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Displacement description of dislocation lines 
IT. Application of cyclic functions 

Z. MOSSAKOWSKA (WARSZAWA) 

CYCLIC functions introduced in [1] are applied to the description of dislocation lines. Displace­
ment equations of a medium are formulated in the class of cyclic functions. Two essentially 
different solutions are given for the problem of moving dislocations, corresponding to the cyclic 
functions .Om(x, t) (t being a parameter) and .Oc4>(x. t) defined in a time-space. It may be 
demonstrated that the known solutions [7] and [8], treated as representants of a cyclic functions, 
are particular cases of a general solution (4.24). (4.23), while the formula given in [6] may be 
written in the form (4.18). 

Podano zastosowanie funkcji cyklicznycli wprowadzonych w pracy [1] do opisu linii dyslokacji. 
Sformulowano przemieszczeniowe r6wnania oSI'odka w klasie funkcji cyklicznych. Podano dwa 
istotnie r6me rozwi~zania dla dyslokacji ruchomych, odpowiadaj~ce funkcjom cyklicznym 
.Q(3)(x. t), gdzie czas jest parameterm oraz funkcji .Oc4>(x. t) okreslonej w czasoprzestrzeni. 
Moi:na wykazac, 2:e dotychczas znane rozwillZ3llia [7 i 8] traktowane jako reprezentanty funkcji 
cyklicznej ~ szczeg6lnymi przypadkami og61nego rozwi~a danego wzorami (4.24) i (4.23), 
zaS wz6r z pracy [6] moZna. przedstawic w postaci (4.18). 

,ilaeTCH npHMeHeHHe I.UU<JIHllecKHX cil}'HKI.UIH, BBe,ll;eHHbiX B pa6oTe (1], AJIH OIIHcaHWI nmum 
,ll;HCJIO~. CcpopMyJilfpOBaHbl ·ypaaHeHIDI cpe,ll;bl B nepeMe~eHHHX B I<Jiacce ~eCKHX 
cilYHK~· IlpHBe,ll;eHbi ,ll;Ba cy~eCTBeHHO p113Hbie pemeHHH AJIH UO,ll;BH>KHhiX ,ll;HCJIOKaJnrit, 
OTBetiaiOI.I.Ule ~KJIHtieCKHM ell~ .Q(3)(X, t), r,ll;e BpeMH HBJIHeTCH napaMe'rpOM H 
.Qc4 >(x, t), onpe,ll;eJieHHoii B npoCTpaHCTBe-BpeMeHH. Mo>I<Ha noKaaan., tiTO H3BeCTHhle ,ll;O CHX 
nop pememm [7] H [8], TPaKTOBaHHbie KaK npe,ll;CTaBHTeJIH In!KJIHtieCKo:H cpymaum, HB­
JIHIOTCH tiaCTHbiMH CJIYtiaHMH o6~ero pemeHHH ,ll;aHHOrO cpopMyJiaMH (4.24) H (4.23), cpop­
MYJIY >Ke K3 pa60Tbl (6] MO>I<HO npe,ll;CTaBHTI> B B~e (4.18). 

1. Introduction 

THIS PAPER is a continuation of paper [1], which will be referred to as Part I. The cyclic 
function Q constructed there satisfies in a n-dimensional metric space the commutativity 
condition of the mixed second derivatives, i.e. 

(1.1) ea,al ... a,v v Q = f dSataz ... a.-2~(x-Y\ = Ja, ... a..-2 a,_, oc,. <•> .,, • 
S<•-2> 

Here S<n- 2> is the (n- 2)-dimensional closed surface constituting the boundary of an 
oriented (n -I)-dimensional surface. These funtions will be used for constructing the 
displacement field produced by a dislocation line in a linear elastic medium. 

2. Displacement equations 

The equations describing the action of a dislocation line in a linear elastic body con­
sists of the homogeneous equations of motion of the medium 

(2.1) v1(J'l-eu' = o, 
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the constitutive equations 

(2.2) 
the geometric equations 
(2.3) 
and the Burgers condition 

(2.4) f da = b, 
B 

f v,u,dx1 = b,. 
B 

Z. MOSSAKOWSKA 

The differential counterpart of the Burgers condition (2.4h is obtained by applying 
the Stokes theorem and the i~entity 

{ 

1 if 

(2.5) J dS,(x) J lJ(x-x')dL1(x') = -1 if 
S L 0 if 

L pierces S in positive direction, 
L pierces S in negative direction, 

L does not pierce . S. 

Assuming L = D, S = Ss where Ss is an arbitrary open surface based on the Burgers 
circuit B, and D- the dislocation loop, we obtain from Eq. (2.4) 

(2.6) e"'1V,V1u1 = b1 f dC"lJ(x-~) = b1t". 
D 

Inserting Eq. (2.3) into Eq. (2.2) and the latter into Eq. (2.1), we should remember that 
the solutions are sought for in the class of cycJic functions whose second derivatives do 
not commute, the displacement equations of motion will then take the form 

(2.7) c'1"'V, v"u,-eu1 = o. 
These equations together with the Burgers condition (2.6) constitute a complete set of equa­
tions describing the dislocation line D in a linear elastic medium. Contrary to what could 
be expexted, by replacing Eq. (2.4) with Eq. (2.6) we do not introduce any new condi­
tions (three equations (2.4) are replaced with nine equations (2.6)) since with a = b.O+ 
+d (.Q- cyclic function, u'- generalized functions) th~ condition (2.6) is reduced to 

(2.8) e'l"V,V1.Q = t". 

This condition is satisfied identically, e.g. by the cyclic function .Q = llcos<t>ll · }n; its 

representant is given by the formula (1.2.8) (Eq. (2.8) in Part I). 
In the theory of elasticity of isotropic bodies the vectorial form of the Lame equations. 

(2. 7) is frequently encountered and, namely, 

I'V2 a+(J.+,u)grad divu-eii = 0, 

(2.9) . or 
(J.+,u) grad divu-,urot rot u -e .. = 0, 

which is equivalent to Eqs; (2. 7) for 

(~.10) C'l'" = J.g'lgk'+,u(g'"gl'+g"gl"). 

After substituting Eq. (2.10) in Eq. (2.7) we obtain 

L1 = ,uV2u1 +iV1 V~~.u"+,uV"V1 u"-eu1 = 0. 
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DISPLACEMENT DESCRIPTION OF DISLOCATION LINES. PART Il 549 

In the indicia! notation Eqs. (2.9) have the form 

I 1 = p,V2u1+(J..+p)V1V"r.f-eii1 = o, 
(2.11) LJ = (J..+2p)Vj V"lf-p,g'l'EjqpE'""V, v,um-f!UJ 

= (J..+2p)V1 V1u"-p, (<5}g""- <5j~)V, V,u111 -f!UJ 

= p,V2u1+(J..+2p)V1V"lf-JJV"V1u"-eul = 0. 

It is now seen that if u is a cyclic function, not only Eqs. (2.9) are not equivalent to Eqs. 
(2.7), but also the two equations (2.9) are not equivalent to each other. The following 
relation holds true: 

(2.12) L1 = L1-p,(V1V1 -V1V1)u" = I 1-2p,(V1V1 -V1V1)u" 

= LJ -JJEjklb"t' = LJ- 2JJEJklb"t'. 

One property of the field equations (2. 7) is important for computational reasons. 
Since the Burgers condition (2.6) is not explicitly dependent on time or the material con­
stants, the knowledge of only one cyclic function D satisfying Eq. (2.8), i.e. efJ"V, V1D = t", 
reduces the problem of solution of the Lame system of equations (2. 7) to the classical 
problem of elasticity in the domain of generalized functions. Namely, once the "statical" 
cyclic function D(x; D) and the motion of dislocation line D(t), ~ = ~(1, t) are known, 
the cyclic function D(x, t) (time being a parameter) is constructed by means of variation 
of the ~ as the function of time 

(2.13) D(x) = f w(x, ~(/)) · d~, .Q(x; t) = f w(x, ~(1, t)) · d~. 
D D(t) 

This function satisfies the condition (2.8). The solution of Eqs. (2. 7) is assumed in the 
form 
(2.14) u(x, t) = bD(x; t)+u(x, t). 

Here u(x, t) is the distribution to be determined from the equation obtained by substi­
tuting Eqs. (2.14) into Eqs. (2. 7) 

(2.15) · C'i"1V1V~cd1 -ealui = Ai, 

where 

(2.16) 

is a known distribution. The solution of Eq. (2.15) is possible if the Green tensor of the 
Lame operator is known. 

In the approach presented here the cyclic component of the displacement produced 
by a moving dislocation is independent of the line motion history. Displacement u con­
sists of two parts, the first one representing a "photograph" of the actual state which 
depends exclusively on the configuration of the pair: "observer x -line D(t)", while the 
other, distributional· part d depends on the entire motion history 

t 

(2.17) u(x,t) =- j d-e j dV(;)G(x-;,t--c)·A(;, -c), 
-oo Voo 

G is here the dynamical Green tensor of the Lame operator L. 
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The displacement accompanying the dislocation may assume another form if U is 
replaced with a four-dimensional cyclic function !J<4>t this requires a new interpretation 
and new forms of individual terms in the displacement. This problem will be dealt with 
in the following section. 

3. Dislocation description in time-space 

In order to describe a dislocation in· a four-dimensional Minkowskian time-space 
V4 , we must, first of all, define it properly. In the three-dimensional description, when 
t is a parameter, the motion of the dislocation loop (configuration of D(t) at each instant 
t) is prescribed. The loop D(t) is a dislocation loop if the corresponding displacement of 
the medium satisfies the Burgers condition 

(3.1) f du = b for every t. 
B 

In the four-dimensional description we must prescribe, instead of the configuration 
D(t), the two-dimensional surface S< 2 > representing in V4 the motion history of the loop 
D(t). S<2> is determined by two tangent vectors I and A, I being a vector tangent to the 
line D(t) and lying in E 3 , and A representing the four-velocity vector of the points of the 
surface s(2)• 

The Burgers condition has in this case the same form as (3.1); it should be remembered 
that the Burgers circuit is a closed curve in V4 embracing once the surface S< 2>. The curve 
Bin the case of a plane surface S< 2, lying in the hyperplane x3 = a (Fig. 1) is shown in 
Fig. 2 on the cross-section x1 = x1 • The differential du occurring in Eq. (3.1) has now 
the form du, = V(/,u1dX", and hence the Burgers condition may be written as [2] 

(3.2) f V(/,u1dX" = b,. 
B 

The differential counterpart of this condition has the form 

(3.3) e«P~v,v~u, = b,Ja. 

with 

(3.4) Ja.fl = f dSa.fJ t5<4>(x- Q. 
S<l> 

x4 

X 

FIG. 1. FIG. 2. 
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With ex = 4 Eq. (3.3) yields 
(3.5) 

551 

what is the condition (2.6) from the three-dimensional description, and with ex = I, {J = j 
(3.6) E11k(V k V 4-V 4 V,.) u, = b,JIJ. 

Equation (3.6) corresponds to the well-known compatibility condition for distortion 
~ and velocities v of the points of the medium: 

atf3tk-Vkv, = ltk· 
A 

Here J is the dislocation current tensor. 
Assuming that u = b.Q <4 ) + u , .Q <4 > being the cyclic function determined by Eq. {1.3.11 ), 

it may be seen that the Burgers condition (3.3) transforms into Eq. (1.1) for n = 4. Since 
' . the assumed cyclic function Dc4 > satisfies the condition identically, it remains to determine 

the distribution u either from the field equations (2.7), or from Eq. (2.17), where now 
Ai = - Cilk'b,V,Vk.Q<4> -ebiaf.Q<4>· 

From Eq. (3.3) it is seen that the tensor J must satisfy the equation 

(3.7) VpJ«P = 0 
since 

(3.8) 

Inserting this into Eq. (3.4) we obtain 

Jil = _!_ f EktjEkmnCm<5(x-~(/, t))dC", 
C D(t) 

(3.9) 

J4i= f dCi<5(x-~(l,t)). 
D(t) 

Equation (3.7) is known in the dislocation theory as the so-called continuity equation 
for the dislocation density tensor and the dislocation current tensor. 

Let us now write Eqs. (3. 7) for ex = 4 and ex = i by introducing the classical notations 
for the dislocation density tensor ex and the dislocation current tensor j: 

ex'i = b'ti, 

Jti = b1EJmn f Cm<5(x-~dC,. 
D(t) 

With these notations Eq. (3.7) for ex = 4 takes the form 

(3.10) V1a.'i = 0 then ti(V1b1)+b'(V1tl) = 0. 

This condition states that for a constant Burgers vector (V1b, = 0) the dislocation line 
must be either closed (divt = 0) or terminate at the boundary of the body. And, conversely, 
the assumption that the dislocation line is closed leads to the conclusion that the Burgers 
vector b is constant. 

With ex= i we obtain from Eq. (3.7) 

(3.11) aex,{ }mlr.v JA 0 Tt-E mtlr.= 
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what, together with the condition b = con~t, yields 

(3.12) ot' -el}"VJit = 0, it= f EtiiiJIC"'<5(x-~dC". 
at D(t> 

This equation ensures the condition that in the half-space t ~ t' (t'- actual time) the 
surface Sc2> intersects the hyperplanes x1 = const along clo~d curves. The geometric 
sense of this condition reduces to the conclusion that the dislocation has always existed 
and will never vanish. In other words, the model assumed does not involve the process 
of creation or annihilation of dislocations. In the case when the loop moves in a certain 
finite time interval (t1 , t2 ), the world tube of the dislocation loop is shown in Fig. 3. Fig­
ure 4 corresponds to a statical dislocation. 

x' 

FIG. 3. FJo. 4. 

4. Comparison of the spatial and time-spatial descriptions 

From the foregoing considerations it is known that displacement of the medium pro­
duced by a discrete dislocation line may be described by means of the cyclic function 
!Jc3> defined in E 3 x T (t e T): 

(4.1) u(x, t) = b!Jc3 >(x; t)+d (x,. t) 

and the cyclic function !Jc3> satisfies identically the condition 

(4.2) e11"V1Vt!Jc 3> = t1 = f dC1 <5(x-~. 
D(t) 
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Applying the cyclic function D<4> defined in the time-space V4 , we obtain 

(4.3) u(x, t) = bD<4>(x, t)+u(x, t). 

The function !J 4 satisfies identically the condition 

(4.4) ea.IJfdVyV~D<4> = Ja./1 = j dSaJJ~<4>(x-~. 
S(l) 

Writing this equation explicitly for ex = I, p = j we obtain <t> 

(4.5) (V,a,-a,v,)D<4> = e,1t J C1~<3><x-~dct. 
Let us demonstrate that the condition (4.5) is fulfilled identically also by the cyclic 

function D<3>· Using the representation of D<3> in the form (1.2.8) 

D (x. t) = __!_ f Eotk1 rt~C, 
<J> ' 4n r(r-r·k) 

D(t) 

, the derivatives a,D<3> and V,D< 3 > are calculated from (1.2.3); the following distributions 
are obtained: 

a,o", = 4~ f e,,,t, v{~}c., 
D(t) 

v,o(,, = - 4~ f e,,. v,H-)dc •. 
D(t) 

Let us now calculate the expression (V,o,-o,V,)D<3>(x; t). 

V,(a,Du,)- 4~ f e,,,C,v,v,(-Hdc, 
D{l) 

a,(V,Du,) = - 4~ f e,,.[ v,(! )dC,+t, a~, v{~}c.] 
D(t) 

=-;,. f e".[v{H:~·~.-t,v,v{~}c.] 
D(t) Jl 

= - 4~ f e,Jk[t.v,v,(+)dc,-t,v,v,(+)dc,] -1n fa~ (t.v,+)dc, 
D(t) D(t) Jl 

1 f . . (1) = 
4
n (e,JtC,V,-eo,C,Vt)V1 r dCt, 

D(t) 

(
1
) In order to pass from Ja./1 = f c/Sa.lld<4 ,(x-e) to the integral§ CJd<3)(x-C)dCt, the tensor~ 

S<l> 
A 1 1 A 

dual to ds:zll should be used;theyare related by the formulae [3] dSa.~~ =- Ea~JpdsP•, dSa.fJ =- e«PP•dS,.. 
2! 2! 

Since d~ = e«flfdnym¥LS, m and n being the unit vectors normal to S< 2> in v. and ds:zll-ra,spdTtls = d<4>v, 
dS,.. = t:11""'~ "t"S'IdS, where -rand s are unit tangent vectors lying in the surface S< 2), we obtain the final result: 

1 
dSa./1 =- ea.llfdt:yd11.-rP.s•dTtls = (-r«~--rfJsa-)d-rds. 

2! 
In our case -r = ~, s = I, ~ = Jdl. 
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= 4~ f t,(e.,1V,-e.,,v,-eljtV,)V;(+)dt. 
D(t) 

= -~,.. f t,e •• ,v{Hdc. = f e,,.~.~<x-Qdc •. 
D(t) D(t) 

The cyclic function Dc3>(x, t) obtained from the statical cyclic function Dc3>(x) according 
to Eq. (2.I3) is found to fulfill the same comutative condition (4.5) as Dc4 >. 

In further considerations use will be made of the cyclic functions determined by Eqs. 
(1.2.8}, (1.3.4) and (1.3.15) 

(4.6) I f (kxr) · dt 
Q<J>(x; t) = -4 ( k) ' n r r-r · 

D(t) 

(4.7) 

I 

(4.8) D~4>(x,t) = ~c2 f d-r f dle'1"1tk1(v,+_;t,a,) ,; H(czO-r) , 
n -oo D(T) Cz f cHJl-r2+(r. k)2 

0 = t-T. 

The cyclic function Dc 3>(x) given by Eq. (4.6) represents the solid angle subtended 
by the loop D with the vertex at x. The corresponding formula for the solid angle expres­
sed in terms of a line integral was given originally by Z. Wesolowski (private communi­
cation): 

(4.9) w = f I -cos -D (k x r . dr = f (k x r) · dl 
r 2sin2-D ) r 2 (I +cos-D)' 

D 

k is an arbitrary unit vector and -D the angle between the vectors r and k. 
M. 0. PEAcH and J. S. KoEHLER gave in [4] another formula for the solid angle w: 

+12 ~z ( x2!Y2 - Y2!z2) +1, ~Y ( y2!z2 - x2!z2 )]. 
with the notations X = E(/) - x, Y =, TJ(I) - y, Z = C(/)- z. 

According to F. R. N. NABARRO [5], this expression depends on the choice of coordina­
tes. Writing Eq. (4.IO) in terms of the vector k and the angle .0, we obtain 

_ f cos-D · 
w = - ~(kxr)·dr. 

r sm v 
D 
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While the expression (k. x r)/(1 +cos-D) in the integrand of (4.9) tends to zero with D-+ 0, 
the term [cosD(k x r)]/sin2D-+ oo with D-+ 0. Absence of the term 1/r2sin2 D in the for­
mula for the solid angle w makes the displacement given in [4] erroneous. 

Let us now pass to the evaluation of the displacement fields produced by a moving 
dislocation loop D(t), corresponding to the cyclic functions .Q< 3>(x, t) and .0<4 >(x; t). 
In order to utilize the formulae (2.14)-(2.17), space and time-derivatives of cyclic 
functions must be calculated. After simple transformations we obtain 

v,D<>, = - 4~ f e,,,v.(+)dc, 
D(t) 

(4.11) 

(4.12) 

Introduction of the tensor K11(x-~, t- t) such that ([6]) 

(4.13) 

which in the case of isotropic materials has the form [6] 

(4.14) 

makes it possible to integrate Eq. (2.17) by parts and obtain 

t 

(4.15) u,. = - f d1: f V2K,.i(x-~, t- 1:)AJ~' 1:)dV~) 
-oo Voo 

t m 
= - f d1: j K,.1V

2 A1(;, 1:)dV<;}. 
-oo Y 00 

The vector A1 corresponding to the cyclic function .Q 3 is found by substituting Eqs. (4.11) 
in Eq. (2.16) 

(4.16) 
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Inserting Eq. (4.16) into Eq. (4.15) we obtain 
, 

(4.17) U.,(x, 1) = 4~ J dT J KoOJ(x-e, 1-T)e,,,b,v,[ c,,,,v, fW•H-)tc, 
-CX) D(T) 

=-

, 
f dT f K.,J (x-f;, 1-T)e,,,b, V,[ C,,.,V, f d(~-~(T)}dC, 

-CX> YCX) D(~ 

+ed,, ;T v, f C,d(~-~(T))dt,]tW<~ 
D(T) 

I I 

J d-r f bret.,C,1~;,V,V J(,.1(x-~(-r), t- -r)dC, 
-CX> D(T) 

-eb,d1,eu, f dT f [(V,K.,1) ;T f ,, ~(~-QdC, ]dV(~ 
-eo Y 00 D(T) 

I 

= - f d-r f bre~;,,Ca1t.rV,V.K,.1 dC, 
-eo D(T) 

, , 
J d-r f b,et.,C,1~;, v,v.K,.1dC,- J d-r f b,e ... ,e~1,c .. a, v.x,.1dC, 

-eo D(T) -eo D(T) 

I 

-eb1et., f V,K,.J(x-~(-r), t- -r)C~:dC,Leo 
D(T) 

f d-r f dC,b,e~:,,(C,1~:rV,+e~1rCta,)V,K,.1(x-~(-r), t--r). 
-eo D(T) 

Hence the displacement field corresponding to the cyclic function D< 3>(x, t) has the form · 

I 

(4.18) u,.(x,t) =!; f ~rx~~:~ - J d-r f dC,b,e~:,,(C,1~;rV,+e~1,tta,)V,K,.1 • 
D(l) -CX) D(T) 

This formula is analogous to the solution derived by E. KOSSECKA in the case of a surface 
model of a <Uslocation. The difference occurs in the first term only, [6]. 
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The vector Ai corresponding to !J<4> may be written as 

(4.19) A~4>(;, t) = - 4~b,[c11.,'!J, j dT f dC,(T)Etq,('!J,+ ~2 t,a,) 
-oo ~n 2 

T 

• 6(T-T-;~• Qfc2) +e611 a, f dT f dC,(T)E,,,t.(T)'!J, 6(T-~-rfc2]. 
-oo ~n 

Introducing the tensor Mu defined by the formula 

(4.20) (v•- ~~at)~.= G1, 

which, in the case of isotropy, has the form 

(4.21) M·= - 1-{- dli H(O-rfc )+V V·[ dd_ ( (O-r/c1
)

3 
H(O-rfc1) 

11 4ne 2c2 2 
' 

1 6(cf-cn r 

- (8- r;c,)• H (8- r fc2)) + ~2 (8- rfc2)' H(8- r fc2)]}; 

we can write u, 
t 

(4.22) U,. = - J d1: J Gmi(x-;, t-T:)Aj(;, 1:)dV~;) 
-oo V00 

t 

= - f dT f ('!J•- :~a:) M.1(x-~, I-T)A1(i;, T)dV(~. 
-oo V00 

The expression for Ai in Eq. (4.19) is now substituted into Eq. (4.22) and integration by 
parts with respect to space and time variables is performed. The result is as follows: 

t 

(4.23) U.(x, t) = - J dT J b,E .. ,[ c,1.,v,(v,+ !~ t,a,) +e61,C. v,a,] 
-00 D(T) 

x Mmj(x-~, t-T:)dC4• 

The displacement corresponding to the cyclic function has the form 

(4.24) o = b.d<4J +u. 
Here u is given by Eq. ( 4.23); this is the most general solution of the problem of dislo­
cation lines moving in a linear elastic medium. 

Two formulae for the displacement o having the form of integrals taken along the 
dislocation lines are known so far in the literature. These are the solutions given in [7, 8]. 
The solutions belonging to the class of distributions differ from each other essentially. 
One of them contains a jump at the time-like surface [7], the other one - at the space-like 
surface [8]; also different are the terms corresponding to u. Consideration of the solatiOBs· 
belonging to the class of cyclic functions enables us to prove the solutions [7] and [8}to 
be identical since they may be considered as the solutions corresponding to two represen-

8 Arch. Mech. Stos. D1' 4(19 
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tants of the same cyclic function !lc4 > and following from Eqs. (4.7) and (4.8). After te­
dious transformations also the corresponding terms of u can be shown to be identical. 

From the considerations of Sect. 2 it is seen that the introduction of cyclic functions 
not only makes it possible to find the relations between the known solutions [6, 7, 8], 
but also-what is probably more important-enables us to formulate exactly the displace­
ment equations of the medium containing dislocation lines, without using the fields 
of distortion and velocities of the points of the medium or the surface model. 
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