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Magnetohydrodynamic flow in a rectangular dud under a uoiform 
transverse magnetic field at high HartmBDD number 

IT. The volumetric ftow-rate in a duct having non-conducting walls (*) 

D. J. TEMPERLEY (EDINBURGH) 

THis PAPER is an extension of an earlier publication by the author [1] on the fully developed, 
laminar, unidirectional flow of a uniformly conducting, incompressible fluid through a duct 
having uniform rectangular cross-section, the walls of which are all non-conducting. Here the 
leading terms of the high-M series form for . the volumetric flow-rate are derived from the series 
expansion for the velocity field obtained in [1] and checked with a closed-form estimate from 
the same source. The results match exactly with those obtained by previous authors using differ
ent approaches. 

Praca jest uog6lnieniem wcze8niejszej publikacji autora [1] dotye74cej w pelni rozwini~tego, 
laminarnego, jednokierunkowego przeplywu jednorodnie przewo~j nie8ciSliwej cieczy 
przez ptzew6d o przekroju prosto~G~tnym; kt6rego · kianki ~ nieprzewo<izclce. GJ6wny czton 
szeregu dla duzych M opisuje wydatek. Wyraz ten otrzymuje si~ za pomQal rozkladu w szereg 
pola pr~o8ci otrzymanego w [1] oraz por6wnania z oszacowaniem podanym w tej samej 
pracy. Otrzymane wyniki · wyk.azujll zgodnosc z rezultatami innych autor6w otrzymanymi 
na innej drodze. 

Pa60'ra mmR:eTCJI o6o6~emreM 6o.nee paHHeit uy6.nmaunm aBTopa [1], KaC8lO~eiCH BIIOJIHe 
paaBepHYToro OJ{HOIWipaBJieHHOI'O Teqem~H OAHOPO.lUIO IIpoBOAJimCH HeoKBMaeMOH >KII,!J;
K<>CTU llepe3 KaHaJIC npHMOyrom.HbiM CCtleBSeM, CTCHIGt KOTOpOI'O HellpOBO,!J;KIIUCe. rnasiu.d 
tVIeH B p~e .wm ooJibiiiirx M OIII!CbiBaeT pacxo,!J;; 3TOT ll.neH nonyqaeTCH npH IIOMOIIUI p33Jio
>KeHila B p~ IIOJVI CKOpOCTH IIO.JIYtlCHHOI'O B (l] B cpasHeH OH C o~eHKoit npHBe,!J;eBHOit 
B 3Toit >Ke caMol pa60Te. IIoJI}"IeHHbie peaym.TaTbi YJ<8.3biB8IOT :Ha cornac:He c peaym.TaTaMH 
)U)yrHX aBTO})OB, JIOnytleHHhiMH IIO )U)yrOMY nym. 

Introduction 

IN AN EARLIER paper [1], the author considered the fully developed, lam.inar, unidirectional 
flow of a unifotm.ly conducting, incompressible fluid through a rectangular duct of uniform 
cross-section, the walls of which were all non-conducting. For va_Iues of the Hartmann 
number M~ 1, classical asymptotic analysis revealed the leading termsin the expansions 
of the induced velocity and magnetic fields in all key regions, with the exception of certain 
boundary layers near the corners of the duct. As was promised in Sect. 4 of [1] we will, 
in the current paper, estimate the leading tenD.s in the series form for the ·volumetric flow
rate in powers of M-1/ 2 A closed-form estimate for the flow-rate will also be derived 
and the results will be compared with those obtained by earlier researchers. 

In the following sections, references of the forms (2.1) to ~6.31) relate to key expressions 
and results which were featured in [1]. 

(•) Paper presented at the XlliBiennial Fluid Dynamics Symposium, Poland,Septem\Jer 5-10, 1977. 
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364 D. J. 1'EMPmU.!Y 

1. ne series form for the volumetric ftow-rate 

Since v is even in y and b is odd in y, the volumetric flow-rate down the duct may be 
expressed in the form (see the definitions (3.1) in [ID 

t 0 

(1.11) F= 2 j j {u-M- 1(l+y)}dxdy. 
Y•-1 x--1 

One must integrate u1 , u8 , (u1c)" (uc)r and (u1c)r over the entire rectangle. Although 
the results for u. are not defined in the (ic)1 layers, and integration of u. over sue~ regions 
may thus seem to introduce an error into the eventual expression for F, it was shown in 
Sect. 6A of [1] that by integrating {(u1c)1 -u.} = u over the entire cross-section, the error 
is effectively cancelled. This is due to the fact that u. is, in fact, the outer expansion of 
(u1c)1 as one moves out from the (ic)1 Iayer into the (s) layer. The reader's attention is drawn 
to this and other salient comments in Sect. 5 of [1]. 

The contribution to F from the (I) and (H) regions is (see the result (4.3)): 
1 

(1.21) FI+B ,_ 2/M-1 J (l-y-2e-M<1+ 1>)dy = 4/M- 1(1-M-1), 

-1 

correct to asymptotically small terms in M. 
The side layers on x = ±I contribute a term 

t CO 

F.= 2M- 112 j j u.(X,y)dXdy, 
, ... -tx-o 

where (see the results (4.11'), (4.18) and (4.20)) 
1-y 

(1.31) u. = -M- 1 J erfc(X/28112)dfJ+M- 2(1-y)
8
8 

(erfc{X/..2(1-y)112
}) 

0 ~ 

+M- 3(1-y){-2 ~: + ~ (1-y) :; } ( erfc {X/2(1-y)1i 2})+ O(M-4
). 

Since 
CO CO 

(1.41) J erfc(X/2a112)dX = [Xerfc(X/2a112)]g'+(na)1/2 f Xe-X'J'-"dX = 2(afn)112
, 

x-o o 
hence 

1 1-y 

(1.51) F, = 4~,~:12 f {- f 6112111+M-1(1-y) ~ (l-y)1i2 -M2(l-y){2;;. 
Y•-l 0 

_ _!_(1- ,\ J3 }(1- ~1J2}d O(M-9Jl) =- 64Jt'2M-3Jl- SflM-'12 
2 y, dy3 y, y+ 15n112 .3n112 

5 yfu-1J2 O(Wf2) 
+ 2,nlf2 • 

It is worth noting that although 143 > and subsequent W,~, n ;;;:, 4, are unbounded at the 
corner X= 0 = 1-y (see the comments following the result (4.25)), their respective 
contributions to 'F are all finite. 
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The (c), layers on y = -1 contribute (see the results (4.40), (4.43) and (4.46)) 

(1.6I) F(c)• = 2M-3/2 f f Uc(X, Y')rlY"dX = u:,~:l• { j 21J1f2d(J 
X=O ]'0=0 0 

36S 

fco {xe-X 2fB ( X )} M-2 fco {X 
+M-1 23f2 +erfc 23J2 dX+ 2'12 64 (X4-8XZ-144)e-X2JB 

LO LO 
1 . 

+! (X2 -!2)e-X'f0 -X f (X's2-!2)s2e-x'''l0dJ}dX}+O(M-llf2) = 
16~!!-•l• 

0 

6J/2M- 712 7 VlM- 912 

+ n1f2 + Sn1f2 +0(M-11f2). 

The (ic), layers contribute (see the results (4.51) and (4.56)) 
CO CO CO 

(1.71) Fttc>r =2M-2 J J Utc(X, yo)dYodt = 
4~-

4 I k- 4(1-k2 -p-1)dk+O(M- 5) 

x=O Y=-0 0 

on setting k = w(1-w2)-1, dk = (I +w2)(1-w2)- 2dw. 
That is, 

-12SM-"-
(1.71') F(lc)r = 

15
n +O(M- 5

). 

Summarising, the results (1.21), (1.51), (1.61) and (I. 7I') yield 

(1.81) F"' 4/M-1- 64Jf2M-:-3J2 -41M-2 8 VlM-512 11y2M-1f2 O(M-4) 
15n1/2 + Jn1/2 + 211:112 + · 

The full O(M-4) contribution cannot be obtained without first deriving the complete 
solution for u in the (ic)1 layers (see earlier comments); this is not available by means 
of the classical approach. 

2. A closed-form estimate for the flow-rate 

Performing a double integration, over the entire rectangular cross-section, of the 
closed-form solution (6.6) yields the full contribution to the flow rate from the (ic)1 and 
(s) layers. Integration of the result (6.21) likewise yields those from the (c), and (ic), layers. 
From the result (6.6), 

CO W CO CO W 

(2.11) F<tc>f+s = 2M- 2 J J {u,c(x, Y)}1dtdY = 4~-
4 J J J k- 3 

{ -k2 Y 
x=O r-o k-o x-o Y-o 

CO 

4M-4 f +(1-e-«Y)}sin(kt)dYdtdk = ~ { ~2M2k-·2 +2Mk-4 +(cxJc4)- 1 (e- 2«~'1 -l)}dk. 

k-o 

S Arch. Mech. Stos. nr 3!79 
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From the expression (6.5') 

(2.21) (aJc4)-1( -.2clll_l) ~ - 2(k2-k'+2k6.M)+4(k2-k')2M2 ~ -2Mk-4 
e K'(k2-K') 

+2M2k- 2+0(k0
), near k = 0, 

and hence the integral of the result (2.11) does exist. 
In the Appendix AI, the expression (2.11) is expanded as a power series in· M- 112 ; 

the result is 

(2.31) 

CO 

16 2 (2n-1) · {( -5/2)( -7/2)( -9/2) ... ( -3/2-n)}F(n-3/2) · (2M)-sf2-• 
+-n (n+1)! ' ·-·2. 

in which the three leading terms clearly match with the expression (1.51). 
The full contribution from the (r) layers is (see the result (6.21)): 

CO CO CO CO CO 

(2.41) F, ==2M- 2 J J u,(x, Y0)dxdY0 = 4~-
4 J J J k- 3 {2k2Me-ro 

Y"-o x-o k-o x-o yo .. o 
CD 

4M-4 .f 
-(1-e-21111)e-llro}sin(kx)dx = -n- k-4{2k2M-{J-1(1-e-2«M)}dk. 

k-0 

In the Appendix A2, the latter expression is expanded out as a power series in M- 112, 
yielding 

CO 

128M-4 +~ ~ (2n-5) {(-7/2)( -9/2) 
15n112 n L.J n! I ,..2 

(2.51) 

... ( -3/2-n)}F(n-3/2) · (2M)-5/2-•, 

the third term being the sole contribution from the (ic), layers. The leading four terms 
check with the results (1.61) and (1. 71'). 

Combining results (2.31}, (2.51) with the closed form (1.21) 

(2.61) 

- n)} F(n- 3/2)(2M)- 5/ 2-" +O(M-P-7/2). 

One C8JlllOt actually proceed to the p = oo limit because the infinite series is not convergent 
(see Elu>BLYI [2]). SHER.CLIFP [3] obtained the first three terms of Eq. (2.61}, and WILLIAMS 
(4] obtained the first four terms explicitly but did not continue his expansion so as to yield 
the remaining terms of the series. We have (see Appendix A3) extended his result for V0 
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([4], p. 265, result 22)- in which the numerator of the third term in { } was incorrectly 
given as 32a, rather than 64a - using asymptotic expansions of the Bessel functions 
K2(M), K 3(M) for M~ 1; the series so obtained matches exactly with Eq. (2.61) above. 
One may also note that addition of the results (2.11) and (2.41) yields the single closed
form expression obtained by TODD [5]. 

Conclusion 

In a future publication we shall consider a duct having non-conducting walls parallel 
to, and walls of arbitrary conductivity perpendicular to, the imposed magnetic field. 
The boundary conditions on the induced fields do not decouple in such a configuration, 
unlike the situation considered in [I] and the current paper. 

Finally, the author wishes to express his sincere gratitude to Professor L. TODD of the 
Laurentian University, Sudbury, Ontario, Canada, for his collaboration on this project. 

Appendix Al. Expansion of the expression (2.11) as a power series in M-1' 2 

Introducing s = Ma.(k) into the expression (6.5') yields 

(Al.l) I I ( 1 )
112 

a+T. = sM- 1+y = k2 +4 , k2 = sM- 1(l+aM- 1), 

2kdk = M-1 (1 +2sM-1)ds, and hence Eq. (2.11) may be re-written in the form 
CO 

(Al.2) F. = 2M-3J2f ·{e-v-1+2s(1-s-s2M-t)}(l 2aM-1) -7J2ds 
a+<tc>.r " (1 +sM-1)5/2 + s · 

0 

The highest-order contribution is 

(Al.3) 

CO CO _ 

- 32M-3J2f ( -2•-1) -3/2.1- _128M-3J2f -1/2 -2•tJs- _64y2M-3J2 
- 15n e 8 us - 15n 3 e - 15n112 · 

0 0 

There remains 

(A1.4) 

CO 

- 4M~5!2 f (1 +2sM-1)s-1f2 
'"" (1 +sM-1)5/2 ds, 

0 

the leading {O(M-2)) contribution here being (setting s = aM) 

4/t(-2 CO 

(Al.S) - . . J {(l+2a)(l+a.)-3/2_1}a.-3/2d1X. 
" 0 

5* 
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Setting oc = tan28, doe = 2sec20tan6d0, the latter integral equals 

n/2 n/2 (I) 
(A1.5') j {2cos 8-2(1-cosO)cosec28}dO = 2- f sec2 

2 o dO = 0. 

Thus the expression (A1.4) reduces to the form 

(A1.4') 

CO 

= 2M~3/2 J (e-2'-1 +2s) { -sM-1 +0(s2M-2) } s-7f2ds 
(l+sM-1P'2 1+2sM-1+(l+sM-1)512 ' 

0 

in which the highest contribution is 

(A1.6) 
CO -

M -Sf2 f 8 .. !2M-Sf2 
n (1-2s-e-2')s-Sf2ds = - ----=--t'-=-3n--;;1--;-;;f2,.--' 

0 

(see integration-by-parts in line (Al.3)) and the next is (setting sM-1 = oc = tan20) 

CO ~ 

4M-
3f { 1 } 40M-

3 f (A1.7) -n- (1+2a)(1+a)- 512 -1+ya a- 512da = Jn (6cos58 
0 0 

-7cos70)d8 = 0. 

This leaves 

(A1.8) 

in which, for M~ 1, 

(AI.8') {} ~ (1+2sM-')(1- ~ sM-'+ 
3
: s'M-2 + ... ) 

1 5 
-1 +2sM-1 = --8-s2M- 2 +0(s3M- 3). 

The leading term in (A1.8) is thus 

(Al.9) 
CO -

5M-1f2 J (1- -21\ -3f2d = 5 y'2 M-1/2 
4n e ,s s ml/2 ' 

0 

the next (setting sM- 1 = a = tan20) being 

(Al.lO) 
2~-· f { -2(1 + IX)- 312 +(1 +IX)- 512 + 1- ~ IX- ~ ,.•} ,.- 7

/ 2diX 
0 

n/2 

= --" ~-
4 J {8cos38+8cos8+ 7(1 +cos0)- 2 -2(1 +cos0)- 3 }d8 

0 
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(Al.lO) 
[cont.) 

where u = tan ( ~ 8), 
128M-4 

= -------15n 

This is the leading contribution from the (ic )1 layers, which can clearly only generate 
flow-rate terms involving integral powers of M- 1

• Furthermore, it is the only such contribu
tion; this becomes clear on noting that the only term in (AL2) not yet explicitly consider
ed is 

(Al.ll) 

where 

(1 +2sM- 1)(1 +sM- 1)-512 := 2(1 +sM- 1)- 312-(1 +sM-1)- 512 

00 

= 1 >. 2 { (- 3 /2)(- 5 /2) ... (- 3/2- i)} (_!_)I+ 1 

+ ~ (i+l)! M 
l=-0 

00 • 

- ~ . {(-5/2)(-7/2) ... (-5/2-j)} (~)J+l 
~ ("1)' M )=0 J+ . 

00 

=I-_!_ M-1-~ 2M- 2 ~ (2n-l){(-5/2)(-7/2) ... (-_3/2-n)}(_!_)
11 +l 

2 s 8 s + .L.J 2(n+ 1)! M · 
11=2 

Since, for aH n ~ 2, 

(Al.l2) 
00 

f s"-SJ2e-2!.tJs' = 2312-IIF(n-3/2), 
0 

therefore (Al.ll) reduces to the series form 
00 

(Al.l3) 16 ~ (2n-l){( -5/2)( -7/2) ... ( -3/2-n)}F(n-3/2) (
2

M)_ 512 _11 , 

n L.J (n+ 1)! 
11"'2 

00 

this being the flow-rate contribution due to 2 zt..">M-". 
11=4 

Finally. Frt<tc>f is obtained by combining the contributions (Al.3), (Al.6), (Al.9), 
(AI.IO) and (Al.l3). 

Appeodix A2. Expansion of the expression (2.41) as a power series in M-112 

Combining the expression (6.20) for {3(k) with line (Al.l) and substituting into the 
result (2.41) yields 
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in which the leading contribution (due to z41>) is 

(A2.2) 

CIO 

2M~5/2 J (e-2'-1+2s)a-5/2df = 16f2M-5/2 
Jnl/2 

0 

D. J. TBtmnu.BY 

The O(M- 3) contribution is readily seen to be zero, while zfc2> contributes a term 

(A2.3) 

There remains 

the leading term from which (on re-introducing «· = aM-1) equals 

(A2.5) 

which reduces, after three integrations by parts, substituting IX = tan28 and the use of 
Wallis' formula, to the form 

(A2.5') 

n/2 
2M-4 f 128M- 4 

~ (630cos78-1323cos98+693cos118)d8 = - lSn · · 
0 

The other term in (A2.4) is 

in which 

ClO 

{} = 2 (n-5/2){(-7/2)(:~/2) ... (-3/2-n)} c~r 
n-2 

Thus, using the result (Al.l2), we may express the contribution ( A2.6) in the series 
form 

ClO 

(A2.6,) ~ ~l (211-5){(-1/2)(-9/2) ... (-3/2-n)} r(n-2_). (2M)_ 512 _,., 
n ~ n! 2 

11•2 

The (ic)r layers contribute only the term (A2.5') which exactly matches the contribu
tion (Al.IO) from the (ic)1 regions. 

Finally, Fr is obtained by combining the contributions (A2.2), (A2.3), (A2.5') and 
(A2.6'). 
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Appendix A3. Completion of Wi11iams' series expansion for the mean 
velocity 

WILLIAMS ([4], p. 265, result 22) obtained the mean velocity v0 in the (corrected) closed 
form 

ka2 
{ 1 64 32el' 32~ } 

(A3·1J Vo ~ M 1- M- 15n/M3 - 15nl K3(M)+ 3n/MK,(M) · 

The two last terms in this result can be expanded, when M~ 1, in the series forms (see 
WATSON (6], p. 202) 

eMK (M) = (_!!__) 112
. {1 ~ 35 · 27 · 11 ... {36- (2k-1)

2
}} 

3 2M + L.J k!(8M)t 
k-1 

(A3.2) 

and 

(A3.3) eMK (M)= (~) 112 
·{1 ~ 15· 7· (-9) ... {16-(2j-1)2}} 

2 2M + .L.J '!(8M)l . 
J•l J 

Thus the flow rate is given by 

(A3.4) 
4/v0 41 64 y'2 4/ 8 y2 

F = ka2 = M - 15n1/2 M3/2 - M2 + 3n1/2 Ms'" 

17y2 256 64y2 ~ C(s) 
+ 2n112M 7' 2 15nM4 + 15n112 LJ (s+ 1)!8-+IM-+ 512 ' •-2 

where 

(A3.5) C(s) = 40(s+ 1)[15 · 7 · ( -9) ... {16-(2s-1)2}]-35 · 27 · 11 ... {36-(2s+ 1)2 }. 

Factorisation of each term involving the difference of two squares yields 

(A3.5') C(s) = 40(s+1){(5)(7)(9) ... (2s+1)(2r+3)}{(3)(1)(-1)(-3) ... (7-2r)(5-2r)J 

- {(7)(9)(11) ... (5+2r)(7+2s)}{(5)(3)(1) ... (7-2r)(5-2s)} 

= ~{(- ~)(- ~)(-•n ... (-s- ~)(-s- ~)}·{(s- ~)(s- ~) 
... ( ~) ( ~H. 2". (4s2 -l6s-S) = s.!~,. (4.r'-l6s-S) 

·2"·{(- ~)(- ~) ... (-s- ~)}r(s-n 
Thus, for any s ~ 2, the coefficient of M-•- 5/Z in the series expansion of F is 

(A3.6) ;~~~~~~~~. {(- ~)( --~)(- 1
;) ... ( -s- ~)}·r(a-n 

and hence our expansion (2.61) matches exactly with (A3.4), the full series expansion 
of Williams' solutien. 
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