. (3.3) yields

(3.5) EukVJ Vl U = b(fl,
what is the condition (2.6) from the three-dimensional description, and with & = I, § = j
(3.6) E'"(Vg“; e V4V*) u = b[J’U .

Equation (3.6) corresponds to the well-known compatibility condition for distortion
B and velocities v of the points of the medium:

a;ﬁu—Vgﬂ‘ = }Il-
Here J is the dislocation current tensor.

Assuming that u = bQ,,+1, £2,,, being the cyclic function determined by Eq. (I.3.11),
it may be seen that the Burgers condition (3.3) transforms into Eq. (1.1) for n = 4. Since
the assumed cyclic function £2,, satisfies the condition identically, it remains to determine
the distribution @ either from the field equations (2.7), or from Eq. (2.17), where now

—CUMpV V24— o 3202 4.
From Eq. (3.3) it is seen that the tensor J must satisfy the equation

G.) V,J% = 0
since
33) dS™ = e®n mydS ) = _;- e o P dvdl.

Inserting this into Eq. (3.4) we obtain

Ji=1 _{ ey ™ 8 (x50, 1))dl",
c D)

J9= {as(x-¢(,n).
D(»
Equation (3.7) is known in the dislocation theory as the so-called continuity equation
for the dislocation density tensor and the dislocation current tensor.
Let us now write Eqs. (3.7) for « = 4 and « = i by introducing the classical notations
for the dislocation density tensor a and the dislocation current tensor J:

U s bltj

(3.9)

J = bt § £ 0(x—T)dt,.

D)
With these notations Eq. (3.7) for « = 4 takes the form
(3.10) Via¥ =0 then #(V;0")+b'(V;t/) =0

This condition states that for a constant Burgers vector (V;b;, = 0) the dislocation line
must be either closed (divt = 0) or terminate at the boundary of the body. And, conversely,
the assumption that the dislocation line is closed leads to the conclusion that the Burgers
vector b is constant.

With « = i we obtain from Eq 3.7

(3.11) a;. —em™Y, iy = 0
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what, together with the condition b = const, yields
(3.12) W —eMji=0, ji= {emimox-0ar

at Dit)
This equation ensures the condition that in the half-space ¢ < t’' (t' — actual time) the
surface S, intersects the hyperplanes x' = const along closed curves. The geometric
sense of this condition reduces to the conclusion that the dislocation has always existed
and will never vanish. In other words, the model assumed does not involve the process
of creation or annihilation of dislocations. In the case when the loop moves in a certain
finite time interval (t,, £,), the world tube of the dislocation loop is shown in Fig. 3. Fig-
ure 4 corresponds to a statical dislocation.

x'=ct

[T

Ma ] e

Y

Fic. 3. Fic. 4.

4. Comparison of the spatial and time-spatial descriptions

From the foregoing considerations it is known that displacement of the medium pro-
duced by a discrete dislocation line may be described by means of the cyclic function
9(3) defined in E3xT (te Tr):

(4‘1) “(xs f) - b‘Q(J)(X; f) +“° (X,_ lt)
and the cyclic function 25, satisfies identically the condition
4.2 MY, Vi, = ' = f dto(x~T).

D(1)
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Applying the cyclic function £, defined in the time-space V¥, we obtain

(4.3) ll(x, t) = b.Q“,(x, l.‘)-l-ﬁ(x, ‘).

The function 2 , satisfies identically the condition

(4.4) PV Vo = I = [ dS8(x=F)
52y

Writing this equation explicitly for « = /, # = j we obtain

@.5) (Vidi—3V) Qe = €un [ Focsy(x—Y)dl*.

Let us demonstrate that the condition (4.5) is fulfilled identically also by the cyclic
function £2(,,. Using the representation of £, in the form (I1.2.8)

1 { enkndly
Qe ‘)_47: A r(r—r-k)

the derivatives 3,2, and V,£(;, are calculated from (I.2.3); the following distributions
are obtained:

1
3:-9(3) = an fEt,;C,VJ( )dCh
)

1 1
V,Q(;,, = —'G fEutVJ(—r')dCt-
D)
Let us now calculate the expression (V,d;—2,V,)Q¢s,(x; 1).

V(0 Q) = 1 f ntViv (L),
b{z)

o= feup 2t o2
D(')

b felo sl
1
—4—?':“05:1&[5:7 vj(“")de A Vj( )dCt] f 2, (Ctvj )dcp

= l f(eut EVe—€usls V0V, (Lr) diy,

(") In order to pass from J&f = J' dS8 34, (x—¢) to the integral § £/85,(x—L)dl*, the tensor dswe
Sq2)

dual to dS*# should be used; they are related by the formulae [3] dS,‘p = %eap,..dﬂ", dse = 5i e”*"ds,,.

Since dS*# = €*#%n, madS, m and n being the unit vectors normal to Sz in Vs and dS®ryspdrds = dw)V,
dSur = EumenT*s7dS, where t and s are unit tangent vectors lying in the surface Sz, we obtain the final result:

1
dsef = =t eV g4 ths"drds = (vosF —1Psa)drds.
In our case 1.'=f. s=1d{=1l
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(Vi0:—0,V) Q03 (x; 1) = — pr(EmVl“EUkV +ethVk)VJ( )dﬂ
7 by

=—_— f ¢ p(Eu Vo —€upVi _Eijlvp)vj( )dfk
DU)

-5 § bewV ( - )d::. = f et b0 .
D{:) D)
The cyclic function £25)(x, t) obtained from the statical cyclic function £23,(x) according
to Eq. (2.13) is found to fulfill the same comutative condition (4.5) as 2.
In further considerations use will be made of the cyclic functions determined by Eqgs.
(1.2.8), (I1.3.4) and (1.3.15)

i (k xr)-dg
(46) Qey(x; 1) = a m >
4.7 Boay(x, 1) = — fd-; _{dle'—"‘f v, H(Czﬂ ?)
'_°° D(z)
—a H(c,0-r)
(4.8) -Qu}(x t) = -:i dr D{.f; dfeijtfgkj (VI zC( 3;) }/czﬂi—_r’ m_i ’
f=t—1.

The cyclic function £3,(x) given by Eq. (4.6) represents the solid angle subtended
by the loop D with the vertex at x. The corresponding formula for the solid angle expres-
sed in terms of a line integral was given originally by Z. Wesolowski (private communi-
cation):

_ f1cosd (kxr)-dl
@9 @ r sm%? X0 f r2(1+cosd)’

k is an arbitrary unit vector and ¢ the angle between the vectors r and k.
M. O. PeAcH and J. S. KOEHLER gave in [4] another formula for the solid angle @:

YZ 1
(4.10) w(x)——- f di[.’i ( iz ~ 8 +],,)
_H,XZ( 11 ),xr( 1 1 )]
ro\xieyr vi+zz) T e\ +z22 X422

with the notations X = £(l) —x, Y = n(l) -y, Z = {()—z.
According to F. R. N. NABARRO [5), this expression depends on the choice of coordina-
tes. Writing Eq. (4.10) in terms of the vector k and the angle ?, we obtain

- cosd
6= - f rmxn e
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While the expression (k xr)/(1+cos®) in the integrand of (4.9) tends to zero with # — 0,
the term [cos?(k x r)]/sin?# — co with # — 0. Absence of the term 1/r2sin?# in the for-
mula for the solid angle @ makes the displacement given in [4] erroneous.

Let us now pass to the evaluation of the displacement fields produced by a moving
dislocation loop D(t), corresponding to the cyclic functions Q,(x,?) and Q¢ (x; 1).
In order to utilize the formulae (2.14)—(2.17), space and time-derivatives of cyclic
functions must be calculated. After simple transformations we obtain

1 1
vp'Q(.‘i) - _E }Epstvs(_;')dc{s
D)

@.11)
3‘9(3).:4% fEI’JpC]V ( )de.
D(r)
3(0—r/cy)
v 9(4) [ — dt g 3 (V + Cl at) dc::
_f D.i psi 2
(4.12)

t
1 s 6(0—r/c
9w = 1~ f dt f €xjp i Vo (—,.—2) dt;
-0 D(r)
Introduction of the tensor K;;(x—§, t—7) such that ([6])
(4.13) V3K, j(x—§,t—1) = —Gy(x~E,t—1)

which in the case of isotropic materials has the form [6]

r=¢0 yr—c0)

e (r__‘_'.i)a}{(r_ czﬂ]}
C

2

H( —C;B)+ —-V;V;—[

4.14) K;,—Hw)i p 1= c"?

4me

makes it possible to integrate Eq. (2.17) by parts and obtain

@15) itp=— [dr [V2Kn(x—E, 1= 4, DV E)
—o Ve

- fdr J'K,,,v A€, D)V (B).

The vector 4; corresponding to the cyclic function £ ; is found by substituting Egs. (4.11)
in Eq. (2.16)

1 d <1
APE, 1) = — bl €kspV [Cuuvs _{Tdfp*l' Qajtz foTdC,],
(4.16) D) ()

r =E-Y(2).
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Inserting Eq. (4.16) into Eq. (4.15) we obtain

4.17)  dn(x,0) = fd‘rfk’,}(x —§, t—1)Ex,,h1Y, [c,,.,v, fV( )dC,

—w

. ®
obua f 6% (L) ae,|avee

f dr f Kuy (x=E, 1= D)exep b,V [c,mv. f 3(E-L(0))dL,

D(r)

+95ﬂ V fCta(E :(T))dcp]dy(s)
D(r)

= = f dr fbl €xsp Cijit ViV Koy (x—8(7), 1-7)d(,
-0 D{x)

~ebtuen [dr [ E f RRIALLC
Zo Ve

= fdf fb!ehpcl}llvlvsxlﬂdcﬁ
- )

"Eéjlbleh!(gl fdt f‘;—f[xﬂ f&taﬁ"g‘ﬁr]
-] Vo D(z)
_[diix..;(x—ﬁ, r—r)] f txé(iwC)de}dV ®
D(z)

] ’
= - [@ b CuVVKndt,~ [dr § biewsodibia Y Kuds,
- D) - D(r)

—obj€rsp }‘ VoK, (x=8(2), 1~ 'F)C.tde '_w

D(r)

= - fd‘!' fd(:pbiEk:p(CuuV:+9511‘§'13:)73Km1(x-§(f).f"‘l')-
] Dx)

Hence the displacement field corresponding to the cyclic function £s,(x, ¢) has the form
13
by Xr 5
(@19 uax, 1) = 22 f Sr_z :;; [de § dtybicrp(CunVit edntid) VK.
—o0 D(x)

This formula is analogous to the solution derived by E. KosseCKA in the case of a surface
model of a dislocation. The difference occurs in the first term only, [6].
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The vector A; corresponding to £2(4, may be written as

1 ® ® 1.
419 AP@E, 1) = "Ebl[CIjllvl de fdfg(nenp(vp+;§fp3,)
-0 D7)

. 5(1— T_:(Es Qt"c2) +26ﬁ 3: J.dT fdcq(neiqpéi (T)(%)p 6(1—1;-_?""2].
- T)

Introducing the tensor M;; defined by the formula

1
(4.20) (Vz ":_35:2 ) My = Gy
2
which, in the case of isotropy, has the form
1 by [ cich ( 0—r/c))?
@421) M;= 4—7@"{— “E:H(G—P/Cz)'i-vsvj §@— ——H-r]c)

” Q:f!c_) H(B—r/c;)) +3 (ﬂ_r/cg)ZH(ﬂ—r/cz)]},

we can write i,
t

(422) fm=— | dr | Gui(x—E,1—7)4;(, D)dV(E)
7 :!; ry{ X T T

'
@
L f(vz . liaz) My (X—E, 1—7) Ay(E, D)dV(®).
- 00 V‘n cz

The expression for 4; in Eq. (4.19) is now substituted into Eq. (4.22) and integration by
parts with respect to space and time variables is performed. The result is as follows:

(423) &,.,(x, I) = - -" dr fb; EMF[C‘J”V‘(VP*’%&P 3,) +96ﬂ .C;V, 3,]
- D(x)
x Mpmj(x=€, t—1)d(,.

The displacement corresponding to the cyclic function has the form
(4.29) u = bQ, +i.

Here @ is given by Eq. (4.23); this is the most general solution of the problem of dislo-
cation lines moving in a linear elastic medium.

Two formulae for the displacement u having the form of integrals taken along the
dislocation lines are known so far in the literature. These are the solutions given in [7, 8].
The solutions belonging to the class of distributions differ from each other essentially.
One of them contains a jump at the time-like surface [7], the other one — at the space-like
surface [8]; also different are the terms corresponding to @. Consideration of the solutions
belonging to the class of cyclic functions enables us to prove the solutions [7] and [8] to
be identical since they may be considered as the solutions corresponding to two represen-

8 Arch. Mech. Stos. nr 4/79
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tants of the same cyclic function 2, and following from Egs. (4.7) and (4.8). After te-
dious transformations also the corresponding terms of i can be shown to be identical.

From the considerations of Sect. 2 it is seen that the introduction of cyclic functions
not only makes it possible to find the relations between the known solutions [6, 7, 8],
but also—what is probably more important —enables us to formulate exactly the displace-
ment equations of the medium containing dislocation lines, without using the fields
of distortion and velocities of the points of the medium or the surface model.
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