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A thermodynamic theory of isotropic elastic-plastic materials 

C. E. BEEVERS and J. BREE (EDINBURGH) 

THE CLASSICAL theory of thermodynamics is unable to provide a sound thermodynamic founda­
tion for elastic-plastic materials. In a recent paper by BREE and BEEVERS [1] a general non­
equilibrium theory of thermodynamics is developed, based on a statement of the second law 
of thermodynamics which modifies the classical version used by CARATHEoDORY [2]. In order 
to emphasize some of the main features of [1], the present paper examines a constitutive theory 
for isotropic elastic-plastic materials at finite strain. The existence of the absolute temperature 
and an entropy function follows from the modified statement of the second law of thermo­
dynamics. A global entropy inequality is also constructed. This inequality is a sufficient but not 
a necessary thermodynamic requirement. One of the most important consequences of the thermo­
dynamic theory is that the plastic work rate need not always be positive. This is CC>nsistent 
with a large Bauschinger effect and the fact that the yield surface does not always enclose the 
origin in stress space. 

KJasycma termodynamika nie daje WYstarczaj~cych podstaw do opisu spr~sto-plastycmych 
materia16w. W niedawno opublikowanej pracy BREE'A i BEEVERSA [1) zbudowana zostala teoria 
termodynamicma stan6w nier6wnowagi na podstawie drugiej zasady termodynamiki. Zasada 
ta jest Zlllodyfikowana w stosunku do klasycznej wersji zaproponowanej przez CARATHOODORY 
[2]. Rozwijaj~c kobcepcjc: ~ w pracy [1], zbadano teori~ konstytutywn~ dla sp~o­
plastycznego materialu przy skonczonych odksztalceniach. Podany jest dow6d istnienia funkcji 
absolutnej temperatury i funkcji entropii WYkorzystuj~c zmodyfikow~ wers,K drugiej zasady 
termodynamiki. Zbudowana jest r6wniet globalna nier6wno8C entropii. Nier6wno8C ta jest 
dostatecmym, ale nie koniecmym warunkiem termodynamicznym. Jednym z najwaZniejszych 
wniosk6w wynikaj~cych z obecnej teorii jest fakt, 7.e moc plastycma niekoniecmie musi byt 
dodatnia. Spostrzet.enie to jest zgodne z efektem Bauschingera oraz zachowaniem sict 
powierzchni plynictcia w przestrzeni naprct7.efl, nie obejmuj~cej poc?Jltku uldadu. 

l<.naCCIAeCiaUI TepMO~ He ~&eT ~OCTaTO'IHbiX OCHOB WIJI Omtc:ambl ynpyro-ruracm­
'teaarx MaTepiWtoB. B HeA&BHO ony6JIKKosaHHoii pa6oTe, Bplf If Blfsepc [1], IIOCTpoeHa 
TepMO~eCiaUI TeOpWI HepaBHOBecHbiX COCTO.RRJdt, OmtpaR:CL Ha BTOpOH 31lKOH TepMo­
~. 3TOT saKOH MO.Qii~OBaH 110 OTHOWeHBIO K KJI&CCI(qecKOMY BaplfllHTY, npeA­
JIO>KeHHOMY KapaTeoAOPH [2]. PaaBifBaR: Ko~e~ nplfBe~eHHYIO B pa6oTe [1], lfCCJie~­
eTCH onpe~emuomux TeoplfH AJV1 yupyro-IIJ18CTH'lecKoro MaTeplfaJia nplf KoHetiH&IX ~eciM>pu­
~. ,llaeTCH ~OKil3aTeJIIaCTBO cy"mecTBOBaHWI cl>~ a6coJDOTHOit TeMDepazypbi If cl>YJD<­
nml 3HTPOIDlH, lfCIIOJIL3YH Mo.zntcl>JnnrPOBaHHbrlt Bap:Ha.HT BToporo 38KOHa TepMO,AHIIaMifKif. 
IIocrpoeao TO>Ke rno6a.n:wroe HepaBeHCTBO 3Hl'pOIIHII. 3To HepaBeHCTBO .RBJUieTCH ~OCTaToll­
HhiM; HO He HeOOXO,lU!MbiM 'l'epMO~'lecKI!M YCJIOBBeM. 0~ lf3 caMbiX Ba>I<HbiX Bbl­
BO~OB, Bb!TeKaiOmHX lf3 JlaCTOHllleH Teopm!, .RBJV{eTCH cl>&KT, 'ITO UJiaCTJttlecKRR: MOD.UIOCTL 
He OO.fl3&TeJILHO ~OJDI<Ha 6b!Tb IIOJIO>KltreJIDHOH. 31'0 saMe'la.HI(e KOHCilCTeRTHO C 3<1Ki>eKTOM 
BaynmHrepa H IIO~eHifeM IIOBepXHOC'M Te'leHWr B · npOCTpaHCTBe HaiipJDKeHifit He OlCBa­
TbmaiOmeit Ha118Jla ClfCTeMbi. 

1. Introduction 

IN THE PAST twenty years many non-equilibrium theories of thermodynamics, both local 
and global, have appeared but few authors have attempted a rigorous derivation of a non­
equilibrium theory of thermodynamics from realistic physical assumptions. However, 
BREEand BEEVERS [l]_have recently developed a non-equilibrium theory of thermodynamics · 
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based on a statement of the second law of thermodynamics which is a modification of that 
used by CARA THEOOORY [2] in classical thermodynamics. There are several new ideas 
in [1] which warrant further exposure. In order, then, to highlight some of the most im­
portant features of [1], it is appropriate to consider a constitutive model for a material 
for which ihe classical theory of thermodynamics is inapplicable. It is well-known that 
classical thermodynamics cannot be applied rigorously to materials in which the internal 
dissipation effects do not vanish during quasi-static transitions. This point is carefully 
explained by BuCHDAHL [3]. It is stated in [1] that an example of such a material is one 
which is capable of experiencing elastic .. plastic deformations. For this reason, then, the 
present paper will emphasize some of the main points in [1] by discussing a constitutive 
theory for isotropic elastic-plastic materials at finite . strain~ 

Since history-dependent effects on the state variables have not yet been included in 
the therm<,>dynamic theory, it is necessary to assume tha~ the elastic properties of the 
material are not influenced by the plastic deformation. Consequently, it will be assumed 
in · this paper that plastic deformations do not contribute to volume changes ·since this 
would manifest itself as a history-dependent effect on the elastic properties. In the near 
future it is hoped to develop a thermodynamic theocy capable of dealing with the full 
effects of history-dependence. For the present it is fortunate that the above assumptions 
for plastic deformation are not unrealistic, particularly for materials such as metals. 
These assumptions imply that the elastic and heat conduction properties of the material 
are preserved when referenced to the local plastically deformed reference configuration. 
If the yield surface encloses the origin in stress space, then this local configuration is the 
stress-free reference configuration at .the reference temperature. Otherwise, this local 
configuration must be determined by using the constitutive postulates. 

Following a brief statement of the mechanical balance laws; the notion of state and 
process variable is introduced in Sect. 3. Although in [1] shock waves are included in the 
general theocy, this is not done here. A modified version of Caratheodocy's statement 
of the second law of thermodynamics .is presented in Sect. 4. It is from this that the exist­
ence of the absolute temperature and an entropy function can· be established. A global 
entropy inequality is then deduced and this is sufficient to ensure that all possible transitions 
of an isotropic elastic-plastic material· are consistent with the thermodynamic theory. 

In the final section the consequences of the thermodynamic theory for a constitutive 
model of an isotropic elastic-plastic .material are stated. One <;>f the most important results 
is that the worl~ rate due to plastic deformations need not necessarily be positive. This 
is consistent with · the experimentally observed effect known as the Bauschinger effect. 
If this effect is .large enough, then the .yield surface in stress space may be such that it does 
not always enclose the origin so that a negative plastic work rate becomes possible. 

2. Mechanical balance laws 

It is convenient to give a brief presentation of the usual mechanical equations of mo­
tion. With respect to a fixed set of rectangular Cartesian axes the Cartesian coordinates 
of a typical particle in a continuous medium at time t are denoted by Xa:. With respect 
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to the same set of axes the Cartesian coordinates of the particle in some reference configura­
tion of the medium, at time t = 0 say, are given by XK. Latin upper and lower case in­
dices take the values 1 , 2, 3, unless specifically stated otherwise, and the usual index 
notation operates throughout. The equation of motion is represented by 

(2.1) 

Then, the velocity v and the deformation tensor F have the components 

(2.2) 

where a superposed dot denotes the_ material time derivative, and a comma followed 
by the index K indicates partial differentiation with respect to XK. 

The local form of the mass and momentum balance are 

(2.3) 

and 

(2.4) 

det(Fu) = ~ > 0, 
(! 

respectively, where (! and (!o are the densities of the medium in its current and reference 
configuration, a is the Cauchy stress, b is the body force per unit mass and a . co.tmrul 
followed by the index j denotes partial differentiation with respect to xi. 

Conservation of angular momentum requires that the Cauchy stress be symmetric 
so that 

(2.5) 

3. State variables, process variables and the kinematics of isotropic elastic-plastic materials 

A thermodynamic system 1: is determined by any part P of a continuous medium 
which consists always of the same material particles. The region of three-dimensional 
Euclidean space occupied by Pat time t is denoted by B. Of the variables needed to describe 
an equilibrium configuration of P only those which determine the forces holding the 
material in equilibrium are called the . state variables. These variables form a finite set 
of independent physical quantities ~ ·· = . (~ 1 , ~ 2 , ••• , ~a.). These quantit~es · include the 
empirical temperature 0 and so are also denoted by (f, 0) with ~a. = 0. The variables 
~ = (~ 1 , ~ 2 , ••• , ~ a.- 1) are called the deformation state variables and they possess the 
property of being freely adjustable by mechanical means only. Thus the ~tate variables 
are a subset of those variables needed to describe ·the equilibrium configuration of the 
material. For example, for a material which has experie~ced ·elastic-plastic strains its 
equilibrium configuration is determined by the elastic strain, the plastic strain and the 
empirical temperature. However, if, as it is assumed here, the plastic strains do not in-' 
fluence the elastic properties of the material, then only the elastic strain and the tempent­
ture are required to determine the stress acting on the material. So in . this case the elastic· 
strain and the empirical temperature form the independent set- of state variables. Since 
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the thermodynamic state is completely characterized by the independent state variables, 
any other state variable is related to ~ by an equation called an equation of state. Thus, 
if u is an additional state variable, then an equation of state can be written in the form 

(3.1) f(~, u) = 0. 

Further variables are required to describe the processes which occur in the non-equi­
librium system. These may be gradients or rates of change of the state variables or any 
other quantity necessary to specify the processes which are occurring in the material. 
Such quantities are called process variables. The processes are governed by equations 
which can include both state and process variables and these are called process equations. 
Hence, the constitutive equations which model material behaviour consist of two types: 
equations of state and process equations. 

To illustrate these ideas it is now convenient to consider the kinematics of isotropic 
elastic-plastic materials. By the polar decomposition theorem the deformation gradient 
tensor F may be expressed as 

(3.2) Fu. = RkM UMK' 

where R is a proper orthogonal tensor and U is a positive definite, symmetric tensor. 
The strain tensor E is then 

(3.3) UKM UML = CKL = 2EKL + (}KL' 

where (}K.L are the components of the Kronecker delta function. 
It is supposed that the material is initially in an annealed condition in a stress-free 

state at some reference temperature. This is adopted as the reference configuration of the 
material. When a stress is applied to the material the initial deformation is elastic so that 

(3.4) EKL = Elc1., Fu = 112 = ~~ U1;k, 

where E<e> and F<e> denote the elastic strain and the elastic deformation respectively. 
The symmetric Piola-Kirchhoff stress tensor aiL is defined by 

(3.5) (JiJ = ~ F12 .FJf> l1gL 
~0 

and given by the thermoelastic equation 

(3.6) l1KL = l1gL(E1;Jv, 0). 

The deformation remains elastic provided the point (aK£, 0) in stress-temperature 
space does not cross the yield surface. On crossing the yield surface plastic strains occur 
which alter the local stress-free reference configuration. It is assumed that elastic properties 
are not changed by plastic deformation, therefore Eq. (3.6) still holds provided aKL is 
referenced to the local plastically-deformed reference configuration and E<e> is interpreted 
as the strain measured relative to that configuration. 

Now the deformation tensor can be written as 

(3.7) 

where U<"> is a positive definite, symmetric plastic stretch tensor and the orientation of 
the plastically deformed reference configuration is chosen to be that of the original reference 
configuration. The plastic strains c<"> and E"'> are defined by 

(3.8) UVlt UAfl = c</i = 2E2'i+ (}I.L· 
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Thus, u<P>, c<P> and E<P) provide some local strain measures of the local plastically deformed 
reference configuration measured with respect to the original reference configuration. 
If 11~ = l~{J., UJ;k and FJ/2 = UJfJ then 

(3.9) Fu = 11~F<J'J 

and F<e> and F<P> can be called respectively the elastic and plastic deformation tensors. 
Since it is assumed that plastic deformation does not contribute to volume changes, 

then 

(3.10) det(F</J) = 1 , det(J1~) = ~. 
(] 

At the onset of plastic flow 

(3.11) U1Pi = Cifi = ~KL' EJ!i = 0, .Ri~ = Ru, Ufl = UKL 

and these provide initial conditions which must be used in conjunction with Eq. (3.6) 
and constitutive equations for the plastic deformation rate to calculate the subsequent 
values of these quantities. 

Since aKL depends only on EJ;'Jy and 0, these are the independent state variables and 
Eq. (3.6) is an equation of state. The additional equations needed to determine the plastic 
deformation rate are process equations. 

The rate at which work is done per unit mass in addition to that which contrib.utes 
to the kinetic energy is 

(3.12) • 1 d 1 E. <e> 1 c<e> p" <P> np>-1 
W =- Gij ij = -(JKL KL +- (JKM ML LNrKN , 

(] eo (]o 

where 

2d;j = 'V;,J+VJ,i· 

The first and second terms on the right hand side of Eq. (3.12) can be interpreted as the 
work rate per unit mass due to elastic and plastic deformations respectively. Further, 
since the material is isotropic, the Cauchy stress a11 and the stretch tensor V1j> = R<;2 R~e;, UJce;. 
have the same principal directions, so it can be shown that 

(3.13) 

In this case s is symmetric, so the plastic work rate per unit mass Wp can be written as 

. 1 D(P) 
Wp =- SgL KL' 

(]o 
(3.14) 

where 

(3.15) 

Also, since plastic deformations do not contribute to volume changes, D<f1 = 0. Hence, 
the hydrostatic part of s does not contribute to the plastic work rate and so s can be re­
placed by its deviatoric part s' defined by 

(3.16) 
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Then, the plastic work rate per unit mass is given ·by 

• 1 , nip) 1 , ..lip) 
Wp = - Su_LikL = -GiJ"lJ , 

(!o (! 
(3.17) 

where a' is the deviatoric part of the Cauchy stress and 

4. ne thermodynamic theory 

It is assumed that there exists a specific internal energy function u which is dependent 
on the state variables only. The total internal energy is given by 

(4.1) U = j eudV. 
B 

Let r be the rate of supply of heat energy per unit mass due to radiation and take q 
as the heat flux vector. The energy balance equation can be expressed as 

(4.2) ~ {f e(u+ ~ "•"•)dvl= f e(r+b•v•)dV+ f(aiJv,-q1)n1dS, 
B B . . n 

where iJB is the closed, regular boundary of B with the area element dS and the unit out­
ward normal n. Under the usual assumptions and employing the momentUm equation 
(2.4) it can be shown that 

(4.3) • 1 d 1 
u = r+ --aiJ iJ-- q" le· 

(! (! • 

Since u is a state variable and recalling the kinematics ofisotropic elastic-plastic materials 
given in the previous section, it follows that 

(4.4) 

where 

- -- !.. 1 . 
zi(~, 8)-P(~, B)·~= r+wp- -- divq = h, 

(! 

(4.5) P(~, 8) · ~ = -1 
uKL(E1;J., 8)EJ{}., • 1 , D<P> 

Wp =-SKL KL• 
(!o (!o 

For the system E which occupies the region B 

(4.6) r = r'+w, 

where r' is the rate of exchange of radiative heat per unit mass between E and its sur­
roundings and w is the rate of exchange of radiative heat per unit mass between any particle 
of E and the remainder of E. Tlius, w represents the internal radiation and is a space 
functional depending on x and B so that 

{4.7) w = w(xh B). 

Clearly, the net rate of exchange of internal radiation is zero giving 

(4.8) J ewdV = 0. 
B 
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The value of w is a property of the material and must be specified by a constitutive equa­
tion whereas r' (and hence r) can be chosen arbitrarily. Also, as B collapses to a point w 
approaches zero and r' tends to r. 

It is now necessary to introduce certain types of thermodynamic transitions: an adia­
batic or a-transition is one for which 

(4.9) r' = 0 in B, q · n = 0 on iJB. 

An i 1-transition is one for which 

(4.10) h = 0 in B. 

An i2-transition is one for which 8 = 8(t), q · n = 0 on iJB and r' is chosen so that 

(4.11) Ieizdv = o. 
B 

Finally, an (a, i}-transition is such that any part of it is an a-transition, an i 1-transition 
or an i2-transition. 

The statement of the second law of thermodynamics presented in [l] modifies the classical 
statement of the second law given by CARAmEoOORY [2] and is as follows: 

In every neighbourhood of a given state there exist s~ates which cannot be reached 
from the given state by an (a, i)-transition. 

A number of results from this statement of the second law have already been proved 
in [l] and some of these will now be stated. It can be shown that at any point in the non­
equilibrium system there exists T = T(8) > 0 and s = .r(~, 8) such that 

(4.12) iz = Ts, 
where T is the absolute temp~rature and s is the s~~ific entropy. The total entropy S 
may be .defined by 

(4.13) s = J esdV. 
B 

It follows immediately from the energy equation and Eq. (4.12) that 

( 4.14) T- ( iJu) --as( 
01p 

Py = a~, , r = 1, ... , ~-1, 

where 1p = u- Ts is the. Helmholtz free energy. It is now assumed that 8 can be replaced 
by T as a state variable. For . the elastic-plastic material 

( 4.15) 
OVJ 

s= --iJT , 

A further consequence of the second law is that 

(4.16) 

for all (a, i)-transitions. It is also explained in [1] that if at least one of therates of change 
of the state variables does not appear in the constitutive equations, then a necessary and 
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sufficient condition for material processes to comply with the thermodynamic theory 
is that the global entropy inequality 

(4.17) J esdV ~ J e; dV- J q · 
8 Js 

B B oB T 

holds for all conceivable processes. 
Using the energy equation, the divergence theorem and the thermodynamic relations 

( 4.14), this is equivalent to the global inequality 

f {!W f 1 ( • q ·g) -;ydV+ T (!Wp--y- dV~ 0, 
B B 

(4.18) 

where g is the temperature gradient with the components g" = T,". 
Since ro approaches zero as B collapses to a point, then a local inequality can be obtained 

from Eq. (4.18) in the form 

(4.19) 

For a material which has constitutive equations containing the rates of change of all 
the state variables it is sufficient but not necessary that the inequalities ( 4.17)-( 4.19) hold 
for all possible processes. This is true of materials which can experience elastic-plastic 
deformation. 

5. A constitutive theory for isotropic elastic-plastic materials 

The kinematics of isotropic elastic-plastic materials presented in Sect. 3 suggests that 
an appropriate stress measure with which to work in the equations for yielding and plastic 
flow is the deviatoric part s' of the stress s. The yield surface is given by 

(5.1) 

where x = X(1J ... ), A = 1, 2, ... and 

(5.2) it= 0 when IJ<ll. = 0. 

The parameters f/..t depend on the plastic strain history and two possible choices for these 
parameters are 

(5.3) 

The constitutive postulate for ))<P> is as follows: 

of ., of • 
os;,N S.vN+ oT T > 0, f = 0, 

(5.5) 
{ 

of • , of • 
D'/l = 0 when os;,N S.vN + oT T = o, f = o, 

or f < 0, 
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where the conditions (5.4) and. (5.5) are said to hold during loading, neutral loading and 
unloading, respectively. Clearly, the hydrostatic stress does not affect yielding or plastic· 
flow directly but it does have an indirect effect for large elastic strains. This indirect effect 
vanishes in the limiting case of small elastic strains. 

· It is usually assumed that the plastic deformations are independent of the time scale 
and therefore GICL is a homogeneous tensor function of degree one in s~L and T. More­
over, if the constitutive equations for plastic flow are to be continuous in state space, 
then G vanishes during neutral loading. Thus, 

( ) <P> H ( , T ) ( og . , ac r· ) 
5.6 DICL = KL SMN' ' ~ as;.,N SMN- oT ' 

during loading. 
When f and ~ have been specified H is not arbitrary since it is necessary to satisfY 

the condition i = 0 and in this case Ul~ = 0. Further, the independence of the particular 
time scale and condition (5.2) require that the ;,A be homogeneous of degree one in D<ll· 
It can therefore be shown that 

(5.7) 

where 

(5.8) 

The constitutive equation for heat flux is 

(5.9) 

where Q" and G" are defined by 

(5.10) e r.'le)Q r.<fe) q" =- rt.g K' GK = rt.ICKk· eo 
In this model of elastic-plastic materials the constitutive equations which hold during 

loading contain the rates of change of all the state variables and so it is not necessary 
that the entropy inequality (4.17) be satisfied for all conceivable processes. Nevertheless, 
if the material properties are restricted in this way, then this is sufficient to ensure that 
all possible processes of the material comply with the thermodynamic theory. 

The global entropy inequality (4.18) now gives 

f qw dV + f __!_ ((Jo w P- _Q . G ) _g__ dV ~ 0. 
T T T ~ 

B B 

(5.11) 

The local entropy inequality (4.19), Eqs. (4.5)2 and (5.6) together yield 

(5.12) , ( ag . , ac . ) Q" G" 
SKLHKL -,-SMN--T --.-~0 

asMN ar T 

during loading. Thus, by considering arbitrary uniform distributions of temperature 
for which G" = 0, then 

(5.13) 
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Tliis is the condition for positive plastic work. It also follows from the inequality (5.12) 
that 

(5.14) 

It should be emphasi.r.ed that the inequalities· (5.11)-(5.14) are sufficient conditions for the 
constitutive postulates during loading to be consistent with the- thermodynamic theory 
but they are not necessary. So, this thermodynamic theory does not impose the restriction 
that the plastic work rate be positive. This is consistent with the experimentally observed 
Bauschinger effect and the fact that the yield surface need not always enclose the origin 
in stress space. 

Other authors have been able to include a n,egative plastic work rate within a thermo­
dynamic theory (see for example GREEN and NAGHDI[4] and K.EsTIN and RICE [5).) However, 
unlike the thermodynamic theory presented in this paper, the theory 'in [4, 5] only permits 
a negative plastic work . rate for elastic-plastic materials exhibiting history-dependent 
elastic· properties. 

During neutral loading and unloading the global entropy· inequality provides 

(5.15) f (!W f Q · G (! -dV- ---dV~O 
T T 2 n 

B B I:'O 

and the local inequality implies that 

(5.16) Q"G" ~ 0. 

The conditions (5.15) and (5.16) are both necessary and sufficient. 
If the yield function is adopted as a plastic potential, then 

(5.17) n<P> = k~(_5_ ., -~t) 
KL OS~N OS~N SMN oT 

during loading. 
Fu'rther, if 

(5.18) 

where a(n is an increasing function ofT and g· is supposed to be homogeneous of degree 
n in s~L, then it can be shown that 

(5.19) 

during loading. 
It is easily deduced from Eq, (3.13) that for isotropic elastic-plastic materials 

(5.20) SKL = J~{}.~2Pii' 

where f!Pii = (!o aii and if p' is the deviatoric part of p, then the yield surface becomes 

(5.21) 
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Here g is an i~otropic function of p' and can therefore be expressed as a function of J;, 
and J~ , the two principal invariants of p'. Also, during loading the plastic flow rule be­
comes 

(5.22) . 
J<P> _ 1 og ( og . , ac . ) 

'1 - . oc on'. on' p,.,- iJT T · 
(X(n-ng rlJ r .. ,. 

0" 

This theory is then equivalent to that proposed by LEE [6] for isotropic elastic-plastic 
materials. It is perhaps worthy of note that the indirect effect of the hydrostatic stress 
on yielding and plastic flow when finite elastic strains occur can be removed if in the 
constitutive equations for yielding and plastic flow s' is replaced by t' where t' is the de­
viatoric part of the tensor t with components which satisfy 

(5.23) 
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