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On two phenomenologieal models of capillary phenomena 

A. BLINOWSKI (WARSZAWA) 

THE GllADIENT model of a capillary liquid is shown to yield the classical formulae both for the 
capillary pressure and for the saturated vapour pressure over a curved interface. This result 
is obtained as the first approximation and applies to a wide class of interface pometries, under 
rather general assumptions regarding the energy deQSity as a function of mass density and its 
gradient. 

Wykazuje ~, 2:e przy dostatecznie os6Inych zaloieniach dotycqcych postaci furikcji opisuMc:ej 
:zaldnmc .-o§ci enerJii od MStoki masy i jej sradientu, sracfientowy model cieay kapilamej 
prowadzi w pierwszym przybli2aliu do klasycmych wzor6w na cimienie kapilarne i na ~ 
ciinienia pary nasyconej od krzyvlizny powierzchni rozdzialu. 

JloJ<a3hiBaeT<:JI, '1'1'0 IIPH AOCft'l'O'IBO o6IIUU upeAIJOJIO>KeHWDC OTHOaft'eJibRO BHAI ~~' 
OllpeAeJIJIIOII{di UJIOO'IIOCrlt 3Repnot B 38BJ!CifMOC'rll C1't IVIO'l'ROC'rli MaCCbl J! ee ~eBft, 
a TaK>Ke arHOCII'I'eJIWIO reoMeTpKIC DOBepXBOCTH pa:JAeJDl, rp&AHeJrriiM MO~ ·JCaiDl1UipHOi 
>KJIAKOC1'I( I!pllBOAJft B DepBOM upJl6mm<eHIIII K KJIBCCS1Iea<BM ~PMYJJ:aM AM K8IDIJIJIJlPHOI'O 
~JieHIUI HAM ynpyrocTI( IDICb~emroro uapa II8A HCKpHBJieHHOit DO:&epXHOC'l'LIO. 

THE MEMBRANE model · of surface tension has proved to be very effective in the theory 
of capillary phenomena or, more precisely, in the mechanics of those phenomena; this 
phenomenological model allows for an effective description of a wide class of mechanical 
phenomena occurring in a liquid with a free surface, e.g. the capillary waves, droplet 
vibrations and many others. This model will remain for long a basic tool in investigating 
the mechanical properties of ft~ee surfaces what may be exemplified by the nonlinear 
solutions obtained in our times by CRAPPER [l] and describing the finite amplitude capil
lary waves. Some attempts were made to construct a more general description developing 
the fundamental ideas of that model by treating the interface .as a two-dimensional con
tinuum, and introducing the viscosity [2] or the dependence of the surface energy. on the 
radius of curvatUre (shell model) [3]. At the same time, however, attempts were repeated 
to apply a three-dimensional description in which the non-locality effect producing the 
capillary phenomena were accounted for, in the first approximation, by introducing the 
elastic energy as a function of the density gradient (or, more generally, of the second 
and higher strain gradients). Let us mention the papers by Young, Maxwell, La place, 
Korteweg, Van der Waals, Fuchs (detailed references may be found in [4D; among the 
more recently published papers let us mention those by MINDLIN [5] and · HAR.T [6]. 

Paper [7] may serve as an example of practical application of the gradient model 
when the capillary tube dimensions make the problem lie decidedly outside the region 
of applicability of the classical membrane theory. 
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424 A. BLINOWSKI 

The present author showed in papers [8, 9] that in the case of a certain type of simple 
molecular interactions the gradient theory may serve as an approximate description of 
non-local interactions. 

The first question to be -answered in' verifying a new theoretical model is whether in 
the cases which may effectively be described by the classical model, the generalized model 
leads to the same experimentally verified results. 

The fundamental result of the membrane theory is the Laplace formula 

(I) L1p = 2Ha, 

in which a - surface tension, L1p - pressure difference at both sides of the interface, 
H- mean curvature of interface. 

In papers [8, 11] the present author proved this fortnula to hold true in certain simple 
cases also for the gradient theory. The aim of this paper is to demonstrate that the gradient 
approach yields the Laplace formula (and also other results known from the classical 
theory of surface phenomena) under considerably less constraining assumptions concern
ing both the form of the energy density function depending on the mass density gradient, 
and the form of the interface. 

In papers [8, 9, 10] it was shown that in the absence of body forces the condition of 
equilibrium in the case of the gradient model of a liquid has the same form as in the 
classical case 

(2) T11,1 .= 0, 

while T is expressed by the formula 

(3) [ 
o(ew) ( o(ew) ) ] o(ew) 

TIJ =- e---ae-ew-2e af!!.k ,t ~~l-2afe,le,J· 

Here e - density, w - energy density (referred to unit mass), and I = e. , e. ,. 
Thus the relation (2) may be written in the form 

(4) _ (o(ew>) +2 (o(ew) e. a:) = 0 
oe ·' of ,a:, 

or 

(5) - o(ew) +2 (o(ew) eA:) = c = const. 
oe oi · .a: 

By substituting Eq. (5) into Eq. (3) we obtain in the case of equilibrium and in the absence 
of the body forces 

(6) 

Let us now consider a certain class of solutions of Eq. (5) and, namely, the class at 
which the surfaces of constant e are also the surfaces of constant I; this class contains 
the cases of spherical and cylindrical symmetry and, obviously, the plane case. For practical 
purposes we may confine ourselves to such cases in which the mean curvature of the 
equal density surface in the gradient zone is small as compared with the reciprocal ot 
the zone thickness (i.e. with 1/h, h being the apparent thickness of the zone outside which 
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the density gradient is negligibly small). It may be expected then that, the equal density 
surfaces will virtually always be parallel to each other in the sense of a common normal, 
i.e. if at a certain surface e = const, then also lgradel = const, that is I= const. 

Let us select such a coordinate system (x1 , x2 , x3) in which the I= Imax- surface 
is the x3 = s = 0 surface, and for all regions close to the surface the variables represents 
the distance from it (measured along the normal); the remaining two variables x1 , x2 

may be assumed arbitrarily on the surface P provided they remain constant along the 
normals. 

In the coordinate system introduced here Eq. (5) is written in the form 

(7) o(ew) 4 o2(ew) , 12 2 o
2 (ew) 12 2 o(ew) ( , 2H + 2Ks ') 

- ae+ oJ2 e e + oiiJe e + a/ e + 1+2Hs+Ks2e = c 

(cf. the Appendix 1), where e', e" denote the derivatives oefos and o2e/os2, respectively; 
His the mean curvature of the surface P, and K- the Gaussian curvature. 

In this manner the problem is- reduced to a one-dimensional problem. Equation (7) 
is meaningful only for s < R1 , R2 , R1 and R2 denoting the principal radii of curvature 
of surface P; however, as it was mentioned before, sufficiently far away from P the 
gradient of e is negligibly small and hence we can assume that for certain values of s = 

= a < 0 and s = b > 0, 

(8) e'(b) = o, e'(a) = o, ell(a) = o, e"(b) = o. 
On substituting these relations into Eq. (7) we obtain 

(9) _ o(ew) I = .- o(ew)l = c. 
oe a=a oe s=b 

Equation (7) multiplied by e' may be written as 

(10) (o(ew))' (2 o(ew) ,)' , 2 o
2(ew) , , 2 o2(ew_ ~ ,2 2H+2Ks _ , 

--a;;-+ are e+ o]2 ee +are 1+2Hs+Ks2 -ce. ,. 

Integration by parts within the interval (a, b) and application of the relations (8) yields 
b 

(I I) ( )I,= 2J o(ew) ,2 2H+2Ks ds 
e w+c " of e 1 +2Hs+Ks2 . 

a 

For e' = 0, w = w(e) = f p('f) de. Here p = p(e)- pressure. 
e 

Let us observe that 

(12) o(ew) J p J p e---ew = e -de+p-e -de =p oe e2 . e2 
and hence 

e(w+c)l: = - (e 0~;> -ew)i: = p,-p., 

b b 

(13) - = 2H r 2 o(ew) '2 1 +Ks/H d "' 2Hf 2 o(ew) '2ds 
p, Pa .. of fJ 1+2Hs+Ks2 s- of e . 

a a 
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It was shown in [8, 11] that the right-hand integral of Eq. (13) for a plane surface may 
be interpreted as the surface tension; also in the general case on the basis of the defini
tion given, for example, in the paper by RusANoy [12] 

b 

(14) ·U = j (T,- T,.)ds, 
a 

(where T, and T,. are the respective tangential and normal stresses), we obtain with #the 
aid of Eq. (6) 

b . b 

(15) a= J{l!(w+c)- [ (!(w+c)-2 O(~;) e·•]}ds = 2 J O(~;) e''ds. 
a a 

Hence Eq. (13) is reduced to the classical Laplace formula in the same approximation in 
which gradellgrad/, in which the integral discussed is independent of the shape of the 
surface I= Imau and in which Eq. (13) was derived. 

It is shown in [11] that in the case of spherical symmetry a good approximate formula 
is obtained for the dependence of the saturated vapour pressure over the curved sur
face on the radius of curvature. The procedure employed there may be transferred, al- · 
most without alterations, to the more general case considered here. The expre~ion for 
(we)l1 =coost is prescribed with the accuracy up to an additive constant; let us select a ref
erence value eo < e., e. being the saturated vapour de~sity, so that ea < e1 • Then 
Eq. (9) may be written as 

(16) 

that is 

(17) 

or 

(18) 

fib 

f _!_ dp(e) de= o. 
e de 

fl, 

The symbol tlpffie denotes Op~, I) I , and from Eq. (13) it follows that 
e r=o 

(19) p(e.)~p(e,)-2Hu = o. 
Denoting the expressions (18) and (19) by F(e., e11 , H) and c:P(e;, (!,,H), res~ctively, 

and disregarding the dependence of u on H, we obtain 

:~ = 0' ::. = :. : 1 •.•. · ::. = - :. : 1.: ... 

:: = -2a, ::. = : '·=•.' : = - : 1 •.• ,. 

(20) 
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The formula for · differentiation of implicit functions yields 

oF afP oF ofP 

(21) 

whence 

(22) 

that is 

(23) 

Let us denote by p,(H) the density of saturated vapour at infinity, remaining in equi
librium with the fluid for a given curvature H. Since p, is almost independent of H, we 
may write 

(24) 

From Eq. (23) it follows 

(25) 

and hence 

dp, 2u 
dH = - 1-(!6/(!, • 

The value of (!,(H) differs but slightly from e,(O), so that 

dp. 2u 
dH ~ - 1- (!6/(! • . 

Finally, 

(26) 

In the same approximation in which the formulae (19), (26} hold true, the maximum 
gradient surface must obviously be at the same time the surface of equal mean curvatures. 

A more accurate analysis of the solution (15) seems to be impossible without the 
information concerning the form of the function w = w(e, P); fl,owever, Eq. (13) suggests 
that once the functio~ ue known, we can attempt to investigate the higher approxima
tions corresponding to the shell model of surface tension, i.e. such a model of the surface 
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of separation in which u is assumed to depend on the shape of the surface; we can then 
analyse the orders of the effects and decide upon the problem of applicability of the shell 
model. 

Appendix 

Equation (5) may be written in the form 

(AI) a(ew) 2 a2(ew) '" . 4 a2(ew) '" Jm 2 a(ew) '1 -ae+ aJae e.,e."g + aJ2 e.i}l?.kl?.mK g + ---are.iJK . 

In the coordinate system assumed here e. 3 ::/= 0, e. 1 = e. 2 = 0, while g 33 = 1, and hence 

(A2) 

By introducing the coordinates u« (ix = 1, 2) on the surface P, the position vector may 
be written as 

(A3) 

the symbol 0 referring to the values taken at the surface P. The base vectors are 

ano _8 
e« = eoiX +s-a- = eoiX + sbOIX/1 eo, e3 = - n0 , 

UIX 
(A4) 

whence 

(AS) 
g«fl = g OIX/1 + 2sb0«fl + s2 bO«ybbth 

K33 = 1, KJIX = 0, g 3
« = o, g 33 = 1. 

The Christoffel symbols are given by 

(A6) J 3} aea. 
\a.fJ = - auP n, 

The assumption of parallelism of the equal density surfaces yields e. a. = 0, and hence 

(A7) ik jm _ _ (> (> _ " 12 ( 
a

2 { 3 } { a. } ) ( a ) 
2 

(>,lj(>,A;(>,,.g jg - (>,33(>,3(>,3- as2 - 33 (>,3- 33 (>,IX 7fi - (> (> ' 

(AS) I!.J•gi• = ( a:J,%x> -~j~} :;j) gi• (1, k = 1, 2, 3). 

From the same assumption it follows that 

(A9) 

and 

(A10) jt - . (> (> . lk - (> IZ{J a2 { 3 } a a2 { 3 } 
l?.itK - as2 - ik fug - as2 - a.{J g . 

http://rcin.org.pl



ON TWO PHBNOMENOLOOICAL MoDELS OF CAPILLARY PHENOMENA 

Applying the relation (A6) we obtain 

(All) - {:p} = - :~ · 8 = ;;. ·e.= -hop, et· e,., 

e' · e" = e~ · (eO«+mo111 et). 
We can always assume i«~J = d«/1, and then 

(A12) 

and 

(Al3) a~ 
ozl . n = -boll/1-sbop.,bb«· 

Let us now select the coordinates "" so as to render the matrix b«P diagonal. Then 

1

1 +2sb11 +s2b~t 0 I 
(A14) det IK«PI = 0 1 .,_b 2b2 , 

+~. 22+s 22 

and thus 

(A15) g12 = 0. 

From Eq. (All) we also obtain 

(Al6) 

and, finally, 

(A17) hou +2sbou bo22 +ho22 
1 +s(bou +ho22)+s2hou bo22 

2H+2Ks 
1+2Hs+Ks2 ' 

what leads to the result 

(Al8) 
2H+2Ks 

e.JtK1" = e" + e'. 1+2Hs+Ks2 
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