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Equations of linear thermoconsolidation

W. DERSKI and S. J. KOWALSKI (POZNAN)

A compLETE set of linear equations has been derived for a porous medium filled with a liquid,
taking into account thermal effects. The considerations are based on thermodynamics of irrever-
sible processes with the usual assumptions of the theory of consolidation and an additional
assumption that the local temperature of the two components is the same. A complete thermo-
mechanical interpretation of the coefficients introduced is given. It is shown that the existing
approaches to the thermoconsolidation problem are incorrect [2, 8].

W pracy wyprowadzono pelny zestaw réwnar liniowych dla ofrodka porowatego wypetnionego
ciecza z uwzglednieniem efektow termicznych. Rozwazania prowadzono na gruncie termo-
dynamiki procesébw nieodwracalnych, przy zalozeniach powszechnie stosowanych w teorii
konsolidacji oraz dodatkowo, Ze temperatura skiadnikéw lokalnie jest taka sama. W pracy
podano pelna termomechaniczng interpretacje wyprowadzonych wspélczynnikéw oraz wyka-
zano niepoprawnoéé dotychcmsowych podejé¢é do zagadnienia termokonsolidacji, [2, 8].

B pafore BhIBe/ieHa MOMHAA CHCTEMA JIHHeAHBIX YPaBHEHMH JUIA IOPHCTOMN CPENEI, 3aONHeH-
HOIl JXHKOCTBIO, C YJeTOM Tepmudeckux adbdexron. Paccy)«IeHHA NPOBOJHIMCE HA TDYHTE
TEPMOIHHAMHKH HeoOPaTHMBIX IIPOLIECCOB, NPH NPEQIONOKCHHAX OOLIYHO MPHMEHACMBIX
B TEOPHH KOHCOJIMOAILHH, a4 TalKe DONOTHHTEIBHO, YTO TEMITEPATYPA KOMITOHEHTOB JIOKANBHO
omHHakoBa. B paGore faerca mommas TepMOMEXAHMYECKAas HHTEPHOPETAHA BBEACHHBLIX Koo(-
(HidenTOB, 4 TAKOKE IMONASAHA HEKOPPEKTHOCTH CYIIECTBYIONIHX [0 CHX IOP MONXOMOB K 3a-
Aade TePMOKOHCONMHpjaime [2, 8].

Principal symbols

xi[m] Cartesian coordinates,
t [s] time,
u(u) [m] displacement vector of the skeleton,
U(U)) [m] displacement vector of the liquid,

du ;
v(v) = = [m/s] velocity vector of the skeleton, -

w(w) = % [m/s] velocity vector of the liquid,

A [m?] area,

A, [m?] area of pores in A,

Q [m3] volume,

2. [m®] volume of liquid in £,
2, [m*] volume of skeleton in £,

fa [1] coefficient of surface porosity; fy = L:.'_,

2,
fa [1] coefficient of volume porosity; fo = -
o [kg/m? density of the two-component medium,
. [kg/m®] real density of the liquid,
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density of the liquid as referred to the total volume,
diffusion force per unit volume,

coordinates of the stress tensor in the skeleton per unit area of the total sur-
face,

liquid stress per unit area of the total surface,
liquid pressure,

coordinates of the strain tensor of the skeleton,
volume expansion of the skeleton,

volume strain of the liquid.

Helmholtz free energy,

Gibbs free enthalpy,

kinetic energy,

power of the external forces,

quantity of heat,

vector of heat flux,

entropy,

internal energy,
absolute temperature,

body force, per unit mass,

relative temperature T, (with reference to the temperature T, of the natural
state),

overall global coefficient of heat conduction,

specific heat of the liquid with constant volume of the components, per unit
mass,

specific heat of the skeleton with constant volume of the components per
unit mass,

specific heat of the liquid and the skeleton as a whole, with constant pressure,
per unit volume,

specific heat of the liquid and the skeleton as a whole, with constant volume
of the components, per unit volume,

specific heat of the liquid, with constant volume of the components, per unit
volume,

specific heat of the skeleton, with constant volume of the components, per
unit volume,

specific heat of the skeleton, with constant pressure, per unit volume,

specific heat of the liquid, with constant pressure, per unit volume.

The subscript 1 is used to denote quantities per unit volume of the medium. Thus, for instance, S, is the

entropy per unit volume.
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1. Introduction

A seT of linear equations will be derived for a porous medium constituting of an elastic
skeleton with its pores filled with a liquid, the action of the temperature field being taken
into consideration. This problem has hitherto been considered in two papers. The first
was written in 1970 by R. L. SCHIFFMAN [8], who assumed that the temperature of the
skeleton and the liquid is the same. The problem formulated in the other paper, which
was written in 1973 by H. Deresiewicz and C. PECKER [2], was more general and assumed
that the two temperatures are different.

Schiffman’s paper contains essential notional errors, that of Deresiewicz and Packer
gives rise to considerable doubts as regards the heat equation which is established on the
formal basis of the Onsager principle. There is no interpretation of the coefficients intro-
duced in the heat equation.

In the present paper the correct equations of motion published in Ref. [3] will be used
and the argument will be based on the structure of a state function of the medium. This
will enable us to give a clear interpretation of the coefficients.

The approximate assumptions used throughout the paper will be the usual assumptions
of the consolidation theory with an additional assumption that the heat exchange between
the skeleton and the liquid is perfect, that is, the temperatures of both components are the
same at every point of the medium. This is of course a simplification but the error thus
introduced is, in our opinion, insignificant.

2. Equation of continuity of mass. Equation of motion

The subject of the present considerations is a porous body, the pores of which are
filled with a liquid. It is assumed that the volume porosity f, and the surface porosity f,
are constant. The continuum theory will be used.
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The equations of motion have been given for such a medium in Ref. [3]. The results
of that reference will be reported here for the sake of lucidity.

From the kinematical point of view the body is composed of two parts:

1) the skeleton, together with the skeleton-bound liquid moving at the same velocity
as the skeleton. The density of that component is (¢—p);

2) the free liquid moving at a velocity which is different, in.general, from that of the
skeleton. Its density will be denoted by p; the symbol ¢ = g,+ 9, denotes the overall
density.

This subdivision of the liquid is illustrated in Fig. 1. The free liquid is marked by
dots, the skeleton-bound liquid by dashes. It is seen that the density of the free liquid
is a function of the surface porosity f,. It thus is expressed as

2.0 0 = falc-

When the medium moves, the free liquid is carried by the skeleton and performs an
additional motion relative to the latter. The part in relative motion produces forces of
internal friction. Its density will be denoted by p,.

Putting aside the details of the derivation procedure which can be found in Ref. [3],
let us quote the equation of continuity of mass in its final form.

1. For the skeleton and the skeleton-bound liquid we have

@2 %2, (e~ = 0.

2. For the free liquid we have
@3 % 1 e—0).) = ~ @

3. For the density of the free liquid, which varies during the relative motion, we have
(2.4 % + [ew(wi—v)],; = 0.

Let us also quote after Ref. [3], the equations of motion also without derivation.
1. For the skeleton and the skeleton-bound liquid the equation of motion is

- dv
o5+ (e—0)X: = W*’(Q—é)jif,

(2.5)
LS ..
dt - at 6x, =
2. For the free liquid it has the form
5 _dw
o, +eX: = Fl'+a—,
2.6)
( a_o. 0
/AR T
and

F/+F*=0.
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3. The first law of thermodynamics

Let us separate mentally from a large region a finite body bounded by a regular sur-
face A, the position of which is determined by the external normal unit vector n(n,). The
energy balance for this separate body is as follows:

(3.1) K+U=L.+0,

which is a mathematical expression of the first law of thermodynamics [7].

ﬁcp}"’r-ﬁ'ﬁ

The mechanical power is equal to the power of the surface forces acting on the surface
A (cf. Fig. 2) and is expressed by the equation

(3.2) .iv‘ = J. T,;U;JA + f{g-ﬁ)z\’.vidﬂ+ f T_‘ﬂ wldA + fQX| WldQ
A o) A 2

= f[du.J‘l‘(Q—-é)Xi]”:dQ'P f[“.l+§Xl]wldQ+ J.{a,;éu+o'é]dﬂ,
2 2 2

where T; = oyn; is the stress acting on the skeleton per unit area of the total surface,.
Ty, = on, is the stress acting on the liquid per unit area of the total surface, &; = —i-(v,, it

+v;,,) is the small strain rate of the skeleton, - wy,; is the small expansion rate of the
liquid. The power of the gravity forces has also been accounted for in Eq. (3.2).
The kinetic energy is described by the equation

K= [ lo-awwitammide.
Q
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Making use-of the equations of continuity of mass (2.2) and (2.3), the material derivative
of that energy can be written in the form

aw

: dv, | -
69 k= J|e-png rene]an

The non-mechanical power is equal to the heat supplied to the system in the form
of a heat flux ¢ through the surface 4 and as a result of transport through the same surface
of a mass of free liquid.

To evaluate the heat transported by the latter, it is assumed that the mass of the volume
£ is constant (cf. [5]). Such an assumption means that the density of the free liquid in
the volume £ is constant, that is dp/df = 0. Consequently, we find from the equation
of continuity of mass that

(3.4 [é(“’l -9l =0, (ev):=0.

This condition means that there are differences in velocity w, # v, but, at the same
time, g = const and ¢ = § = 0.

In agreement with the assumption that the local temperature of the liquid and the
skeleton are the same, we evaluate the rate of variation in the quantity of heat in the
volume 2

k5 0=- ,.f qimdA + ,.f gy ¥ w—v)mdA = — ﬁ[ [91.1—8Cer (Wi — 1) B ).
Let us introduce the rate of internal energy per unit volume
U= 5[ U, dQ
and, making use of the functions listed above, let us write the local expression of the first
law of thermodynamics on the basis of Eq. (3.1):

(3.6) U, = (o151 + 01— [qu.i—0Cor(wi—2) B 1+ [F*(wi— ).

The last term in the Eq. (3.6) follows from the equations of motion used for the trans-
formation of the global equation (3.1).

The local equation (3.6) tells us that the variation in the internal energy is due to the
energy supplied by the mechanical work (the first term), by the heat (the second term)
and the thermal energy produced as a result of resistance against flow (the third term).

4. The second law of thermodynamics. Dissipation functions. Diffusion forces

The total entropy S of the fragment separated mentally from the medium is composed
of a part S; that can be exchanged with the ambient medium through the surface 4 and S,,
which increases in an irreversible manner. In agreement with the Clausius-Duhem postulate,
the variation rates of these entropies must satisfy the inequality

4.1) S, =5-5,>0.
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The variation rate of the entropy S’, will be evaluated from the heat flux Q through
the surface A, the condition (3.4) being taken into account. The entropy function § in-
cludes the entropy produced by internal friction. However, friction produces temperature
variations, therefore it does not influence the heat flow through the surface 4. To determine
the entropy S, exchanged with the ambient medium, it suffices to calculate $* which is
determined by the heat flux through the surface. Thus, according to Eq. (3.5), we calculate
the variation rate of the entropy S* and write

. qi.1 [ecor(wi =)D 1]
4.2 §* = — !Tdﬂ+ﬁ‘- — dQ.

Let us transform the integrals in the right-hand member of Eq. (4.2) as follows:

_ ,.f e LN 5[' Lt L

It is found, therefore, that the entropy exchanged with the ambient medium in the thermal
form is

(4.3) - - f qr—écgt;,—v.)a i
A

The remaining part are irreversible variations in the entropy S*, fhe entropy sources
being not taken into consideration. We have

(4.4) f lgi— ec,;(w. oL LI

The integrand in Eq. (4.4) must satisfy the Clausius-Duhem inequality. Assuming
that the relations are linear and the medium thermally isotropic, we derive from this
inequality the general law of heat conduction:

4.5) g = — A0 1 +ocyy(w—v)P®, 4>0.

It is seen that this law involves the heat transport due to the motion of the free liquid.
The coefficient of heat conduction 4 > 0 relates to both components as a whole and, in
agreement with the theory of mixtures [1], is equal to

(4.6) PR S
Cst+0rpr  Qrt0sPs
The coefficients ¢, and ¢, in this equation depend on the physical properties of the
components. They are determined by the empirical equation given in Ref. [1]. In par-
ticular, it may be assumed as a first approximation that ¢, = ¢, = 1 and

1
(47) A= ?(93 ‘1.1+9f Af),

where A, and A are the coefficients of heat conduction for the skeleton and the liquid,
respectively,
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The total value of the internal entropy produced is determined, taking into considera-
tion its sources, as the difference between the variation in the total entropy S > S* and
the entropy S; which can be written in the form of the local relation

(4.8) S, =S, + [‘i’l chr(""l 03)19] 50

Let us differentiate the second component in the inequality (4.8) bearing in mind
the assumptions with which the heat has been calculated (8—¢& = 0, g,; = 0), using the
first law of thermodynamics in its local form (3.6). We thus rewrite our inequality as

J [gi— 8o B(wi—0)] D

. U " . P |
(4.9) S — 7-1-‘4'[1‘1{ (Wi—ﬂt)+°'u€u+°0]‘f_ T2 = 0.
Let us introduce the Helmholtz free energy
(4.10) F, L U-
and rewrite the inequality (4.8) as the function of that energy
(4.11) Fy =S, T+ F{*(w,—v) + 08+ of [9:—ecer ‘92"’_"')]0-' > 0.

The free energy is-a function of the coordinates of the strain tensor ¢, the expansion
of the liquid 6 and the temperature T, that is,

4.12) F, = Fx(euy 0, 1),
therefore, the inequality (4.11) can be written again as follows:

(3.13) (ou---g%)éu+(c—- 6F1) (S; + aF!)j'-}-F{‘(w,-—v;)

_ Q- 0cy P(wi—vy) 8,50

T
This inequality is always satisfied if the equations of state
oF OF, oF
4. it =l = ~—L
( 14) GU asu ’ () ae ] Sl aT ]
and one inequality
(4.15) D= F{'(Wl—”l)— ‘Il_ecofg(wl“vl) 8,0,

are satisfied, the symbol D denotes the dissipated energy also referred to as a general
dissipation function. The first term refers to the internal sources of heat due to the fric-
tion between the liquid and the skeleton. The second term is the energy dissipated in
irreversible processes due to heat conduction and the transport by the free liquid. It is
known from the previous considerations that this second term satisfies the Clausius-Duhem
inequality and leads to the generalized law of heat conduction (4.5). Thus, to satisfy the
inequality, it must be assumed that

F{‘(W; —U;) = 0.
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From the inequality just obtained we have the relation
Ff'= D bm-v), b >0.
i=135...
Assuming linearity we retain the first term only and write
(4.16) Ff* = b(w,—v;), b>0.
Omitting the body forces and the inertia forces in Eq. (2.6) we arrive at the relation,
4.17) F* = 0, = b(w;—v)),

therefore, we have obtained the familiar Darcy law of flow, the coefficient b being the
Darcy constant.

5. State functions. The constitutive relations

The free energy is a scalar, therefore it must be a function of strain invariants and the
temperature 7. Since our objective is to develop a linear theory, we take only the first
two strain invariants of the skeleton:

Il. = &g = &, Iz = B‘JEU
and write
(5.1) Fl =FI(II:!2$8’ 7).

Let us expand the free energy in Taylor’s series in the neighbourhood of the natural

state in kinematic variables, retaining terms not higher than the quadratic ones:

(52 F,1,0,T) = F,0,0,0,1)+ 10001 , 000.9,0.7)
2

oI,
+6Fi(0, 0,0, T)0+ 0*F,(0,0,0,7) 1 0°F,(0,0,0,7)
o0 él, a6 2 ar;
2

LB D,
From the geometrical interpretation of the expansion of the function F, in Taylor’s

series there follows a mechanical interpretation of its four derivatives:
_ 0%*F,(0,0,0,7)

I

1,0+ n

K an is the bulk modulus of the skeleton,
L= 0%F(0,0,0,T) the cfoeflicient of coupling between the expansion of
(5.3) ol a6 the liquid and that of the skeleton,
M= gm% 7 the bulk modulus of the liquid,
N= gf%w the shear modulus of the skeleton.
Taking into considt:ration Eqs. (4.14) we can write out the stress-strain relations as
(5.9 g = 2Ns,,+(Ke+L8+ %il)au, o= MB+L3+%.
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Let us now explain the meaning of the terms oF,/dl; and 0F,;/d0. We assume that it
is only non-mechanical energy that is supplied to the medium. Thus ¢;; = ¢ = 0 and
the state of strain denoted by the prime is produced by the temperature field alone, there-
fore the relations (5.4) are reduced to the form

, 3 0F, , 3L OF, _
“=-%ar tema -

o SLOF,  2N43KOF, _ o _ o

where ar and oy are the coefficients of linear thermal expansion of the skeleton and the
liquid, respectively. On solving Eqs. (5.5)\for the derivatives of the function F;, we find

(5.5

(5.6) =3 yré, -0 =71,
where
yr = @QN+3K)ar+3Lar, yr = 3(Lar+Muay).

The last unknown term of Taylor’s expansion of the free energy is Fy(0,0,0, T),
which can be found from the relation, known from thermodynamics [4], between the
specific heat and the entropy

as 9*F, |
oD ‘0 = Cuo = T( ar).., T( oT? )a

where ¢, is a sum of specific heats of the two-component medium per unit volume, that
is,
g = CQ.“*‘Cgc

By integrating twice Eq. (5.7) with respcct to the ternperature, we obtain F,(0,0,0, 7)
T

(5.8) Fl(ooon——fdrfc""dr—fdrf‘“‘dr
To To
We have now interpreted all the coeﬂiclems of the Taylor expansion of the free energy
and the state functions introduced can be written in an explicit manner:
T T
(59) Fy = Nejey+ %Ks’+ Leb+ _;Mm-y,as-;,aa- J T f Cor gt
Ta
T

To
T
Cac
- f @ f T 4T,
To To

3F T
aT yT8+ ?ro'i"-'nln

(5.10) S, = To

(5.1) U, = F,+TS, = Neyey+-

2 K82+LEB + ‘—“Mﬂz-l-()’rs"‘?rﬂ) To

f dr f Cos gp_- f dr f dT+ Tcnln
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These formulae are valid if it is assumed that the physical parameters are material constants
independent of the temperature.

Making use of Egs. (5.6) we rewrite the physical relations (5.4) in which all the constants
have already been interpreted in the form

(5.12) 0i; = 2Ne;j+ (Ke+ LO—y19) 6y,
o= Le+ MO—y,9.
Having in view the derivation of a heat equation, we introduce additionally the free
enthalpy which is defined by the equation
(5-13} G1 - Fl—(}'ueu—o‘ﬂ.

The free enthalpy will be determined as function of the stress. To this end, the physical
relations (5.12) must be solved for the strains and the results must be substituted in Egs.
(5.9) and (5.13).

We shall need the second derivative of the free enthalpy with reference to the tempera-
ture with constant pressure. After obvious transformations we have

1 3 1 3 L\ _
G, = — WGUO.'J-*-[W ~ M __ZF(I_T‘-{—) ]03—3(dr+0!1-)190‘
3 T T T T
(5.14) -7(y,ar+;,&,-)ol— fdrf c;,' dr- fdr fﬂ;idr,
To To T To

L2
P = 2N+3(K—-F).

We shall use the following equation, known from thermodynamics [4], between the
specific heat with constant pressure and the entropy

. fas)\ . [&G,
== (%), = -1(5),

After some obvious calculation we find the difference between the specific heat with
constant volume and constant pressure for the skeleton and the liquid, respectively,

Cos—Cqs = 3?1" Oy T’

5.15 S
( ) Coc—Cgc = 3yrarT.

6. The heat equation

To derive the heat equation let us calculate the material derivative of the internal
energy (5.11)
(6.1) U, = [oyéy+0b)+ [(yré+726) T+coT),
the physical relations (5.12) having been taken into account.
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The second term is the material derivative of the entropy multiplied by the absolute
temperature, that is,

TS, = (yré+yr0) T+coT.

On setting equal the expressions (6.1) and (3.6) for the material derivative of the internal
energy, we obtain

(6.2) TS, = (yré +910) T+co T = Ff*(w;—0)) = [q1,1—8Cor ®.1 (w1 —2)].

Making use of the law of heat conduction (4.5), the law of liquid flow (4.17), and
substituting the difference of specific heats (5.15), we obtain the requested equation of
heat conduction

2 — o Hy CosCos . Coc—Cac g
(6.3) AV2O+ Wy = cpd+ Sy e+ % 0,
where A denotes the coefficient of heat conduction which is expressed by Egs. (4.6), and
the source function W, ircludes the heat produced as a result of the flow and, possibly,
other sources of heat W

(6.4) Wo = b(w;—v)(w,—v;))+ W.

7. The reduced equations

The unknown quantities in our considerations were:

1) the three density functions g, g, 0w,

2) the three coordinates of the displacement vector of the skeleton, (),

3) the three coordinates of the displacement vector of the liquid, (U)),

4) the six coordinates of the stress tensor of the skeleton oy,

5) the stress transmitted by the liquid, o,

6) the relative temperature, 9.
The total number of the unknowns is, therefore, 17. To find them, we have 17 equations:

1) the three equations of continuity of mass (2.2), (2.3), (2.4),

2) the six equations of motion (2.5), (2.6),

3) the seven physical relations (5.12),

4) the heat equation (6.3).

The number of equations can be reduced if the physical relations are substituted into
the equations of motion and the familiar geometrical relations for small strains are used.
As a result of that, the following reduced equations are found:

dv
NVZu 4+ (N+K)e, + L0 ;+ (e—0) X, = ?r‘ﬂ.ﬁ'(e"@?,— =b(w,—v)),

LS‘I“I" MB;'{‘EX[ = ?r"_;"‘ % +b(Wg—U().

The set of equations just written is completed by the heat equation (6.3) and the mass
continuity equations.



EQUATIONS OF LINEAR THERMOCONSOLIDATION 315

In the case of small displacements it may be assumed that the material derivatives
of the displacement rate are equal to the local derivatives. This simplification enables
us to reject the heat sources which are a function of the squares of the differences between
the velocity of the liquid and that of the skeleton.

If we assume, in addition, that the variations in the density of the skeleton are negligibly
small, the set of linearized reduced equations takes the form

NV2u+ (N+M)e + L0 i+ (=) X; = yr 9.+ (@—0)it—b(Ui—1)),

a2 Le,+ M0 +0X, = 579 ,+0U,+b(U,— 1),

29 — 1 Cos—Cqs - Coc—Cqc é
AVZ9 Cn??'l' 311‘ £+ 3&1‘ .

These equations are a closed set of seven linear equations with double coupling.

8 Concluding remarks

Our objective was to study fundamental relations, therefore, our considerations were
limited to the simplest medium possible, that is, an elastic skeleton with pores filled with
a liquid.

It was assumed that the skeleton is linearly elastic, the medium isotropic, the porosity
uniform, the temperatures of the liquid and the skeleton locally the same, etc.

There are no obstacles for the formal generalization of our argument to the case of
an anisotropic skeleton, for instance, or the case of parameters constituting functions
of the temperature, or that of a viscoelastic skeleton. The argument will not be changed
in any of these cases.

In the well-known paper of R. L. SCHIFFMAN [8], the assumptions of thermal isotropy,
linearity of the thermodynamic relations and equality of the temperatures of the liquid
and the skeleton lead to the following heat equation:

CeQo 0P de a0
T, ot VT

a

No sources of heat due to liquid flow are involved (W, denotes other sources of heat).
The argument was based on Onsager’s principle and the author did not explain in a cor-
rect manner the coefficients involved in the heat equation, confining himself to the con-
sideration of quasi-stationary states. The present considerations show that such a limita-
tion makes the considerations incorrect.

Three years later C. PECKER and H. NERESIEWICZ published in Acta Mechanica a paper
concerning linear thermoconsolidation [2]. The case of different temperatures of the
skeleton and the liquid was considered. Some essential errors were committed. First,
the influence of the heat produced by mass transport was disregarded. Second, a local
equation of conservation of energy was used, which is erroneous, because the heat
due to the irreversibility of the liquid flow (an obvious source of heat) was disregarded.
The physical equations were written assuming linearity and symmetry. As a result of this,

kl 2 @o A=y
(8.1) —t;-V 19+T—° W, =
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there is no thermomechanical interpretation of the coefficients introduced. In so far as
the heat equations are concerned,

- k, V29, = Fyy 84+ Fy, 9+ K(T,= T) + Ry, Toé+ Ry, Tob,
@2 keV2 8, = F316,+F331‘9}—K(T,—T})+Rn Toé+ Ry, Tob,

where the indicants s and f refer to the skeleton and the liquid, respectively; the thermal
sources due to liquid flow have been rejected as in Schiffman’s paper. There is no defini-
tion of local entropy and it is not said whether it is a sum of entropies of the liquid and
the skeleton at every point or a function of an intermediate temperature.
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