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A thermodynamic theory of isotropic elastic-plastic materials
C.E. BEEVERS and J. BREE (EDINBURGH)

THE CLASSICAL theory of thermodynamics is unable to provide a sound thermodynamic founda-
tion for elastic-plastic materials. In a recent paper by BREE and Beevers [1] a general non-

equilibrium theory of thermodynamics is developed, based on a statement of the second law
oi' thermodynamics which modifies the classical version used by CARATHEODORY [2]. In order
to emphasize some of the main features of [1], the present paper examines a constitutive theory
for isotropic elastic-plastic materials at finite strain. The existence of the absolute temperature
and an entropy function follows from the modified statement of the second law of thermo-
dynamics. A global entropy inequality is also constructed. This inequality is a sufficient but not
a necessary thermodynamic requirement. One of the most important consequences of the thermo-
dynamic theory is that the plastic work rate need not always be positive. This is consistent
with a large Bauschinger effect and the fact that the yield surface does not always enclose the
origin in stress space.

Klasyczna termodynamika nie daje wystarczajacych podstaw do opisu sprezysto-plastycznych
materialow. W niedawno opublikowanej pracy BREe’A i Beeversa [1] zbudowana zostala teoria
termodynamiczna stanéw nierdwnowagi na podstawie drugiej zasady termodynamiki. Zasada
ta jest zmodyfikowana w stosunku do klasycznej wersji zaproponowanej przez CARATHEODORY
[2]. Rozwijajac koncepcje podang w pracy [1], zbadano teori¢ konstytutywna dla sprezysto-
plastycznego materiatu przy skoficzonych odksztalceniach. Podany jest dowdd istnienia funkcji
absolutnej temperatury i funkcji entropii wykorzystujac zmodyfikowanq wersj¢ drugiej zasady
termodynamiki. Zbudowana jest réwniez globalna nieréwnoéé entropii. Nierdbwno$é ta jest
dostatecznym, ale nie koniecznym warunkiem temlodynammym Jednym z najwazniejszych
wnioskéw wynikajacych z obecnej teorii jest fakt, ze moc plastyczna niekoniecznie musi byé
dodatnia. SpostrzeZenie to jest zgodne z efektem Bauschingera oraz zachowaniem si¢
powierzchni plyniecia w przestrzeni naprezenf, nie obejmujacej poczatku ukladu.

Knaccueckas TepMOAMHAMHKA HE O8eT HOCTATOUHBLIX OCHOB JUIA OMHCAHHA YIPYro-ILTACTH-
YecKHX MaTepHanos. B HemasHO omyGmroBamxod paGore, Bpr # Busepc [1], mocrpoena
TEPMONHHAMHYECKAA TCOPHA HEPABHOBECHBIX COCTOAHHMH, OMMpasch HR BTOPOH SaKOR TEPMO-
JHHAMHKH. JTOT 3aKOH MOAH(QHUWPOBAH IO OTHOLICHHIO K KIACCHYSCKOMY BapHAHTY, Ipen-
noxxeaHomy Kapareogopn [2]. Pase#Bas KoHuemuHio npeBeeferHyo B pabore [1], Hecmemy-
eTCA ONpejeIOIHA TEOPHA JJIA YIPYTO-IUIACTHYECKOr0 MATEPHANA IIPH KOHEUHBIX Nedopma-
maax. JlaeTca NoKasaTeNbCTBO CYIICCTBOBAHMA (yHKIME aGcomorHo# Temmeparyphl B dymK-
MK SHTPOIMH, HCIIONB3YA MONHGHIHPOBAHHLE! BAPHAHT BTOPOrO 3aKOHA TCPMOMHMHAMHIH.
ITocTpoero ToXKe rI00aMbHOEC HEPABEHCTBO SHTPOMHH. JTO HEPABEHCTBO ABJIACTCA AOCTaTOd-
HbIM; HO He HeoOXOMHMBIM TePMOOHHAMHYCCKHM ycnoBHeM. OHuM H3 CAMBIX Ba)KHBIX BbI-
BOAOB, BHITEKAIOLMX H3 HACTOAWEH TeopHH, ABNACTCA (haKT, Wro MIaCTHYECKAA MOIIHOCTb
He 00A3aTeNBbHO NO/DKHA OBITH MONOMKHTEBHOM. D70 3amevaHHe KOHCHCTeRTHO C 3dhdexrom
Baynmerepa u nmoBefleHHeM ITOBEPXHOCTH TEUEHMA B IPOCTPAHCTBE HANMPSDKEHHIE He oxBa-
ThIBAIONIEH HAYAA CHCTEMBI.

1. Introduction

IN THE PAST twenty years many non-equilibrium theories of thermodynamics, both local
and global, have appearéd but few authors have attempted a rigorous derivation of a non-
equilibrium theory of thermodynamics from realistic physical assumptions. However,
BRrEE and BEeVERS [1] have recently developed a non-equilibrium theory of thermodynamics
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based on a statement of the second law of thermodynamics which is a modification of that
used by CARATHEODORY [2] in classical thermodynamics. There are several new ideas
in [1] which warrant further exposure. In order, then, to highlight some of the most im-
portant features of [1], it is appropriate to consider a constitutive model for a material
for which the classical theory of thermodynamics is inapplicable. It is well-known that
classical thermodynamics cannot be applied rigorously to materials in which the internal
dissipation effects do not vanish during quasi-static transitions. This point is carefully
explained by BUCHDAHL [3]. It is stated in [1] that an example of such a material is one
which is capable of experiencing elastic-plastic deformations. For this reason, then, the
present paper will emphasize some of the main points in [1] by discussing a constitutive
theory for isotropic elastic-plastic materials at finite strain.

Since history-dependent effects on the state variables have not yet been included in
the thermodynamic theory, it is necessary to assume that the elastic properties of the
material are not influenced by the plastic deformation. Consequently, it will be assumed
in this paper that plastic deformations do not contribute to volume changes since this
would manifest itself as a history-dependent effect on the elastic properties. In the near
future it is hoped to develop a thermodynamic theory capable of dealing with the full
effects of history-dependence. For the present it is fortunate that the above assumptions
for plastic deformation are not unrealistic, particularly for materials such as metals,
These assumptions imply that the elastic and heat conduction properties of the material
are preserved when referenced to the local plastically deformed reference configuration.
If the yield surface encloses the origin in stress space, then this local configuration is the
stress-free reference configuration at the reference temperature. Otherwise, this local
configuration must be determined by using the constitutive postulates.

Following a brief statement of the mechanical balance laws, the notion of state and
process variable is introduced in Sect. 3. Although in [1] shock waves are included in the
general theory, this is not done here. A modified version of Carathéodory’s statement
of the second law of thermodynamics is presented in Sect. 4. It is from this that the exist-
ence of the absolute temperature and an entropy function can be established. A global
entropy inequality is then deduced and this is sufficient to ensure that all possible transitions
of an isotropic elastic-plastic material are consistent with the thermodynamic theory.

In the final section the consequences of the thermodynamic theory for a constitutive
model of an isotropic elastic-plastic material are stated. One of the most important results
is that the work rate due to plastic deformations need not necessarily be positive. This
is consistent with the experimentally observed effect known as the Bauschinger effect.
If this effect is large enough, then the yield surface in stress space may be such that it does
not always enclose the origin so that a negative plastic work rate becomes possible.

2. Mechanical balance laws

It is convenient to give a brief presentation of the usual mechanical equations of mo-
tion. With respect to a fixed set of rectangular Cartesian axes the Cartesian coordinates
of a typical particle in a continuous medium at time ¢ are denoted by x;. With respect
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to the same set of axes the Cartesian coordinates of the particle in some reference configura-
tion of the medium, at time 7 = 0 say, are given by Xx. Latin upper and lower case in-
dices take the values 1,2, 3, unless specifically stated otherwise, and the usual index
notation operates throughout. The equation of motion is represented by

(2.1) X = x(Xg, 1).
Then, the velocity v and the deformation tensor F have the components
(2'2) U = &ﬁ$ 'F.'HZ = Xk,K»

where a superposed dot denotes the material time derivative, and a comma followed
by the index K indicates partial differentiation with respect to Xx.
The local form of the mass and momentum balance are

(2.3) det (Fig) = % >0,
and
(2.4) gij.j+0b; = oty

respectively, where g and g, are the densities of the medium in its current and reference
configuration, & is the Cauchy stress, b is the body force per unit mass and a comma
followed by the index j denotes partial differentiation with respect to x;.

Conservation of angular momentum requires that the Cauchy stress be symmetric
so that

(25) Oy = 0j;.

3. State variables, process variables and the kinematics of isotropic elastic-plastic materials

A thermodynamic system X' is determined by any part P of a continuous medium
which consists always of the same material particles. The region of three-dimensional
Euclidean space occupied by P at time ¢ is denoted by B. Of the variables needed to describe
an equilibrium configuration of P only those which determine the forces holding the
material in equilibrium are called the state variables. These variables form a finite set
of independent physical quantities § = (&,, &;, ..., £&a). These quantities include the
empirical temperature 6 and so are also denoted by-.(c_ ,0) with & = 0. The variables
& =(£,8,, ..., Ea_;) are called the deformation state variables and they possess the
property of being freely adjustable by mechanical means only. Thus the state variables
are a subset of those variables needed to describe the equilibrium configuration of the
material. For example, for a material which has experienced elastic-plastic strains its
equilibrium configuration is determined by the elastic strain, the plastic strain and the
empirical temperature. However, if, as it is assumed here, the plastic strains do not in-
fluence the elastic properties of the material, then only the elastic strain and the témpera-
ture are required to determine the stress acting on the material. So in this case the elastic
strain and the empirical temperature form the independent set. of state variables. Since
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the thermodynamic state is completely characterized by the independent state variables,
any other state variable is related to E by an equation called an equation of state. Thus,
if u is an additional state variable, then an equation of state can be written in the form

(3.1 S(E,u) =0.

Further variables are required to describe the processes which occur in the non-equi-
librium system. These may be gradients or rates of change of the state variables or any
other quantity necessary to specify the processes which are occurring in the material.
Such quantities are called process variables. The processes are governed by equations
which can include both state and process variables and these are called process equations.
Hence, the constitutive equations which model material behaviour consist of two types:
equations of state and process equations.

To illustrate these ideas it is now convenient to consider the kinematics of isotropic
elastic-plastic materials. By the polar decomposition theorem the deformation gradient
tensor F may be expressed as
3.2 Fix = Rip Uz,
where R is a proper orthogonal tensor and U is a positive definite, symmetric tensor.
The strain tensor E is then
3.3 UkmUnr = Cxr = 2Eg+ gy,
where dg; are the components of the Kronecker delta function.

It is supposed that the material is initially in an annealed condition in a stress-free
state at some reference temperature. This is adopted as the reference configuration of the
material. When a stress is applied to the material the initial deformation is elastic so that

(3-4) EgL = Eﬁ’.; Fix = Fa‘;? = R};?f Usks
where E® and F© denote the elastic strain and the elastic deformation respectively.
The symmetric Piola-Kirchhoff stress tensor ox, is defined by

(3.5 o = o AR o

and given by the thermoelastic equation
(3.6) ox. = oxr(Ef), 0).

The deformation remains elastic provided the point (okg, ) in stress-temperature
space does not cross the yield surface. On crossing the yield surface plastic strains occur
which alter the local stress-free reference configuration. It is assumed that elastic properties
are not changed by plastic deformation, therefore Eq. (3.6) still holds provided oy, is
referenced to the local plastically-deformed reference configuration and E® is interpreted
as the strain measured relative to that configuration.

Now the deformation tensor can be written as
(3.7 Fix = R% UGN UR = Rin Unx,
where U‘® is a positive definite, symmetric plastic stretch tensor and the orientation of
the plastically deformed reference configuration is chosen to be that of the original reference
configuration. The plastic strains C® and E® are defined by

(3.8) Uk Uil = C{ = 2EQ)+ 6x...
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Thus, U®, C® and E® provide some local strain measures of the local plastically deformed

reference configuration measured with respect to the original reference configuration.

If F{Q = R Uk and F{R = USR then

(3—9) Fig = f}?};‘h”x’

and F® and F® can be called respectively the elastic and plastic deformation tensors.
Since it is assumed that plastic deformation does not contribute to volume changes,

then

(3.10) det(FR) = 1, det(F®) = %

At the onset of plastic flow

(3.11) U% = CE.’B = Ogs, E}” =0, -Rﬂ = R, U}? = U,

and these provide initial conditions which must be used in conjunction with Eq. (3.6)
and constitutive equations for the plastic deformation rate to calculate the subsequent
values of these quantities.

Since ok, depends only on E{f} and 0, these are the independent state variables and
Eq. (3.6) is an equation of state. The additional equations needed to determine the plastic
deformation rate are process equations.

The rate at which work is done per unit mass in addition to that which contributes
to the kinetic energy is

1 1 s 1 ‘
(3-]2) W= O't;dij = —ox Ef+— oxm CHLFRFR™1,

e Qo Qo
where

MU = U;J'F?JJ';.

The first and second terms on the right hand side of Eq. (3.12) can be interpreted as the
work rate per unit mass due to elastic and plastic deformations respectively. Further,
since the material is isotropic, the Cauchy stress o; and the stretch tensor Vj = R{R R{Q UL
have the same principal directions, so it can be shown that

(3.13) Sk = oxm CiEL = % R}?RJE' T
In this case s is symmetric, so the plastic work rate per unit mass wp can be written as
; 1
(3.14) wp = — s DY,
€o
where
1 .. s
(3.15) D = 5 (VR U™ + URUR™).

Also, since plastic deformations do not contribute to volume changes, D} = 0. Hence,
the hydrostatic part of s does not contribute to the plastic work rate and so s can be re-
placed by its deviatoric part s’ defined by

; 1
(3.16) SgL = SgL— 3 Smm O -
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Then, the plastic work rate per unit mass is given by
@17 e = - sk DY = -,

(1]

where ¢’ is the deviatoric part of the Cauchy stréss and
df’ = RiRGDE).

4. The thermodynamic theory

It is assumed that there exists a specific internal energy function u which is dependent
on the state variables only. The total internal energy is given by

(4.1) U= f oudV.
B

Let r be the rate of supply of heat energy per unit mass due to radiation and take q
as the heat flux vector. The energy balance equation can be expressed as

(4.2) % {J‘ ] (u+ —;'ﬂ;ﬂk)dy}- = Bf 9(r+bgfl'k)dV+ a‘!(auﬂi — q‘a)nde,

where 9B is the closed, regular boundary of B with the area element dS and the unit out-
ward normal n. Under the usual assumptions and employing the momentum equation
(2.4) it can be shown that

5 1 1
(4.3) d=r+ "é-ﬂ'udu— ? Gk k-

Since u is a state variable and recalling the kinematics of isotropic elastic-plastic materials
given in the previous section, it follows that

(4.9) (€, 6)—P(E, 8) - € = r+wp— :,— divg = h,

where

9 PE.0)E = oau(ER DL, p = sk DR
For the system X' which occupies the region B

(4.6) =r'+o,

where r’ is the rate of exchange of radiative heat per unit mass between 2 and its sur-
roundings and w is the rate of exchange of radiative heat per unit mass between any particle
of X' and the remainder of 2. Thus, w represents the internal radiation and is a space
functional depending on x and B so that

4.7 o = w(x;, B).

Clearly, the net rate of exchange of internal radiation is zero giving

(4.8) f pwdV = 0.
B
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The value of w is a property of the material and must be specified by a constitutive equa-
tion whereas r’ (and hence r) can be chosen arbitrarily. Also, as B collapses to a point @
approaches zero and r’ tends to r.

It is now necessary to introduce certain types of thermodynamic transitions: an adia-
batic or a-transition is one for which

4.9) rr=0inB, q-n=0on dB.
An i,-transition is one for which
(4.10) h=0in B.

An i,-transition is one for which 8 = 6(t), - n = 0 on 8B and r’ is chosen so that
4.11) jfgl'de =0.

Finally, an (a, i)-transition is such that any part of it is an e-transition, an i,-transition
or an i,-transition.

The statement of the second law of thermodynamics presented in [1] modifies the classical
statement of the second law given by CARATHEODORY [2] and is as follows:

In every neighbourhood of a given state there exist states which cannot be reached
from the given state by an (a, i)-transition.

A number of results from this statement of the second law have already been proved
in [1] and some of these will now be stated. It can be shown that at any point in the non-
equilibrium system there exists T = T(6) > 0 and s = s(E, 0) such that

(4.12) h=Ts,

where T is the absolute temperature and s is the specific entropy. The total entropy §
may be.defined by

(4.13) S= [ gsav.
B
It follows immediately from the energy equation and Eq. (4.12) that
ou oy
(4.14) T—(—'a';)i, PT_E;::’ y—l,...,rx—l,

where p = u—Ts is the. Helmholtz free energy. It is now assumed that 6 can be replaced
by T as a state variable. For the elastic-plastic material

__ 0y _ 0y

(4.15) §= —a OkL = Qo JED
A further consequence of the second law is that

(4.16) $>0

for all (a, i)-transitions. Tt is also explained in [1] that if at least one of the rates of change
of the state variables does not appear in the constitutive equations, then a necessary and
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sufficient condition for material processes to comply with the thermodynamic theory
is that the global entropy inequality

(4.17) fest fg av- f P

holds for all conceivable processes.
Using the energy equation, the divergence theorem and the thermodynamic relations
(4.14), this is equivalent to the global inequality

(4.18) f v+ f %(giv,—
B B

where g is the temperature gradient with the components gy = T;.
Since w approaches zero as B collapses to a point, then a local inequality can be obtained
from Eq. (4.18) in the form

g
T av > 0,

(4.19) oWp—

For a material which has constitutive equations containing the rates of change of all
the state variables it is sufficient but not necessary that the inequalities (4.17)-(4.19) hold
for all possible processes. This is true of materials which can experience elastic-plastic
deformation.

5. A constitutive theory for isotropic elastic-plastic materials
The kinematics of isotropic elastic-plastic materials presented in Sect. 3 suggests that

an appropriate stress measure with which to work in the equations for yielding and plastic
flow is the deviatoric part s’ of the stress s. The yield surface is given by

(5.1 Sfsgr, T, %) = glsgr)—c(T, %) = 0
where % = x(n4), A = 1,2, ... and
(.2 #x=0 when D@ =0.

The parameters 7, depend on the plastic strain history and two possible choices for these
parameters are

(5.3) n = [ {DRDEYdt, 4, = [ sk, DR,

The constitutive postulate for D® is as follows:

(54) D(IFZ = G‘L(";ﬂh T; %, 'i'.:ﬂh j-‘) whcn af SHN'I' af T > 01 f= 0:

Frm oT
o . of
(5.5 D@ =0 when |dsyy vt 5T r=o0, f=0,

or <0,
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where the conditions (5.4) and (5.5) are said to hold during loading, neutral loading and
unloading, respectively. Clearly, the hydrostatic stress does not affect yielding or plastic
flow directly but it does have an indirect effect for large elastic strains. This indirect effect
vanishes in the limiting case of small elastic strains.

It is usually assumed that the plastic deformations are independent of the time scale
and therefore Gy, is a homogeneous tensor function of degree one in §x, and T. More-
over, if the constitutive equations for plastic flow are to be continuous in state space,
then G vanishes during neutral loading. Thus,

; g ., ac .
(5.6) D) = Hyr(sun, T, %) (Ta.é_NsMN""é’;"T))

during loading.

When f and % have been specified H is not arbitrary since it is necessary to satisfy
the condition f = 0 and in this case D} = 0. Further, the independence of the particular
time scale and condition (5.2) require that the 7}, be homogeneous of degree one in D).
It can therefore be shown that

5.7 lnﬂx; =1, Hg=0,
where
. _ Az DR
(58) X = W.
The constitutive equation for heat flux is
(5‘9) Q‘ b QI(EFK (] T! GN);

where Qx and Gy are defined by
(5.10) @ = ei FQ0r, Gx = F2g.

In this model of elastic-plastic materials the constitutive equations which hold during
loading contain the rates of change of all the state variables and so it is not necessary
that the entropy inequality (4.17) be satisfied for all conceivable processes. Nevertheless,
if the material properties are restricted in this way, then this is sufficient to ensure that
all possible processes of the material comply with the thermodynamic theory.

The global entropy inequality (4.18) now gives

o J‘L -2 Gl @
(5.11) f Ta'V+ T(gaw, i dav = 0.
B B
The local entropy inequality (4.19), Egs. (4.5), and (5.6) together yield
' a .y 3 > G
(5.12) sk Hgy, (_3?:: Sun-"é—;:'T) = QKT k>0

during loading. Thus, by considering arbitrary uniform distributions of temperature
for which Gx = 0, then

(5.13) Ske Her, > 0.
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This is the condition for positive plastic work. It also follows from the inequality (5.12)
that

(5.14) 0xGx < 0.

It should be emphasized that the inequalities (5.11)-(5.14) are sufficient conditions for the
constitutive postulates during loading to be consistent with the thermodynamic theory
but they are not necessary. So, this thermodynamic theory does not impose the restriction
that the plastic work rate be positive. This is consistent with the experimentally observed
Bauschinger effect and the fact that the yield surface need not always enclose the origin
in stress space.

Other authors have been able to include a negative plastic work rate within a thermo-
dynamic theory (see for example GREEN and NaGHDI[4] and KesTIN and RicE [5].) However,
unlike the thermodynamic theory presented in this paper, the theory in [4, 5] only permits
a negative plastic work rate for elastic-plastic materials exhibiting history-dependent
elastic properties.

During neutral loading and unloading the global entropy- inequality provides

e [QGe
(5.15) !TdV ] L >0

and the local inequality implies that

(5.16) 0xGx < 0.

The conditions (5.15) and (5.16) are both necessary and sufficient.
If the yield function is adopted as a plastic potential, then

_ og | og ., dc
o7 Dl = k as.m(as;m"‘" T T)
during loading.

Futther, if
(5.18) AL = G(T) «f'm

where «(T) is an increasing function of T and g is supposed to be homogeneous of degree
n in sk, then it can be shown that

1 i) g ., dc .
oT) 26 ng 9L \Ohan
ox
during loading.
It is easily deduced from Eq, (3.13) that for isotropic elastic-plastic materials
(5.20) SkL = Ri‘x]R_‘J?PU.

where gp;; = p,0;; and if p’ is the deviatoric part of p, then the yield surface becomes
(5.21) g(pi)—c(T,%) =0
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Here g is an isotropic function of p’ and can therefore be expressed as a function of J;
and J;, the two principal invariants of p’. Also, during loading the plastic flow rule be-
comes

- 1 og [ dg ., oc .
(522) aip = ( )

L v 7 Pmn— 55T
dc i) OPun oT
a(n 6" ng PU Pm

This theory is then equivalent to that proposed by LEE [6] for isotropic elastic-plastic
materials. It is perhaps worthy of note that the indirect effect of the hydrostatic stress
on yielding and plastic flow when finite elastic strains occur can be removed if in the
constitutive equations for yielding and plastic flow s’ is replaced by t' where t’ is the de-
viatoric part of the tensor t with components which satisfy

(5.23) oy = RR RiP1x,.
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