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Limit analysis of thick and thin circular plates
subjected to transverse pressure

Notation

K. S. DINNO (BAGHDAD) and M. ROBINSON (MANCHESTER)

Two LOWER bound analyses for the calculation of the limit transverse pressure on simply sup-
ported and clamped plates are presented: a thick plate analysis which takes account of all stresses
and which is based on the von Mises yield criterion, and a thin plate with shear analysis which
ignores the through thickness direct stresses and which uses a close approximation to the true
thin plate interaction yield surface. The lower bound limit pressures are optimised using a non-
linear programming method. Results for the different ranges of plate radius to thickness are
compared between the two analyses and with results by others.

Przedstawiono dwie dolne oceny no$noéci granicznej wolno podpartych i utwierdzonych plyt
obcigzonych poprzecznie; dla plyt grubych oceng znaleziono uwzgledniajac pefny stan na-
prezenia i przyjmujac warunek plastycznoéci Misesa; dla piyt cienkich pomini¢to naprezenia
normalne w kierunku prostopadiym do piyty, a za warunek plastycznosci przyjeto pewna apro-
ksymacje $cislego warunku obowigzujgcego dla tych piyt. Najlepszq dolng oceng

okreélono metoda programowania nieliniowego. Obliczone dla réinych stosunkéw promienia
plyty do jej grubosci wartoéci obu ocen poréwnano z wynikami uzyskanymi przez innych auto-

W.

IIpencraBnens! gBe HHYKHHE OLICHKH IMpefenbHON Hecyme#t cnocoGHOCTH cBOGOXHOIOANEPTHIX
H SaKPEIUICHHBLIX IUTHT, HATPY)KCHHBIX MONMEPeYHBIM 06pasoM; A TOJCTHIX JUTHT OLCHKR
HalificHa, YYMTBIBaA MOJHOE HANDAKECHHOE COCTOAHME M NPHHAMAA YCIOBHC ILIACTHYHOCTH

» JU1A TOHKHX IUTHT NPEHEOPEraeTCA HOPMANEHEIME HANDSYKCHUAMH B NEPICHTHKY AP
HOM HAIPABJICHHH K IUIMTE, 8 YCIOBHE IUIACTHYHOCTH NMPHHATO B BH/AC HEKOTOPOH AmIpoKCcH-
MAIHH TOYHOTO YCJIOBHA, 06A3BIBAIOMICTO MNA THX IUMT. Hamnmywuan HIDKHAA OLCHKA He-
cylelt crocoGHOCTH ONpencNeHa METOAOM HeNMHEHHOro MporpamMmppoBanusa. PaccumraHHble
JNIA PasHBIX OTHOLICHHI! PagHyca IUTHTHI K €€ TOJNIHHE SHAYCHHA ODOHX ONEHOK CPABHEHBI
Pe3yNLTATAMH NOJYUCHHBIMH APYIHMH aBTOPaMH.

ro ratio of plate radius to thickness,
r ratio of radial coordinate to plate thickness,
z ratio of through thickness coordinate to plate thickness,
P pressure,
« ratio of radius of loaded circle to plate radius,
o, yield stress in simple tension,
p* dimensionless pressure = a?rdp/do,
g, ratio of radial stress to yield stress in simple tension,
op ratio of circumferential stress to yield stress in simple tension,
o, ratio of transverse stress to yield stress in simple tension,
Ts;, = T,y Iatio of shear stress to yield stress in simple tension.
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@, transverse shear force,
M, radial bending moment,
Mpy circumferential bending moment,
qr = Q,/0, dimensionless shear force,
m, = 4M,[o, dimensionless radial bending moment,
mg = 4Mpy/oo, dimensionless circumferential bending moment (N.B. thickness of plate =
= unity),
x vector of stress parameters,

Aums Bew, Co»  independent variables of stress vector,

F, yield function.
Other symbols are defined as they appear in the text.

1. Introduction

THE THEORETICAL limit behaviour of rigid plastic thin isotropic circular plates has been
studied by several authors [1-4]. HOPKINS and PRAGER [1] evaluated the limit load for
simply supported and fixed circular plates subjected to circular and annular loads for
a Tresca yield condition by ignoring the effect of shear on yielding. HoPkINs and WaANG [2]
also solved the same problem for circular loading, using the von Mises yield criterion,
again neglecting the effect of shear force. The resulting differential equilibrium equation
is nonlinear and is integrated numerically. DRUCKER and HoOPKINs [3] discussed the case
of a circular plate with overhangs for uniform and concentrated central loads using the
Tresca yield criterion, again ignoring shear effect. SAWCzZUK and JAEGER [4] solved the
problem of circular plates subjected to line loads and annular plates subjected to uniform
load using a yield condition that ignores the interaction between shear and bending.

The shear-bending interaction in circular plates was studied by BRoTcHIE [5]. The
Tresca yield criterion was used, but as a result of the assumed shear stress distribution
across the plate thickness the analysis was only approximate. SHAPIRO [6] proposed a para-
metric form for the von Mises yield criterion for an arbitrary thin shell and derived
general relations in an integrated form. SAWCZUK and Duszex [7] examined the effect
of shear force on the load carrying capacity of plates by considering a simply supported
circular plate under uniform circular loading. Two alternative yield conditions were used,
a limited interaction yield surface between moment and shear force for a Tresca material
and a linearised interaction surfacé for a von Mises material. The method presented, in
spite of taking shear into account, ignored the effects of the direct transverse stress (like
all the previous analyses). As such, it is not strictly applicable to thick plates.

In this paper two separate analyses will be presented. The first is an analysis which,
in principle, applies to plates of any thickness but which in the form given is particularly
suited to thick plates. The second is a thin plate analysis which takes into account the
effect of shear on yielding. Both analyses are lower bounds for a rigid plastic material
and use a nonlinear optimisation method to arrive at the optimum stress fields and
their associated limit loads. The results presented are compared with the thin plate —
without shear results by HOPKINS and WANG [2] and with the thin plate with shear results
by Sawczuk and Duszex [7].
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2. Thick plate analysis

2.1. General

The method of analysis adopted here is that proposed by DINNO and GILL in a pre-
vious paper [8] in which it was formulated as a general method for shells of revolution
and was utilised in determining the lower bound limit pressure for a thick cylindrical
vessel with thick torispherical ends. This method considers a three-dimensional stress
formulation in terms of stresses rather than stress resultants and uses a basic yield criterion
of the material, assumed to be von Mises. The stress field takes full account of the trans-
verse and shear stresses. Some of the stresses are expressed in terms of an independent
set of variables and the remaining stresses are found from equilibrium and boundary
conditions. Using a nonlinear optimisation process, namely the Sequential Unconstrained
Minimisation Technique due to CARROLL [9], the variables are chosen to maximise the
lower bound load with the constraint that the material yield criterion must not be violated
anywhere in the plate.

For an element within the thickness of an axisymmetric plate loaded axisymmetrically,
the only non-vanishing stresses are a,, 0, 0y and 7, = 7.,. The equations of equilibrium
are

da, " 0—0y , OTn

@D R 7z =0
da; 0T |, Tpr _
(2.2) 3z + o + e 0.

The yield condition takes the form
F,<1,

where F, is the yield function. Using the von Mises yield criterion the above inequality
becomes

2.3) 3th+ai4ai+ai—a,0y—0,0.—apa. < 1.

Of the four stresses it turns out to be most convenient to postulate 7,; and @, and to deter-
mine a; and a, in terms of them. The stresses 7,; and a, are expressed in terms of a finite
set of parameters x (which includes the applied load intensity p) and are expanded as
polynomials in the radial and the through thickness coordinates.

2.2. Simply supported circular plate

The following expression for 7,, is assumed to apply over the whole plate:

ns ms

(2.4) =) D Am (1= +C()z(1-2),

ne=l m=1

where A, is a group of variables which form part of the x vector in the optimisation
and C(r) is a function to be determined later. This expression for 7,, satisfies the boundary
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conditions at z = 0 and at z = 1. Substituting for 7,. in Eq. (2.2) and integrating,

@5 d=- ZZA IP'm“l(""‘ﬂ'l)(irt+l n+2) "

Aaml m=1
[c'( )+ C(’) (32- - —3—) +D().

Noting that at z = 0, @, = —p(r) where p(r) is the distributed load on the plate (counted
positive along the positive direction of z), we get D(r) = —p(r). Further, with o, =0
at z = 1 (free boundary) and by integrating and noting that z,, = 0 at r = 0, C(r) can be
determined. This finally leads to

ns ms

_\ ” 6z1-a" | _ 62(1-2) [
(2.6) r.z‘%‘m-l -'I z(1-2)— (+1)(n+2) ] fp(r)rd{
and
O O i : vy
@7 a==,§.%d"[_r (mH)(n-*-l ""’2)2.
+ DD O zz)z’] +3-297~11p().

For the radial stress @, a discontinuity is allowed within the thickness at z = a. Such
a discontinuity is statically admissible as it affects only ¢, and @, and its inclusion permits
a better utilisation of the cross section to support radial and circumferential bending
moments.

Fora = z 2 0, o, is postulated as

Qs us

28) b= O D B (ro—r)+ V‘Bw(ro-r)
=t =] u-n
Forl02z>a )
2.9 - 2‘2 c,,z'(ro-r)ch.,,(ro—r)
q=lo=] v=l

These distributions for ¢, satisfy the boundary conditions at the simply supported edge.
At such an edge (r = ro) it is assumed that ¢, = 0 and that the vertical external forces
are supported by the shear reaction stress 7,.(r = ro), (see Fig. 1). From equilibrium it
follows that for a 3 z=0

s _ 6(1-22)
(210) o = ZA r ["2' e L )

=] m=1l

—6(1—Zz}fp(r)rdr+2 Z B2 [—vr(ro—r\""'+ (ro—r)’]

g=1 v=1

+ Z By, l"”r("o-")’_l + (?o-?)']

vel
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Load :'nfemigr p «h
EXER

Thin plate element Thick plate element
Gr
s !
o f Tz
e ¥ :
Clamped support Simple support
Nature of stresses at supports

Fi1a. 1. Notation, elements and support conditions.

andforl0=>z>a

ns m3

2.11) o= 2 2 A ™1 [nz'"‘—(n+l)z‘—

=] m=]

6(1-2z)
(+1)(n+2)

—6(1-22) f p(ryrdr+ 2 2 CpZ[—vr(ro—r)""'+(ro—r)']
0

g=1 v=1

+ ) Col=0r(ra=r)'*+(ro=r)1].

2.3. Clamped circular plate

The stresses 7,; and o, follow the same boundary conditions as those for the simply
supported case. Hence the expressions (2.6) and (2.7) for 1,; and @, are valid for the pres-
ent case. The clamped end is assumed to provide a bending constraint but the inplane
resultant force is assumed to be zero. (The nature of the stresses at the support are shown
in Fig. 1). As in the case of the simply supported plate a discontinuity in @, is allowed at
£ = a. g, is postulated as follows, which satisfies

a 1
(2.12) [ade+ [adz=0 at r=ryg
0 a
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forazz=0
gs vs
(2.13) @ = D Bur'+ S’Bo,r +ZB,02'+B.-_.0
g=1v=1 !.'ul g=1

Consequently, from equilibrium

B g 1 (1-22)
Q14  d ZZA ; ’[nz" +HErDE-6 ot

n=1l m=1l
qs vs
~6(1-22) f p(r)rdr-i—Z D Buw+ )2 +ZB°,(v+nr
g=1 ov=l v=1
1
+ Z Byo 2+ Boo;
g=1
forl0=>z>a
gc vc ve qc
(2.15) - ZZ‘C 2r°+ Y Cor®+ Y, Cooz+ Coo.
=] p=1 v=] g=1

Substituting in the boundary condition (2.12) defines one of the C variables in terms of
the others and the B variables. If, in particular, Cyo is chosen to be eliminated, its value is

given by

o aitt a|+1
@10 cwm-ig 3 Sn gt Saners Sina

g=1 v=l
+3°,a+22<:,,[ “"l]r.,+2q,.(1—a)ro+20.o[l""'“]}.
g=1 v=l
Finally,
@17 ZZA r"'“[nz"“ —(n+1)2"— éﬁ%
n=1 m=l
—6(1-—2z)fp(r)rdr+22C,(v+l)z'r +2Cg,(v+l)r"
g=1 o=l um=l
+ Coz'+C.m.
2.4. Computation

As stated earlier the Sequential Unconstrained Minimisation Technique due to CARROLL
[9] was used for the optimisation. The variables in the x vector were optimised in order
to determine the highest value of the lower bound limit load subject to the yield constraint
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(2.3) applied at pre-chosen points in the domains of the plate. For the purpose of a typical
computation the load p(r) was taken as uniform = p. Figures 2 and 3 show results for the
simply supported and the clamped plates, respectively.
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In each figure the dimensionless limit load (as a ratio of the calculated limit load to
the thin plate —without shear limit load based on a von Mises yield criterion) is plotted
against ro, the radius to thickness ratio of the plate.

For the parameters investigated here the number of variables were: ns = 6, ms = 6,
gs =4,vs =17, gc = 4 and vc = 7. The number of constraint points across the thick-
ness was 12 (6 for zone @ > z > 0 and 6 for zone 1.0 > z > a) and the total number o
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constrained points for the plate was 120. The optimum value of a for the cases considered
lay between 0.45 and 0.55.

At the end of the optimisation process the yield function was calculated at a larger
number of points (usually 400) in order to survey the extent of yield violation. Yield
violation was no more than about 3% for all values of r,. A suitable reduction factor
was imposed on p to produce a safe value of p for which no yield violation occurred.

3. Thin plate with shear analysis

3.1. General

The lower bound analysis is formulated in terms of stress resultants. The analysis
is made for a simply supported and clamped circular plate of unit thickness and radius
ro. For simplicity the loading is assumed to be a uniform pressure p acting over a central
area of radius ary (see Fig. 1) where 0 < a < 1.

For an axisymmetric stress state the non-vanishing dimensionless stress resultants are
m,, mg and g,. These must satisfy the following thin-plate equations of equilibrium

d _p*s
(3.1) = (sq) = e
(3.2) s%- +m,—my = 4rysq,,

where s = r[ro and p* is the dimensionless pressure given by p* = ardp/a,.
3.2. Formulation of stress resultants
Integration of Eq. (3.1) gives
(3.3) q,=%p*r—ﬂ°, where =-¢i,- if s<a and % ifs>a
Equation (3.2) gives
(3.4) mg =5 % +m,—2fsp*.

The bending moment m, is approximated by parabolas in a series of zones. The dimen-
sionless pressure p* is taken as the first component of the x vector, the rest of which de-
scribes m,.

Let the ith zone be defined between S = S, and § = §;,, and let m, = X, at § = S,
and X, at § = §;,,. Thus in this zone m, may be written as

S-S S-8
(3.5 Xzi“(si—s:.—')'i'xztﬂ(s'sr) (S"Sl+l)+le+2‘s(-‘T'_:%;‘-
From Eq. (3.4)
— 28-S
(4. my = Xy S0 1 B2 1)+ SiSis M Xaran b
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If the number of zones of equal length used in the range 0 < § < « is n, and in the
range & < S < 1is n,, then for a simply supported plate with m, = 0at S = 1, the variable

XZIKA} 2n,42 = 0.

3.3. Yield condition

For a thin plate theory it is necessary to maké the kinematic assumption that plane
normals to the plate middle surface remain plane (though not necessarily normal). It
then becomes possible to obtain a yield condition in terms of m,, my and g,. Defining
Qw = m?+mj—m,ms and Q, = 3¢7, it can be shown that for the exact thin plate yield
condition Y, =1 (with associated limit load Py), Y, is a function of Q. and Q, only [6].
If we define Y, = Q.+Q, and use Y, = 1 as an approximation to Yy, and if P, is the
associated limit load, it can be shown [10] that 0.955 P, < P, < P,. A very good approx-
imation for Y,, accurate to 1/2%, was suggested by Ivanov (see [10]) and is given by

0.250,0m
Qut0On= 5. 10430,
Y, is used during the optimisation and the Ivanov yield condition is used afterwards for
a final check on the stress field. If required a reduction factor is imposed so that the Ivanov
yield condition is nowhere violated.

= 1.

3.4. Computation

The principle of computation used here is exactly that used for the thick plate ana-
lysis. The yield function is constrained at, say, nc points in each zone. At the end of the

Pl
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optimisation process the approximate yield surface ¥, and the almost exact Ivanov yield
function were evaluated at a large number of points (about twenty for each zone) and
a suitable reduction factor for p imposed. This is 1/)/ Y, Where Y., is the largest value
of the Ivanov yield function (since this is quadratic in the stress resultants).

The results for this analysis are presented in the form of four graphs. The first two
are for fully loaded plates (¢ = 1) for both the simply supported and clamped cases.
These are shown in Figs. 2 and 3 which enable direct comparison to be made with the
thick plate results. The second two are for the dimensionless pressure p* against « for

o
32‘*

o

3

28

Clamped plate

X fpe=8§0
o =10
+ =5
o = 2
a = 1
™ Straight lines are "pure shear” lines
1 ! 1 1 1
0 02 04 06 08 10 a

F1G. 5.

both simply supported (Fig. 4) and clamped (Fig. 5) cases. These are for values of rg
(ratio of plate radius to thickness) of 1, 2, 5, 10, 50 and for « from 0.025 to 1.0.

The number of zones used in each of the regions 0 < S< ¢ and < § < 1 was 10.
This was found to be optimum and very little difference was detected in the value of p*
when the number of zones was increased from 10 to 30. The number of constraint points
nc in each zone was 5. This was found to be adequate and led to minimal yield violation
elsewhere.

4. Discussion

Considering the lower range of ro, say ro less than 2, the thick plate analysis is more
relevant than the thin plate with shear analysis since it takes account of the through thick-
ness stress o; which has a significant value at this range of ro. Notwithstanding this, it is
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still worthwhile to examine the shear effect at this range of , for the thin plate formulation.
When ro is very small, failure may be visualised to occur by pure shear at the edge with
bending moments being very small. For such a situation we have

2707 g G o Gmax = APUTS.

With g,,. being limited to 1/)/3 for a von Mises material the pure shear failure line is
given by

(4.1) p* = 2aro/y/3.

This line is indicated on Figs. 2 and 3 where it is seen to pass through the origin and
represent, as is to be expected, an upper estimate of the collapse load. The pure shear line
is also plotted in Figs. 4 and 5.

Of course, it can easily be seen that this thin plate “pure shear” line represents an
upper bound on the more accurate thick plate result, considering 7,. alone. In order to
obtain the g, required by the thin shell analysis, one would have to have 7, = maximum
value from top to bottom of the shell, whereas it must vanish on both surfaces. If d7,./0z
is large near the surfaces, this induces rapid changes in o, as can be seen from Eq. (2.1),
and hence o, contributes to the yield function.

Secondly, for small ry the o, contribution becomes dominant. For, since p/o, = p*/a?rd
must remain finite as ro — 0, it follows that p* as a function of r, is of the power 2 in the
neighbourhood of r, = 0. Therefore, a graph of p* against r, has a zero slope at the
origin for the thick plate analysis. This differs strikingly from the “thin plate with
shear” results.

Comparing the behaviour of the simply supported and clamped plates, it is seen from
Figs. 2 and 3 that both the thick plate and thin plate with shear collapse pressures rise
more slowly towards the Hopkins and Wang thin plate without shear values for the clamped
plates than for the simply supported plates. This is to be expected since taking the shear
stress 7,; into account uses up a considerable portion of the allowable limiting value of
the yield function, particularly at the clamped end, and thus reduces the section’s capac-
ity for supporting the radial stresses o,. This argument which applies to the thin plate
with shear case as well as to the thick plate case means a reduction in the ability of
the plate to support a clamping moment relative to the no-shear case. The simply supported
plate for which the radial stresses at the end, and hence the clamping moment, are zero
is naturally less affected by allowing for shear.

Although the method for the thick plate analysis is perfectly general and can, in princip-
le, be used for any plate radius to thickness ratio, it is observed from Figs. 2 and 3
that the thick plate results are nearly all lower than the thin plate with shear results. The
difference at high ro is mostly due to the fact that in order to obtain a stress distribution
where the whole of the plate is nearly at yield, very high order polynomials would have
to be used (or an alternative formulation of the stresses). This in turn would require a far
larger number of constraint points and create problems with computer storage. In spite of
this difficulty, dimensionless pressures of 0.9 have been achieved at high r, which is con-
sidered fairly satisfactory.

As for the thin plate with shear results, it is seen from Figs. 2 and 3 that these tend
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towards the thin shell without shear lines for increasing values of r,. The agreement
between the two at values of r, > 25 has been found to be almost exact.

The plots of p* against « for the thin plate with shear case are shownin Figs. 4and 5.
For comparison purposes the no-shear curves due to Hopkins and Wang have been super-
imposed. The pure shear lines have also been plotted for most values of r,. From these
plots it is seen that if ro is not very small, a straight line along the pure shear curve up
to the no-shear curve and then a continuation along the no-shear curve appears to be
a good upper bound approximation to the true behaviour of both simply supported and
clamped plates.

Comparing the results obtained here with those by Sawczuk and Duszex (7], one
must be careful to note the differences between the yield conditions employed in the various
analyses. Sawczuk and Duszek used a separated shear and bending action based on .the
Tresca yield criterion. They also used linearised approximations to an interaction surface
based on the von Mises yield criterion. As such, quantitative compa.ison of results is
rather difficult. In particular, the pure shear case for « = 1 and ry = 0.5 according to
the present analysis gives p* = 0.577 which, in Sawczuk and Duszek’s notation, corre-
sponds to S/2nM, of 1.155. The corresponding values obtained by Sawczuk and Duszek,
as shown in Fig. 6 of their paper, are about 1.5 and 1.95 depending on the yield condition
employed. Notwithstanding this, the qualitative similarity between Fig. 2 in their paper
which shows a plot of S/2wM, against « for a simply supported plate and Fig. 4 in this
paper is evident. Once again, however, as Sawczuk and Duszek remark in their paper
their results do not strictly apply to thick plates as a result of ignoring the influence of a,.

5. Conclusions

Two lower bound analyses for the calculation of the limit transverse load on simply
supported and clamped circular plates have been presented: a thick plate analysis which
takes full account of all stresses including the through thickness direct stress, and a thin
plate with shear analysis which ignores the through thickness direct stress. The thick
plate method of analysis, although perfectly general and in principle applicable to plates
of any thickness, is found to be more useful in the lower range of r, (i.e. ro < 4) than in
the higher range of r, for which range further investigation of the stress formulation is
needed. The thin plate-with shear results which are particularly applicable in the middle
and higher ranges of r, have been found to converge to the thin plate without shear results
by Hopkins and Wang at large values of ro. From the analyses presented it is seen that
the load carrying capacity of plates having a small radius to thickness ratio is drastically
smaller than estimates based on ignoring shear and direct transverse stresses.
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