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On the incremental collapse criterion accounting for temperature 
depemlence of yield point stress 

]. A. KONIG (WARSZAWA) 

THB PAPER presents a systematic derivation of the incremental collapse criterion in the case 
when the yield point stress is temperature-dependent. The criterion is illustrated by the incremental 
collapse analysis of a thick-walled tube subject to variations of internal pressure and of tem· 
perature field. 

W pracy WYProwadzono kryterium zn.iszczenia przyrosto\Vego dla konstrukcji sp~to-plastycz. 
nych poddanych obci~P:eniom zmiennym i zmiennemu potu temperatury. Wynik zilustrowano 
na przykladzie rury grubo§ciennej, podd.anej zmiennym: ci~nieniu wewn~trznemu i quasi-stacjo
narnemu polu temperatury. 

H pa6oTe BbiBO~CH upH3HaK nporpeccKpYIO~ero paapymemu~ yupyro-IIJJ8C'l'IAeCKHX KOK· 
crp~ IIPIC DOBTOpHo-nepeMCHHbiX Harp)'>l<e!DUIX, yqlfthiiWI 38BHCIIMOCT& npeAena TC· 
xyqecm CYt TeMIIepa-rypbi. Peaym.m'l' lt111IIOC'l'pOBaH upHMepoM 'l'OJIC'l'OC1'eiDioi 1py6bi noA 
AeitCTBKeM UepeMCIUIOI'O mJY'l'PCHHOI'O AUJICmt.JI M nepeMeHHOI'O UOJVI TeMIIepa'l'YPbi· 

1. Formulation of the problem 

THE SHAICEDOWN theorems, [1, 2], have been derived initially accounting only for me
chanical loads. Their extensions to thermal actions [3, 4, 5, 6, 7] took into consideration 
not only thermal stresses but also the fact that material constants such as yield point 
stress vary with temperature. In the case of a static approach [3, 5, 7] this effect as well . 
as the effect of the temperature dependence of elastic moduli can be incorporated relatively 
easy. 

However, more complicated boundary-value problems are to be solved by means 
of the kinematic approach, especially if incremental collapse is considered. The methods 
developed [8, 9, 10, 11] allow to find out the critical loads which may cause divergent 
increments of plastic deformations simply from the analysis of P<>ssible mechanisms 
of those increments, without tedious integration with respect to time as the original theorem 
required. 

The aim of the present note is to clarify the use of kinematic approach in cases in which 
the temperature variations of yield stress cannot be neglected. 

2. Basle relations 

Let us adopt the following assumptions: 
1. The total strain is the sum of elastic, thermal and plastic terms: 

(2.1) e,1 = e5+eL+e~, 

(2.2) 
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318 J.A. KONJo 

Here e11 , a11 denote the strain and stress tensors respectively; T stands for temperature 
measured from the natural state, £,1," is the tensor of elastic moduli, M 11 - tensor 
of the thermal expansion coefficients. 

2. The form of the yield condition is as follows: 

(2.3) f(a,1)-k(x, T) ~ 0, 

· where f( a11) is a homogeneous function of order one. The majority of the used yield condi
tions can be easily transformed into such a form. The domain (2.3) in the stress space 
is assumed convex whereas 

{2.4) k(x, n = k0 (x)g(x, T), g(O) = 1. 

·Thus the dissipation function depends not only on the instantaneous plastic strain rate 
but also on instantaneous temperature: 

_(2.5) C1tJSfi = D(x, B:j, T) = Do(X, e};)g(x, n, 
where D0 denotes the value of the dissipation at zero temperature, determined uniquely 
by the plastic . strain rate ijj. 

In ~her considerations the function g(x, n will be Iinearized: 

(2.6) g(x, n = 1-b(x, n = 1-A.T, 

A being a non-negative material constant. 
3. The external actions resulting in some mechanical loads as well as in temperature 

fields are cont;rolled by a set of load-temperature factors {J., s = 1 , ... , r, referring to 
each one of the actions, respectively: 

r r 

(2/1) P1{x, t) = ~ {J.(t)Pf(s), F1(s, t) :;: ~ {J.{t)F/(x), 
•-1 ••1 , 

T(x, t) = 2 {J.{t)'P(x). ·-· 
Here Pt- swface tractions, F, - body forces. 

The values of the factors {J. belong to a certain set Q in the ;-dimensional space of 
those parameters. The set !J defines the range of their prescribed variations. 

The total stress tensor in an elastic-plastic body subject to actions (2. 7) can be presente<i 
as follows: 

(2.8) C1tJ = ~+r!t}t 
where C1f.J is the thermoelastic stress calculated under the assumption sfi = 0 and k = oo, 
e11 being a self-equilibrated stress state appearing as a result of plastic . deformations. 
This state can be expressed in the form 

(2.9) eiJ(x, t) = f Gfj"(x, ~if,(~, t)dV, 
y 

where Gt](x, ~) is a two-poini Green tensor field depending on the elastic moduli tensor 
field £,111(x) and on the boundary conditions. . · · · 
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ON THE INCREMENTAL COLLAPSE CRITERION 319 

The thermoelastic stress can be presented as follows: 

(2.10) 

where afJE is the elastic (not thermoelastic !) stress determined uniquely by the mechanical 
loads P,, F, as given by Eqs. (2. 7) whereas the thermal stress efJ (equilibrating vanishing 
mechanical loads) is to be calculated from the formula (2.9) by substituting efJ with M 11 T. 
Thus one can also write the following relationship (Mu denotes the thermal expansion 
coefficients tensor): 

,. ,. 
af.J(x, t) = 2 {J,(t)afl = 2 {J_,(t) {uf/'(x)+e~'(x)}, 

s= 1 s ... l 

where ef.j, f!~' are respective thermoelastic and thermal stress fields associated with unit 
external actions, af.JE' denoting respective mechanical stresses. 

3. Incremental collapse criterion 

The ·kinematic shakedown theorem, in the case of both thermal and mechanical 'actions, 
reads, [5, 6]: 

Shakedown is impossible if, for a certaiJJ. time period (th t2) there exist: 
1. an external actions history P 1(x, t), F1(x, t), T(x, t), 
2. a plastic strain history e11(:x, t), such that 

~ ~ 

(3.1) j {j F,~,dV+ j P,~,dS+ j M,JTi,JdV}dt > j j D(i,b .T)dVdt, 
lt y s y lt y 

(3.2) 
la 

Je,1 = f i,1dt = ~ (u,,1 +u1• ,), u,(tl) =o, 
tl 

(3.3) 

The formula (3.3} denotes that eu(x, t) is the residual stress field defined by the plastic 
strain field i,1(x, t) ·through the formula (2.9). However, due to Eq. (3.2), ·the integral 
increment field Ji,J is compatible and thus etJ(x, tl)-etj(X, t2) = 0. 

By transforming· the -inequality (3.1) by means of the Virtual Work Principle and 
in view of Eqs. (2.10) and (3.3), the following result is obtained: 

~ ~ 

(3.4) f lf uflfeiJ+Eijl,~tt}dV+ j M,JT~tJdV]dt> j j Do(itJ)g(x,t)dv.dt. 
t, y y ti y 

Due to the definition of eTJ, the second integral in the left-hand side of that formula can 
be presented as follows: 

(3.5) f M,1 ~tidV = - f ~iJEijlref,dV = f eTJi,1dV~ 
y y y 

2* 
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320 J.A. KONIO 

The Virtual Work Principle implies also that 

(3.6) J aflEij"\~udV = 0. 
y 

Thus finally, the formula (3.4) assumes the following form: 

la lz 

(3.7) j j afJi,JdVdt > j j D0(i11)g(x, t)dVdt 
I, y I, y 

or, equivalently, 
~ ~ 

(3.7') J J {~ii1 +b(x, T)D0 (ilJ)}dVdt > J J Do(il})dVdt, 
,, , I, y 

b(x, T) being defined by Eq. (2.6). 
The most stringent condition of incremental collapse results from a history of loads 

and temperature defined by a certain history P.(t) of the load-temperature factors which 
maximizes the left-hand side of the inequality (3.1) and for a strain-rate history which 
m.inim.ius its right-hand side. 

To perform this optimization let us notice first the following inequality, generally 
valid 

la 

(3.8) f Do(elj)dt ~ Do(Aefj), Aefi= efj(t2).:_efj(tt). 

From the following relations the proof yields 

(3.9) 

Therefore, 
la tz lz 

J D0(61~dt-Do(AefJ) = J (a,1-a,1)A 0~ dt = J (a,1 -a,1}e~dt ~ o. 
,, ,, . lt 

The last inequality results from the convexity of the yield condition (2.3). 
Now, if we are going to investigate the phenomenon of incremental collapse exclusively, 

not the general case of inadaptation, we can stress the range of the plastic strain histories 
611 to such that their rates are proportional tQ the total increment Ai11 : · 

i,ix, t) = A(x, t).de,j(x), A(x, t) ~ 0, 

(3.10) lz 

J A(x, t)dt = 1. 
I, 

The equality in the formula (3.8) takes plaee in the case of plastic strain rates as defined 
by Bq. (3.10), i.e. in the case when the vector i,1 keeps a constant direction. 
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Thus the formula 0. 7') can be rewritten as follows: 

l2 r 

(3.11)J J J {2 P.(t)~'(x)A(x, t)Lte,j(x)+b(x, T)DoCeiJ)} dVdt > J Do(Lte11)dV. 
Is Y kcl y 

Now let us analyse the constraints in the problem of optimizing the left-hand side 
of Eq. (3.11). Those are: 

1) factors Pit) must remain within a given set D, 
2) the total increments Lte,J are prescribed. 
It is easy to see that these constraints are the least stringent if the field. A(x, t) is selected 

in such a way that at each instant t it vanishes everywhere with the exception of a certain 
point :x0 (t), i.e. A(x1 , t)A(x2

, t) = 0 for :x1 =F :x2 • Then the integrand in the left-hand side 
of Eq. (3.11) may be optimized at each point separately and the values of p.(t) at instants 
during which i1j(:x, t) = 0 are unimportant. Let us notice that the procedure does not 
alter the right-hand side of the inequality. 

Thus the following optimization problem is to be solved first: 
, r 

(3.12) L(:x) = max {2 P,ot•(x)LteiJ(:x)+b(:x, 2 p,T~(:x)) D0 (L1i,J(:x)} 
/laeD k•l 1•1 

and then the load and temperature magnitudes (i.e. the respective values of the factors P.) 
which may cause incremental collapse are given by the equation 

(3.13) j L(x)dV = j D0 (L1e1J)dV. 
y y 

The problem (3.12), in general, is a complex problem of nonlinear programming. It be
comes simpler in the case when domain D is a hyperpolyhedron defined by a system of 
linear inequalities 

, 
2 A.tP. ~ d," k = 1, ... , m, 
k-1 

and if the function g(T) is linear as given by Eq. (2.6). In such a case the domain D is 
uniquely defined by a set of v corners p: , ... , {J'; and formula · (3.12) becomes 

r 

(3.12') L(x) = max 2 P!{ot•(x)L1i1J(x)+A(:x)T•(:x)D0 (..1i,J(x))}. 
J•l, ... ,'fl·-· 

In the case when D is a hyperparallelepiped 

(3.14) p; ~ p, ~ p:' 
the solution of the optimization problem (3.12) or (3.12') can be given explicitly. Namely, 
in this case the incremental collapse criterion (3 .. 13) assumes the following form: 

(3.15) 

where 

(3.16) 

r 

j 2 a.(x)J.(x)dV = J D0 (L1i(:x) )dV, 
y ·-· y 
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and 

(3.17) . {
{Jt 

a.(x) = {J; 
if J.(x) > 0, 

if J.(x) < 0. 

J.A. KONio· 

The. author does not know of any study in which the incremental collapse criterion could 
be derived systematically, accounting for the temperature dependence of the yield-point 
stress. Moreover, it seems that the consequent use of the load-temperature factors makes 
clear how the elastic stress should be optimized in the basic inequality (3.8) .. Usually 
this has been . done . intuitively by assuming an envelope of thermoelastic stresses. The 
formulas (3.12), (3.16) and {3.17) show that sometimes this does not need to be correct. 

4. Example of application 

A thick-walled tube, closed with rigid decks, is subjected to internal pressure p which 
is allowed to vary within the limits 

(4.1) 0 ~ p ~ p 
and to a quasi-stationary temperature field 

T(r) = 0 ln(b;r) 
ln(bfa) 

varying independently of the pressure as defined by 

(4.2) 0 ~ (J ~if. 

Here. a, b. -internal and external radii of the tube, 0 -internal temperature,.. provided 
T(b) = 0, r- c)lfrent radius. 

Let us assume that the material of the tube obeys the Tresca yield condition 

(4.3) luc;-O'rl ~ 2k 

at;td the plastic constant k decreases linearly with temperature ac.<;prding to the formula 
(2.6). 

The thermoelastic stresses are as below: 

pa1 
. ( b2

) Ea20 ( b2 
. . (b2 -a2,)In(rfb)) 

O:(r) = b2 -a2 1- 1=2 - 2(1-v)(b2 -a2) ~- rr + a2 1n(afb) ' 

pa2 
( b2

) Ea20 ( b2 (b2 -a2}(l+ln(r/b))) 
(4.4) U:(r) = b2 -a2 1 + 72 - 2(1-v)(b2 -a2) 

1 + 72 + a21n(afb) : ' 

pa2 Eal(J ( (b'- a•) ( ~ +In ~ )·) 
U:(r) = b2 -a2 (1-v)(b2 -a2) 

1+ a21n(afb) . · 

In the case of axial symmetry the only possible mechanism of incremental collapse 
is given by 

(4.5) 
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associated in this case with the side of the yield condition defined by 

(4.6) a,-a, = 2k(T). 

Thus it is easy to see that 

(4.7) Do= <7,(- ,1~)+<7•(Ll~) = 2k0 LlJ. 
Due to the formulas (4.4) and (4.5) the functions Jp(r), J8(r) are as follows: 

Thus 
Jp(r) > 0 for a~ r ~ b, 

(4.9) J8(r) < 0 for a~ r < r0 , 

J8(r) > 0 for r 0 < r ~ b, 

where the intermediate radius r0 is to be calculated from the equation 

(4.10) _ 2b2 + b2 -a2 + 4Ak0(1-Y)(b2 -a2)1n(bfr) =O 
r~ a21n(bfa) Erxa21n(bfa) · 

According to Eq. (3.17), the functions ap(r), a8(r) are as follows: 

{
0 fora~r<r0 , 

(4.11) ap(r) =p, a8(r) = 
0
- fi b 

or r0 < r ~ . 

Finally, the incremental collapse condition (3.15) assumes the form 
b b b 

(4.12) p J Jp(r)rdr+O J J8(r)rdr = J D0(r)rdr. 
a ro a 

323 

By substituting the respective magnitudes as defined by Eqs. (4.5), (4.7), (4.8) and (4.11) 
the following formula results: 

(4.13) P+iiL(l-~~~~-a') [a~:(b~:) Jn(bfr0)- ~ + l] 

+ Ako(ln(b/ro))2} = 2k ln(bfa). 
In(bfa) 

0 

It may be useful to introduce the following dimensionless parameters: 

b r0 4Ak0(I-Y) 
(4.14) p =a' !! =a' e = Erx . 
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324 J.A. KONJG 

Then the formula ( 4.13) becomes 

_ 0 Erx {ln(fJ/e) 1 . {12 ln(fJ/e)} 
(4.15) p+ 2(1-P) . ln{J + {12_ 1 - (!2(/J2_ 1) +e ln{J = 2k0 ln{J 

and Eq. (4.10) assumes the following form: 

(4.16) -2{12 /(!2 + ({12 -1)/ln{J + e(/J2-1)1n({J/e)/ln{J = 0. 

As the parameter e is usually small, an approximate solution of this equation may be as
sumed as follows: 

(4.17) (! = (!o (1- ~In L). 
2 (!o 

This solution is sufficiently precise for bfa < 3, thus in the majority of practical cases. 
For bfa < 1.2 one can assume r0 = (a+b)/2. 

In the case of mild steel one can assume the following material parameters: 

2k0 = 2500 kG/cm2
, E = 2.1· 106 kG/cm2

, 

rx = 10- 5 /grad, A= 10- 3/grad, 

'P=0.3. 

In the case bfa = 2 the formula (4.15) gives 

kG -
(4.18) p+2.6612 2 d 8 = 1732.8675 kG/cm2

• 
cm gra 

etcJ 

' \ \ 
\ 

\ ', 
\ 

\ 
\ 

\ 
\ 

soo 

\~. 
\~ 
\~ 
\~ 
\~ 
\~ 

'~ \~ 
\ 

\ 
\ 

\ 

\, 

1000 

FIG. 1. 

\ 
\ 

', 
\ 

\. 
~ 

ZDOO p [J<G!cmZ] 

http://rcin.org.pl



ON niB INCREMENTAL OOLLAPSE CJUTEIUON 325 

For the sake of comparison the same calculation has been repeated for A = 0, i.e. with
out the influence of temperature on yield point stress. In this case the following result 
has been obtained: 

(4.19) 
kG -

p+2.5326 2 d (} = 1732.8675 kG/cm2
• 

cm gra 

Both incremental criteria are presented in Fig. 1, the formula ( 4.18) - in solid Jine, the 
formula (4.19)- in a dashed one. 

The influence of the temperature dependence of yield stress becomes more pronounced 
in the case of steels of higher strength. Figure 1 gives the respective results appropriate 
for the case: 

bfa = 1.5, 2k0 = 6000 kG/cm2
, E = 2.1· 106 kG/cm2

, 

ex= I0- 5/grad, A= 2·10- 3/grad, v = 0.3. 

In this case the formulas ( 4.18) and ( 4.19) are to be substituted, respecti-vely, by the follow
ing ones: 

(4.20) p+ 1.9988 ~G d 8 = 2432.79 kG/cm2 , 
cm gra · 

(4.21) p+ 1.5068 ~G d if= 2432.79 kG/cm2
• 

cm gra 
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