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BRIEF NOTES 

Thermal stress in a layered anisotropic elastic half-space 

1. Introduction 

C. ROGERS (WESTERN ONTARIO) and D. L. CLEMENTS (ADELAIDE) 

THE PROBLEM of determining the thermal stress in an inhomogeneous anisotropic 
half-space is considered. The elastic and thermal parameters for the half-space are 
assumed to vary with one Cartesian coordinate. An extension of the Bergman series 
method is used to determine the effect of a prescribed temperature distribution 
and to solve a particular boundary-value problem. 

IN THE INVESTIGA noN of real soil strata deformation under loading, the factor of inho
mogeneity becomes significant. Moreover, under certain circumstrances soils exhibit 
anisotropic behaviour. Thus, for example, GmsoN and KALs1 [1] have recently investi
gated the loading of an incompressible cross-anisotropic elastic half-space with rigidity 
modulus increasing linearly with depth. This has prompted the present treatment of the 
problem of stress distribution in an anisotropic elastic half-space in which the elastic 
moduli vary with depth. The effects of a prescribed temperature distribution are included 
and the constrained boundary problem solved. 

2. The governing equations 

The equilibrium equations in anisotropic thermoelasticity are 

(2.1) a [ au" ] axj Cfjkl ax, -fJ,lJ = 0, 

where the repeated suffix summation convention (summing from 1 to 3) is used for Latin 
suffixes only and the temperature 8 satisfies the heat conduction equation 

(2.2) [_!_kij ao] = o. 
ax, axl 

In· Eq. (2.1) u" represents the components of displacement, c11"' are the elastic moduli while 
{111 and ku denote the thermal moduli and heat conduction coefficients respectively. These 
material parameters are assumed to satisfy the usual symmetry conditions (see CLEMENTS 

[2]) and are also assumed to depend on the x2 coordinate. 
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3. 1be temperature field 

Consider the following representation for the temperature 0. 
00 

(3.1) (J =}; T,(x2}E,.(S(x2)+x1), T0 :f: 0, 
n-o 

where the E, satisfy the recurrence relations 

(~.2) E~ = E,_ 1 for n = 1 , 2, .... 

By substituting, it is readily seen that the (J given by Eq. (3.1) will satisfy Eq. (2.2) if the 

functions T,(x2) and S(x2) are given by 

(3.3) T0 = cx/[k 12 + k22S11
'

2 (ex arbitary constant), 

(3.4) T. = _ _!_ (k .+k s')-1/l J. {k22T~:~ +k~2T~-1}dx2 1 2 " 2 12 22 {ku +k22 S')I/2 ' n = ' ' ... ' 

(3.5) S' = [-ku±(k~2-kuk22)112]/k21· 

Since physical considerations require 

(3.6) kt2-kuk22 <0 

it follows that Eq. (3.5) yields a complex conjugate pair which will be denoted by t'{x2 ) 

and i(x2) where r(x2) is obtained from Eq. (3.5) by taking the positive sign. Hence 
00 

(3.7) f) = }; T,.(x2) {E,(z') + E,.(Z')}, 
n-O 

where z' = x1 + TX2 • A suitable form for the E,. for our present purposes is 

(3.8) 

00 

E,. = ~ J A,.(p)exp(ipz')dp, 
0 

where A,(p) = A(p) (ip)-" with A0 (p) =,A(p). Hence, from Eqs. (3.7) and (3.8) 

(3.9) 

where R denotes the real part of a complex number and the term A(p) is determined from 
the boundary conditions. 

On the boundary x2 = 0 the temperature is prescribed so that 

(3JO) 8(xt, 0) = f(xt), 

where f(x 1) is specified. It is assumed that this temperature distribution may be written 

as the Fourier integral 
00 00 

(3.11) 8(x~t 0) = ! R J dp J {/(~)exp[ -ip(E-x1)]}d~. 
0 -eo 

Comparison of Eqs. (3.9) and (3.11) yields 
00 00 

(3.12) A{p) = (f f{e)expHpe)d~] / {2 ~~~~ }· 
0 •• o 
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4. The stress field 

A particular solution of Eq. (2.1) is sought in the form 

CO 

(4.1) "" = 2 K~cn(x2)F,.(S(x2)+x1 ), 
naO 

where 

(4.2) F; = F,._ 1 = E,.. 

Substitution of Eq. (4.1) into Eq. {2.1) yields the recurrence relations 

(4.3) {c12t2K~~+c~2uS~,.}+ {(cut2+c12u +2S'ci2u)Ki ... +t +(S"c12u 

581 

+S'c;2u+clnt)Kt ... +t-{J',2T,.+t-Pi2T~+t}+ {[cuu +S'(cu~c2+c12u) 

+S'ctu2]qk,n+2 -PuT,.+2- P12T11+2S') = 0, n = 0, 1, 2, ... , 

(4.4) (Cut2 +cuu +2S'cl2u)Kio + {S"cuu +S'c~21c2 +ci2kt)S~co 

- P~2 To- P12 T~+ [( Cuu + S' ( Cuu + Ct2u) + S'2Ct2u)Ku 

-PuT,-p,2TtS1 = 0, 

(4.5) 

where 

(4.6) 

Combination of Eqs. (3.8) and (4.2) shows that 

00 

(4.7) F. 1 f A(p) (' ')d ,. = 2n (ip)"+l exp zpz rp, 
0 

whence we obtain a particular solution of Eq. (4.1) in the form 

(4.8) 

In addition to the displacement ( 4.8), any displacement may be superimposed which 
is a solution of the equations 

(4.9) a:, {c,1., ~:} = o. 

Solutions of Eq. ( 4.9) are sought in the form 

CO 

(4.10) "" = 2 h~cn(x2)H,.(A(x2)+x1 ), 
n=O 

where 

(4.11) H~ = H,._ 1 , n = 1 , 2, .... 

http://rcin.org.pl



588 C. RooDS ~ D. L. ClaoNTs 

Substitution of Eq. (4.10) into Eq. (4.9) yields 

(4.11) cuuhi:~+ci2t2hi:" + (cuu +cuu +2A'cuu)hi,ll+l +(A" C;2u 

+A'ci21t2 +cint)ht,ll+t + lcuu +A'(cult2 +c;2u)+A'2Cut2]ht,•-+2 = 0, 

n=0,1,2, ... , i=1,2,3; 

(4.12) lcu1t2 +c;zu +2A'ci21t2]h~o+ [A"ct21t2 +A'ci21t2 +ci2ulhto 

+ [cilltl +A'(cult2 +cutt)+A'2ci2u]hu = 0, i = 1, 2, 3; 

(4.13) [cuu +A'(cuu +cuu) +A'cuulhto = 0, i = 1, 2, 3; 

where ht,,. = hkn· 

The consistency condition for Eq. (4.13) provides the sexticrequation 

(4.14) 

determining A. Equation ( 4.13) further provides, in general, two algebraic equations for 
the hko, k = 1, 2, 3. Moreover, in view of Eq. (4.14) there exists a linear combination of 
the rows of the matrix 

(4.15) 

which is zero. This linear combination may be used to eliminate the ht1 in Eq. (4.12) to 
provide an ordinary differential equation relating the hko· Combination with the algebraic 
equations given by Eq. (4.13) defines each of the h~co via an ordinary differential equation. 
In a similar manner, in addition to the ordinary differential equation relating the h~c0, 

Eq. (4.12) gives two algebraic equations for the h~c1 • Appropriate linear combination 
of Eq. ( 4.11) for the case n = 0 eliminates the hu and provides an ordinary differential 
equation for the h1". Thus, the h~c1 are defined. In general, Eq. (4.11) provides an ordinary 
differential equation for the ht,,+ 1 together with two algebraic equations for the h1, .. +l· 

Thus, the h"" are completely recursively defined by the system of equations: (4.11)-{4.'13). 
The sextic (4.15) in A' has only imaginary roots (see ESHELBY et al. [5]) which occur 

in conjugate pairs. The six roots are taken to be ~, A:c ; ex = I , 2, 3 and the associated 
values of the h~;n generated by the recurrence relations (4.11)-(4.13) are denoted by h~:,.cx· 
Hence the solution of Eq. (4.9) in the form (4.10) is given by 

(4.16) 

where the summation over ex is from 1 to 3 and Zcx = x 1 +Acx(x2 ). Thus, the solution of 
Eq. (2.1) is generated in the form 

~ ~ 

Ut = ~ ~ hlcncx(X2) { H FI<X(zcx) + Hncxfia.)} + ~ K~:n(x) {F11(z') + F,.(Z')}, 
ex 11•0 11=0 

(4.17) 
F~ = F,_ 1 • 
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The stress a1J may now be obtained by substituting into the equations 

OUt 
(4.18) a,J = c,Jtr-!i- -p,fl. 

Cl XI 

A suitable form for the Hrt«(z) which gives zero stress at infinity · is 

QC) 

( l f B~(p) . 
Hit« Z01) = 2n (ip)" exp(lpZ01)dp, 

0 

(4.19) 

where the B01 (p) are chosen to satisfy particular boundary conditions on x2 = 0. 

5. Constrained boundary 

If the boundary is fully constrained, then the boundary conditions are 

Ut(Xt,O)=O, k=1,2,3. 

589 

The arbitrary constants of integration in the expressions for the htna., Kt,01 , T, are selected 
so that 

htrt«(O) = Kt.(O) = ·r (0) = 0, n > 0, 

ht001(0) = AtCII = constant, Kto(O) = constant = CtiK, 

T0 (0) = 1 

whence, from Eq. (4.17) 

2 Au{'I'CII(xt)+ViCII(xt)}+CtiK{Fo(Xt)+Fo(xt)} = 0, 
Cll 

so that 

2 AuBCII(p)+_!_CtKA(p) = 0. 
Cll p 

Thus, if the matrix [Au] is non-singular, then 

1 
BCII(p) = --RaJCJkA(p)' p 

where 

The stress in the half-space with constrained boundary and a specified distribution of 
heat on the surface may now be readily calculated from Eq. (4.18). 
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