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On the incremental collapse criterion accounting for temperature
dependence of yield point stress

J. A. KONIG (WARSZAWA)

THE PAPER presents a systematic derivation of the incremental collapse criterion in the case
when the yield point stress is temperature-dependent. The criterion is illustrated by the incremental
collapse :g:alysis of a thick-walled tube subject to variations of internal pressure and of tem-
perature field.

W pracy wyprowadzono kryterium zniszczenia przyrostowego dla konstrukcji spreZysto-plastycz-
nych poddanych obcigzeniom zmiennym i zmiennemu polu temperatury. Wynik zilustrowano
na przykladzie rury grubosciennej, poddanej zmiennym: cifnieniu wewngtrznemu i quasi-stacjo-
narnemu polu temperatury.

B pabore BEIBOJMTCA NPH3HAK MPOTPECCHPYIOIIET0 PAaspyIIeHHA YNPYIO-IUIACTHICCKHX KOH-
CTpYKIMli NPH MOBTOPHO-IIEPEMEHHLIX HADY)KEHHAX, YUHTHIBAA SABHCHMOCTh NpefieNa Te-
KYy4ecTH OT TeMIeparypbl. PesynsTaT HUUDIOCTPOBAH MPHMEDOM TOJICTOCTeHHOH# TPYOBI mon
IeiCTBHEM MEPEMEHHONO BHYTPEHHOIO JABJICHHA H ICPEMEHHOTO HOMA TCMICPATYPLI.

1. Formulation of the problem

THE SHAKEDOWN theorems, [I, 2], have been derived initially accounting only for me-
chanical loads. Their extensions to thermal actions [3, 4, 5, 6, 7] took into consideration
not only thermal stresses but also the fact that material constants such as yield point
stress vary with temperature. In the case of a static approach [3, 5, 7] this effect as well -
as the effect of the temperature dependence of elastic moduli can be incorporated relatively
easy.

However, more complicated boundary-value problems are to be solved by means
of the kinematic approach, especially if incremental collapse is considered. The methods
developed [8, 9, 10, 11] allow to find out the critical loads which may cause divergent
increments of plastic deformations simply from the analysis of possible mechanisms
of those increments, without tedious integration with respect to time as the original theorem
required.

The aim of the present note is to clarify the use of kinematic approach in cases in which
the temperature variations of yield stress cannot be neglected.

2. Basic relations

Let us adopt the following assumptions:
1. The total strain is the sum of elastic, thermal and plastic terms:

(2.1) &y = &+ e+ey,

‘ i)
22 e = Ejhou, &= MyT, &= 5.8 A20.

aﬂu >
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Here 8;;, 0;; denote the strain and stress tensors respectively, T stands for temperature
measured from the natural state, Ejy is the tensor of elastic moduli, M;; — tensor
of the thermal expansion coefficients.

2. The form of the yleld condition is as follows:

(23} f(o'u)"' k(‘s T) <0,
where f(0};) is a homogeneous function of order one. The majority of the used yield condi-

tions can be easily transformed into such a form. The domain (2.3) in the stress space
is assumed convex whereas

(2.4) k(x, T) = ko(x)g(x, T), g(0)=1.
Thus the dissipation function depends not only on the instantaneous plastic strain rate
but also on instantaneous temperature:

(2~5) Uuéﬁ - D(!, &!‘5! T) - Do(xv é.f’l)g(xs T)s
where D, denotes the value of the dissipation at zero temperature, determined uniquely
by the plastic strain rate ).

In further considerations the function g(x, T) will be linearized:

(2.6) g(x, T) = 1-b(x, T) = 1—-AT,
A being a non-negative material constant.

3. The external actions resulting in some mechanical loads as well as in temperature
fields are controlled by a set of load-temperature factors f,, s = 1, ..., r, referring to
each one of the actions, respéctively:

@7 Px,1) = D B(OPI®), Fi(x, 1) =D fnFIX),

=] =1

T(x, 1) = D, B T'X).

=]
Here P; — surface tractions, F; — body forces.
The values of the factors g, belong to a certain set Q in the r-dimensional space of
those parameters. The set 2 defines the range of their prescribed variations.
The total stress tensor in an elastic-plastic body subject to actions (2.7) can be presented
as follows:

(2.8) oy = aij+oy,

where of] is the thermoelastic stress calculated under the assumption &f; = 0 and k = oo,
oy being a self-equilibrated stress state appearing as a result of plastic deformations.
This state can be expressed in the form

@9 ou(x, 1) = [ GH(x, D&, NV,
V

where G}/(x, ) is a two-point Green tensor field depending on the elastic moduli tensor
field Ejj(x) and on the boundary conditions.
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The thermoelastic stress can be presented as follows:
(2.10) ofj = oy +el},

where off is the elastic (not thermoelastic!) stress determined uniquely by the mechanical
loads P;, F; as given by Egs. (2.7) whereas the thermal stress o} (equilibrating vanishing
mechanical loads) is to be calculated from the formula (2.9) by substituting &f; with M;; T.
Thus one can also write the following relationship (M;; denotes the thermal expansion
coefficients tensor):

of(x, 1) = Z: BU1) o = D) Bu()) {oFF () + el (X)),
5= s=1

where &f7, of}® are respective thermoelastic and thermal stress fields associated with unit
external actions, off* denoting respective mechanical stresses.

3. Incremental collapse criterion

The kinematic shakedown theorem, in the case of both thermal and mechanical actions,
reads, [5, 6):

Shakedown is impossible if, for a certain time period (¢,, ¢,) there exist:

1. an external actions history Py(x, t), Fi(x, t), T(x, t),

2. a plastic strain history z;;(x, ), such that

an [{ J’ FiiydV + Sf PiiiydS+ J M, Tgydv)de >‘fl J’ DGy, T)dvat,

Iy

I

- = 1 & -
(3.2) dgy = f eydt = —- (44,0, () =0,
f
A 1 .8 2,
(3.3) tlj'l'El}-llleu -7 .5+,

The formula (3.3) denotes that g (x, t) is the residual stress field defined by the plastic
strain field g;(x, #) through the formula (2.9). However, due to Eq. (3.2), the integral
increment field 4z, is compatible and thus g;;(x, #,)—g;(X, 15) = 0.

By transforming the inequality (3.1) by means of the Virtual Work Principle and
in view of Egs. (2.10) and (3.3), the following result is obtained:

(3.4) ,f, L"r Gﬁxf;}:}+ Eﬁtlléu}dV'i' J MU TéudV] di > ‘fz f!. Doéq)g(!, I)dth.

Due to the definition of ofj, the second integral in the left-hand side of that formula can
be presented as follows:

(3.5) fMJJT'étjdV= - f@:_{EEﬁQ{lW: IQE'EUW"
7 % v

2+



320 J. A, Konio
The Virtual Work Principle implies also that
(3.6) [ oEPEGAGuav = 0.

Vv

Thus finally, the formula (3.4) assumes the following form:

(3.7 ' ] ’ Vf ey dVdt > ,f J' Do(&:,)g(x, t)dVat

or, equivalently,
fa 3

G.7) [ [{ohey+bx, VDoG}aVdt > [ [ Do(edvat,
n v n Vv

b(x, T) being defined by Eq. (2.6).

The most stringent condition of incremental collapse results from a history of loads
and temperature defined by a certain history f,(¢) of the load-temperature factors which
maximizes the left-hand side of the inequality (3.7) and for a strain-rate history which
minimizes its right-hand side.

To perform this optimization let us notice first the following inequality, generally
valid

f2
(3.9) | Do(ehydt > Do(Ael),  Aefj= ef(t)-ef(t,).

From the following relations the proof yields

12
2 .
Aefy = f 1L f a, J-Do(sﬁ)dt-_-fuuz%dr,
n f

(.9
= 7]
DQ(AE;'J) =0y f lw{; dt, where f(au) = ky.
L

Therefore,

ta [ L&

. _ ., _ .
fDo(s,j)d:-—Du(.daﬁ)=f(au—uu)il?j;dt= f (0y—G)efdt > 0.
N . L L

The last inequality results from the convexity of the yield condition (2.3).

Now, if we are going to investigate the phenomenon of incremental collapse exclusively,
not the general case of inadaptation, we can stress the range of the plastic strain lustorles
&; to such that their rates are proportional to the total increment Ag;;:

Gu(x, f) = A(x, f)AEu(x), A(x, f) =0,

(3.10) 4
[ ax, pyde = 1.

The equality in the formula (3.8) takes place in the case of plastic strain rates as defined
by Eq. (3.10), i.e. in the case when the vector z; keeps a constant direction.
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Thus the formula (3.7") can be rewritten as follows:

(3.11)] f f {Z‘ Bu(D) o (X) A(x, 1) A5, (x)+b(x, T) Do(Gyp)} dVdt > f Do(dey)dV.

Now let us analyse the constraints in the problem of optimizing the left-hand side
of Eq. (3.11). Those are:

1) factors f,(t) must remain within a given set £,

2) the total increments Ag;; are prescribed.

It is easy to see that these constraints are the least stringent if the field A(x, 7) is selected
in such a way that at each instant ¢ it vanishes everywhere with the exception of a certain
point x,4(¢), i.e. A(x!, ) A(x2, t) = 0 for x! # x2, Then the integrand in the left-hand side
of Eq. (3.11) may be optimized at each point separately and the values of f,(¢) at instants
during which E'u{x, t) = 0 are unimportant. Let us notice that the procedure does not
alter the right-hand side of the inequality.

Thus the following optimization problem is to be solved first:

(3.12) L(x) = max { D) 8ok (x) dz,(x)+ 5 x, Z{‘ B, T*(x)) Do(dz;(x)}
kel -

and then the load and temperature magnitudes (i.e. the respective values of the factors f,)
which may cause incremental collapse are given by the equation

(3.13) [Lmyav = [ Do(dz)av.
V v

The problem (3.12), in general, is a complex problem of nonlinear programming. It be-
comes simpler in the case when domain £ is a hyperpolyhedron defined by a system of
linear inequalities

Zdﬂﬁlgdt’ k= l’ ey m,
k=1

and if the function g(T) is linear as given by Eq. (2.6). In such a case the domain 2 is
uniquely defined by a set of v corners f, ..., % and formula (3.12) becomes

(412) L= max Zﬁ’ {8 (X) 48 (x) + A(x) T*(x) Do (5 (x))}.
J=1,..,v 521

In the case when 2 is a hyperparallelepiped

(3.14) br < B < B,

the solution of the optimization problem (3.12) or (3.12") can be given explicitly. Namely,
in this case the incremental collapse criterion (3.13) assumes the following form:

(3.15) f Za,(x)] (x)dV = f Do (42(x))aV,

=]
where
(3.16) Ji(x) = of(x) 48,y (x)+ A(x) T*(x) D, (4%;(x))
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and
Br if J(x)>0,
@17 "'("={ﬂ.— it J.(x) <0.

The author does not know of any study in which the incremental collapse criterion could
be derived systematically, accounting for the temperature dependence of the yield-point
stress. Moreover, it seems that the consequent use of the load-temperature factors makes
clear how the elastic stress should be optimized in the basic inequality (3.8).. Usually
this has been done intuitively by assuming an envelope of thermoelastic stresses. The
formulas (3.12), (3.16) and (3.17) show that sometimes this does not need to be correct.

4. Example of application
A thick-walled tube, closed with rigid decks, is subjected to internal pressure p which
is allowed to vary within the limits
4.1 0<p<p
and to a quasi-stationary temperature field

_ o In(byr)
0=
varying independently of the pressure as defined by
4.2) 0<0<8.

Here a, b —internal and external radii of the tube, 6 — internal temperature,- provided
T(b) = 0, r — current radius.
Let us assume that the material of the tube obeys the Tresca yield condltnon

(43) Iaﬁ—ari =
and the plastic constant k decreases linearly with temperature according to the formula
(2.6).
The thermoelastic stresses are as below:
N b’) __ Ed% ( _b . (¢*—a)in(r/b)
or(r) = b2 —a? (1 7| 20-»)B*—a2) T a*In(a/b)

5 Ed* L) +In(r/8))

~ ] 1 r\
o) = 2% Ea* (1 (bz_az)(TJﬁm?)y)
=g ToHE-d \' " @@ '

In the case of axial symmetry the only possible mechanism of incremental collapse
is given by

4.5) ‘() = CJr, Ads, = —AC|r?, Aey = AC|r?
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associated in this case with the side of the yield condition defined by

(46) Oy— 0 = 2k(T).
Thus it is easy to see that

Viles 4ac ac
“.7 Do=0r(“7)+“¢(rz) 2ko —- =

Due to the formulas (4.4) and (4.5) the functions J,(r), Jy(r) are as follows;

a? b? Viles a? b\ AC AC- 24%b*
%®=7:?0‘FN‘?J+?:F0“47T=?@iﬁ'

Eaa? (b*—a®)ln(b/r) ac
B ) 2(0-v)(*—a?) [ a’ln(b]a) (_T)
Ead® [ b2 (b=_a2)(1—1n(b/r))] ac + 4 /D) In(b/r) ,, 4
T 20-p@E=-a) | @In(b/a) 72 " In®ja) T 7
ac Eaa> a*  2b? ln(b!r)
- =2(l-v)(bz—d3) [azln(b/a) r? ]+2’4k° In(b/a) |’

Thus

J(r) >0 for a<r<b,
(4.9 Jo(r) <0 for a<r<r,,

Jo() >0 for ro<r<b,
where the intermediate radius ry is to be calculated from the equation
(4.10) 2 n b2 —a®>  44k,(1—»)(b*—a?)In(b/r)

) r2  a&®n(b/a) Ead?In(b/a)

According to Eq. (3.17), the functions a,(r), @(r) are as follows:

=0.

forag<r<r,,
for ro <r<b.

_ 0
@1 a(r) =, m®=%

Finally, the incremental collapse condition (3.15) assumes the form

b b b
(4.12) p [ 1,rdr+8 [ Jnrdr = [ Do(ryrdr.

By substituting the respective magnitudes as defined by Egs. (4.5), (4.7), (4.8) and (4.11)
the following formula results:

Ead*a b*—-a
209 - [a’ln{b/a) In(b/ro)— = -+ 1]

Ak (ln(b/ro))z _
+ —?THW} = 2koln(b/a).

It may be useful to introduce the following dimensionless parameters:

b _r 4Ako(1-7)
(4.14) B=—y o=, e=0D

'(4.13) 5+§=
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Then the formula (4 13) becomes

415 540 2(1 k. {ln(ﬁ/e) & ﬁzl_ . ez(ﬂf_ e ln(ﬂ/e)} 2eylnf
and Eq. (4.10) assumes the following form:
(4.16) —2f*[0*+ (B*—1)/In f + &(*—1)In(B/0)/In g = 0.

As the parameter ¢ is usually small, an approximate solution of this equation may be as-
sumed as follows:

= p?In p* — e, B
(4.17) Qo = I/FI—, 9"9"(1_71“@',’)‘

This solution is sufficiently precise for b/a < 3, thus in the majority of practical cases.
For b/a < 1.2 one can assume ry, = (a+b)/2.
In the case of mild steel one can assume the following material parameters:

2ko = 2500 kG/ecm?, E =2.1:10° kG/cm?,
o = 10~%/grad, A = 10"3/grad,

v = 0.3.
In the case b/a = 2 the formula (4.15) gives
(4.18) D+2.6672 :cir 3 6 = 1732.8675 kG/cm?2,
8l |

1500




ON THE INCREMENTAL COLLAPSE CRITERION 325

For the sake of comparison the same calculation has been repeated for 4 = 0, i.e. with-
out the influence of temperature on yield point stress. In this case the following result
has been obtained:

(4.19) p?+2.5326cmf—(;m1 0 = 1732.8675 kG/cm?.

Both incremental criteria are presented in Fig. 1, the formula (4.18) —in solid line, the
formula (4.19) —in a dashed one.

The influence of the temperature dependence of yield stress becomes more pronounced
in the case of steels of higher strength. Figure 1 gives the respective results appropriate
for the case:

bla= 1.5, 2ko = 6000 kG/cm2, E = 2.1-10° kG/cm?,
10-%/grad, A=2-10"%/grad, »=03.
In this case the formulas (4.18) and (4.19) are to be substituted, respectively, by the follow-
ing ones:

o

I

(4.20) 7+1.9988 % 6 = 2432.79 kGfem?,
4.21) p+1.5068 a}% 6 = 2432.79 kG/cm?.
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