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Creep scatter as an inherent material property
H. BROBERG and R. WESTLUND (GOTHENBURG)

STATIONARY creep with inhomogeneous material properties is studied. The inhomogeneity
may arise owing to randomly varying material parameters along the specimen, e.g. due to the
manufacturing process, or owing to random variations of the temperature along the specimen.
The strain rate is described by a stochastic process and compared with experimental observa-
tions. This stochastic process is applied to an ordinary creep test specimen.

Rozpatrzono ustalone pelzanie materialu o niejednorodnych lokalnie wiasnoiciach. Niejedno-
rodnoé¢ ta moze byé wynikiem losowych réinic we wlasnoéciach materialu, np. w wyniku
zastosowanego procesu technologicznego lub tez losowej zmiennoci temperatury wzdhuZ probki.
Opisang stochastycznie predko$¢ deformacji poréwnano z danymi doéwiadczalnymi, otrzyma-
nymi w typowych badaniach pelzania.

PaccmoTpeHa YCTAHOBHBIIIAACA T0/ISY9eCTh MATEPHATA C JIOKAILHO HEOMHOPONHBIME CBOHCTBa~
MH. DTa HEOMHOPOAHOCT: MOYKeT ObITh PeayJIETATOM CTyUaliHBIX PasSHHIl B CBOHCTBAX MaTepHa-
J1a, HAIPHMEP, B Pe3y/ILTaTe NMPHMEHEHHOIO TEXHOJIOTHHYECKOro Npolecca, KM e cydaiizoro
H3MCHeHHA TeMIepaTypsl BAOab 00pasua. BoIuMc/ieHHAA CTOXACTHUECKH CKOPOCTH MOJISyde-
CTH CpaBHeHa C IKCTIEPHMEHTATHHbLIME HabmoneHmAMA. Paccykaenma Kacarorca ofpasmos
IIPHAMCHAEMBIX B THIIHYHBIX HCC/ICJOBAHHAX NINOJI3YYCCTH.

1. Introduction

DURING creep testing at constant stress level the scatter in creep deformation rate and
creep rupture time is large for most materials. Experimental observations of local varia-
tions in the deformation rate are presented by GAROFALO [5, 1965]. He observed different
creep rates at different locations of the specimen. WALLEs [11, 1967] studied the scatter
between different test specimens. This scatter was given a thorough statistical treatment.

Tests presented in this paper show a good agreement with the tests carried out by
Walles, although quite different materials were used.

The scatter in creep deformation rate may occur due to uncontrolled variations in
load, temperature, specimen geometry or material creep properties or due to unaccounted
effects such as bending or friction. HAYHURST [7, 1974] has shown that this scatter can be
reduced, but not eliminated, through rigorous control of the test situation. The remaining
scatter must be explained as an inhomogeneity in the material.

BIORKENSTAM [l, 2, 1973, 1974] studied the scatter due to load variations. He consid-
ered a load that consisted of a constant part and a superimposed small randomly varying
part. The expected values and the variances of the stresses and the strain rates for some
structural elements were determined. The material was assumed to obey the Hooke-Norton
constitutive equation.

Creep bending of a circular plate in a random temperature field was analysed by SOONG
and CozzARELLI [10, 1967]. They considered a temperature distribution that consisted
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166 H. BroBerG AND R. WESTLUND

of a constant part and a superimposed small part with random variations in the radial
direction. The influence of the temperature variations on the moments and the lateral
deflection was analysed.

In the present study the scatter will be assumed to be due to a spatial variation of
material parameters. The material is assumed to obey a modified Hooke-Norton consti-
tutive equation, as suggested by BROBERG [3, 1973]. The variation is expressed as a stochastic
process in space. Steady state creep of an ordinary test specimen is analysed. The expected
value and the variance of the creep strain are calculated.

2. Properties of creep scatter

Due to inhomogeneous material properties the local strain rate £(x) is not consant
(x being the axial coordinate). Experiments where the rate of elongation 4 over a certain
gage length L is measured give the mean strain rate

- L
@.1) b % . %fé(x)dx.
0

For different specimens at the same stress level the mean strain rate shows a scatter that
originates from variations in the local strain rate &(x).
If the material is assumed to obey Norton’s creep law (a, being a standard stress)

@2) B = 5 (7")

then the scatter originates from &, and n.

Observations from a number of creep tests, c.f. WALLEs [11, 1967) and BROBERG (3, 1973],
are presented in Fig. 1. Here the mean, a confidence interval and distribution of the measur-
ed strain rate are presented. The shape of the distribution function shows no noteworthy
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Figa. 1. Scatter under steady state creep conditions.
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dependence on the stress level, i.e. at a change of stress level, state S, to state S,, the
strain rate is changed as a parallel translation with the mean characteristic.
Walles has shown that the scatter is log-normal distributed, i.e. normal distributed
in log &, /loge. The notation log in the present paper designates the natural logarithm.
From these observations it follows that the scatter originates from variations in a,,
and that n can be treated as a constant.

3. Model material

It is assumed that experimentally-observed steady state creep rates can be represented
by the relation

G.0) by = 8,Cy, (-a"-) .

Here £, and »n are material constants and C is a random variable that represents the
scatter between different tests.

If the same creep test machine and the same batch of materials are used for all the
creep tests, then C, will be dependent on the local properties of the specimen only. Since
the strain rate is observed to be a log-normal distributed, then C; is considered to be
log-normal distributed as well.

For constant temperature of the specimen the scatter in creep data is considered to
originate from randomly varying material parameters in creep. The material is assumed
to obey the modified Norton cieep law

(3.2) &o(x) = &,C(x) (70)-,

where C(x) is a stochastic process along the specimen. For the ideal scatter-free material
Cix)=1.
From Egs. (2.1), (3.1) and (3.2) it follows, for steady state creep,

L
1
3.3) C=1 a]' C(x)dx.
Hence
(3.4) E[C(x)) = E[Cu,
(3.5 Var[C(x)) # Var[CL).

Here E represents the expected value, and Var the variance, of the stochastic process and
the random variable.

The stochastic process C(x) is assumed to be log-normal distributed, i.e. log C(x) is
assumed to be normal distributed. Moreover, C(x) is assumed to be stationary and ergodig,
hence the expected value and variance of log C(x) are independent of x and the autocor
relation of logC(x) is a function of the difference between the two x-values considered.
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168 H. BROBERG AND R. WESTLUND

The ratio &/} is chosen such that
(3.6) EflogC(x)] = 0,
3.D Var(log C(x)] = s*.
It is assumed that the stochastic process is of Markov type and that autocorrelation, as
a consequence, can be expressed as
(3.8) Riogc(xo0) = s?e™P e,

Here x, is the distance between the two points considered and f is a material constant.
The statistical properties of C(x) are deduced from Egs. (3.6), (3.7) and (3.8) as

(3.9 E[C(x)] = €"]2,
(3.10) Var[C(x)] = €(¢"=1),
(3.11) Re(x0) = exp[s?(1+e~Fixel)].

All the calculations are performed in the appendix.

Typical values of the variance s2 are 0.1 or less for specimens from the same material
batch. Thus the exponential functions in Egs. (3.9), (3.10) and (3.11) can be expanded
in a Taylor series

3.12) E[C(x)] = 1+5%[2+0(s*),

(3.13) Var[C(x)] = s2+0(s%),

(3.14) Re(xo) = 145%(1 +e7P1*e) +0(s*).
Moreover it is suitable to express C(x) as

(3.15) C(x) = 1+ aH(x)+0(x?),

where H(x) is a stochastic process and o is a constant chosen as half the variance, i.e,
a = 52/2. The statistical properties of aH(x) are derived from Egs. (3.11) to (3.14) as

(3.16) E[eH(x)] = a+0(a?),

(3.17) Var[aH(x)] = 2a+0(«?),
(3.18) Rap(x0) = 20e~P1%ol 4 O(c?).
4. Experimental observations

Steady state creep rates of 23 aluminium specimens at 190°C were measured. With
the least-square method a straight mean characteristic was adapted to the data. The scatter
of log C;, was analysed and is presented on normal distribution paper in Fig. 2. The straight
line: indicates log-normal scatter with the standard deviation s; = 0.42. The tests on
aluminium are all peiformed under rigorous laboratory conditions with material from
the same batch and with identical heat treatment. The scatter for 49 stainless steel speci-
mens at 550°C are shown in Fig. 3 for comparison. The steady state creep rates of the
stainless steel are from the STAL-LAVAL Company tests [9, 1972] performed over a long
period. The material is from different batches and there is no control of the heat-treatment
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F1G. 3. Normal distribution plot of creep rate in a stainless stecl.

of the specimens, thus the scatter is larger with a standard deviation s; = 0.87. Both
materials are ductile at the current test temperature, thus they can be adequately
described by the constitutive equation (2.1).
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Moreover, the scatter along the specimen was studied in one test. The local strain of
an aluminium specimen was measured with strain gages (SG) in four points, and compared
with the ordinary measurements of the mean strain over the gage length with differential
transformers (DT). In Fig. 4 the strain rate time diagram is shown for this test. The tertiary
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Fi1G. 4. Creep rate at different locations along one aluminium specimen.

phase is seen to be well begun. The strain gages, numbered from 1 to 4 from below, with
the gage length of 8 mm, were placed with equal spacing along the total gage length of
100 mm. Rupture took place after 586 h immediately below the upper clamping edge.
Note that the difference in log C between strain gage 4 and 1 is 0.35 which should be compar-
ed with the standard deviation s = 0.42,

5. Creep under random temperature

DorN [4, 1954] has shown that the temperatute dependence of the creep rate can be
described as a variation of only &, in Norton’s law, Eq. (2.2). Other representations of
the temperature dependence of the creep law are presented by PENNY and MARRIOTT

[8, 1971].
Norton’s creep law for an ideal scatter-free material can be written in the form
st mitomnl= 2 | L. Ll ol
. i) = éoon £ | -7 |} ()

Here &, and n are material constants, Q is the activation energy, R is Boltzmann’s constant,
T(x) is the absolute temperature along the specimen and T, is a constant reference tempera-
ture. Thus the creep rate may be expressed as in Eq. (3.2) with

(5.2) C(x) = exp{— % _T(IT) - -;T:]}
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If the temperature can be described as a small random variation superimposed on the
constant reference temperature,

(5.3) T(x) = To+aT(x),
where a is a constant with the property |aT;(x)| € Ty, then Eq. (5.2) may be written as

(5.4) o) = exp 2|« B 4 o).
Hence C(x) may be written as in Eq. (3.15) with
(5.5 H(x) = RQT T‘;:) ,

If random temperature variations, with normal distribution, are considered as the origin
of scatter in creep rate, it follows from Eq. (5.4) that C(x) is log-normal distributed.

6. Analysis of a creep test specimen

A creep test specimen under constant tensile load is considered. The total strain is
expressed as an elastic part and a creep part
(6.1) &(x) = a/E+e(x).
The first order theory is considered, i.e. the stress is constant not depending on the strain.
The equilibrium condition may then be simply stated as
(6.2) g = P|A,,
where P is the load and A, is the initial area of the specimen. The mean strain rate is

given by Eq. (2.1). The constitutive equation (3.2) yields together with Egs. (3.15), (6.1)
and (6.2)

(6.3) &(x) = &1+ aH(x)] (?d)a-i»O(at’).
Insertion of Eq. (6.3) in Eq. (2.1) gives

(6.9) g = % = &o(1+«Hy) (Gi')"w(a’),
where

(6.5 H, = —f H(x)dx.

The statistical properties of the mean strain rate then follow as

(6.6) E[&,] = E[&(x)] = (l+ot)£°( ) +0(a?),

6.7) Var[é,] = % (BL—1+e~P1)e3 (?") +0(a?).
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The local variance follows from Egs. (3.17) and (6.3) as
2n
(6.8) Var[2(0)] = 2483 (di) +0(a?).

The relation between the global and local variances is

Var[e,] 2 o 2
(6.9) Vare T =V(@L) = W(ﬁL_H-e ALY +0(a?).

The function ¥, cf. Fig. 5, is a volume factor describing the influence of specimen size on
creep scatter. When SL is large the measured scatter is small, and when BL is small the
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Fia. 5. Ratio of measured scatter and material scatter versus specimen length.

)
V(L)
k=1
e i i i g o e
i k=2

w

L L I I ! ! ] I fk=oo | o
001 002 o1 o0z 05 1 2 5 10 50 100 g

FiG. 6. Ratio of measured scatter at two different specimen lengths versus specimen length.
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measured scatter is large. The material constant § determines the absolute value of the
gage length necessary to yield a certain measured variance. It is possible to determine g
from two series of tests at constant stress level but at two different gage lengths L, and kL, .
The value of AL, is read from Fig. 6 as the value of AL that satisfies the relation

VD) _
veL
where £ is the ratio of the measured variances. When the value of § is known it can be

used to determine the gage length necessary to keep the measured scatter below a desired
level.

(6.10)

7. Discussion

A stochastic process was formulated in order to describe creep with inhomogeneous
material properties. The same formulation has been shown to be valid for random tempera-
ture distributions. The variation of material properties was supposed to be present in
one direction only, in this case along the specimen. This can be justified from the manu-
facturing process of long cylindrical bars. For other geometries, such as thick cylindrical
tubes, a variation of the material properties in radial direction could have larger influence
on the scatter than axial variations.

This stochastic process was applied to a specimen under steady state creep. A volume
effect was shown to exist. The influence of local variation of material parameters on the
behaviour of the specimen decreases when the size of the specimen is increased.

The results are now being used to study the influence of variation of mateiial para-
meters on stresses and deformations in hyperstatic structures. Moreover, the probability
of ductile creep rupture, with the aid of extremum value analysis of the stochastic process,
can be obtained with these results as a starting point.

Appendix

The stochastic process log C(x) is normal distributed, and assumed to be stationary,
with the density function

(A1) JOi)

V2 s

Hence the expected value and variance are

exp (—*/25%).

(A2) EflogC(x)] = [ lognf(nydn = ps = 0,

(A3) Var[log C(x)] = E[(log C—u)*] = E[log?C]—p* = s°.
If log C(x) is of Markov type then the autocorrelation is
(Ad)  Rigge(xo0) = Eflog C(x)log C(x+x0)]

= f f log7: 10g72f(n1, M2, Xo)dnydn, = s%e™P1%e!,
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For a normal process the joint density function can be deduced from the autocorrela-
tion as

_ 1 RO} —2R(xo)n; 12+ RO ,
(AS5)  f(n1, M2, Xo) 22 R*(0) = Ro(xa) "-‘P{' lZ[R’(O)o—R’(xo)] -

Insertion of Eq. (A4) yields

! 03 —2e~P%ly, 5 + 0
(A6) f(’?l s N2s xO) = 2752 ’/1_72-5]‘_—0? €xp [—_ 232(1 _e—zmx.u

The statistical properties of C(x) can be deduced from the statistical properties of
log C(x).
The density function of C(x) is
Jrosc(logn) 1 1
Al - = ————exp[—(logn)?/25?).
(AT fe(n) . Voms 7 p[—(logn)?/257|
The joint density function of C(x,) and C(x,) is

Nt T 2ustY1—e Pl My M
“exp [_ (logn,)* —2e~P"*ellogn, log 7, + (log72)?
252(1— e~ 21l :
The expected value and variance of C(x) can be calculated from

(A8)  fe(ny, M2r Xo) = Srosc(logn, , lognaz, xo) 1 11

(A9) I, = E[C"(0)] = [ 7'fe(m)dn.
0
Insertion of Eq. (A7) and the variable substitution
(AL0) y = 1081

5

yield

[::]

V!E [ expt-0212-nspiay.

The autocorrelation can be calculated from

(Al1) I =

(A12) In = E[C"()C™(x+x0)] = [ [ 7303 fcCtss 12, Xo)dny drja.
[ ]

Insertion of Eq. (A8) and the variable substitutions

lo lo
(A13) yy =20, .08

s s
yield

A1) I, = :

P

L] o

, 2_23-1?[-'.! + 2
f f exp [ i £ 2(1 _e—i’;l{:) 2 +?3S)’1 +m3)’z] dyl d)’z-

-0 =
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The solution of the integral, c.f. GROBNER and HOFREITER [6, 1949]

o

@9 [ ewl-@ 2yl = )/ 2 expl6i-adjd, a>0
yiclds, for Egs. (Al1) and (A14),
(A16) I, = exp (s*12[2),
(A17) Im = exp[(n?+2nme=*'>! + m?)52/2].
Hence
(A18) E[C) = I, = '3,
(A19) Var[C] = L,=1? = &*'(e*" 1),
(A20) Re(xo) = I; = exp[(1 +e~#1%ol)52],

If the scatter is small, the exponential functions may be expanded in a Taylor series.
Hence Egs. (Al8) to (A20) yield

(A21) E[C] = 1+5%/2+40(s%),
(A22) Var[C] = [1+52+0(s*)][s2+0(s*)] = s2+0(s*),
(A23) Re(xo) = 1+5%(1+eP%) 4 0(5*).
Moreover, C(x) can be expressed as
(A24) C(x) = 1+aH(x)+0(a?),
where a is chosen as half the variance, i.e.
(A25) o = s%2.
Thus
(A26) E[C] = 1+ E[aH],
(A27) Var[C] = Var[aH],
(A28) Re(xo) = 1+2E[aH]+ Ran (xo)
and
(A29) E[aH] = a+0(a?),
(A30) Var[aH] = 2a+0(2?),
(A31) Ran(xo) = 20e™?% +0(a?).

The statistical properties of the mean of «H
1 L
(A32) aH, = -rf oH(x)dx
0

can be expressed in terms of the statistical properties of aH.
The expected value of aHy is

L
(A33) E[aH,] = % f E[«H(x)]dx = a+0(a?).
(1]
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The variance of aH is
(A34) Var[aH.] = E[(aHL)’]— {E[aH,]}?,
where

L L
(A35)  El(«H)?] =£[% -.f aH(x,)dxx-% of aH(x,)aLr,]

L L
wde | f ElaH(x,)xH(x))dx, dx;.
0 0

By definition
(A36) E[aH(x,)aH(x3)] = Ren(x;—xy).
Since R,y depends only on the diﬁ'erence Xp = X;—X;, Eq. (A35) can be reduced to

(A37) E[(aH)*] = — f (l—-—— Ran(x0)dxo.

Insertion of Eq. (A31) yields

(A38) El(aH)] = ¢ ﬁL), (BL—1 + & P5) +0(c?).

From Egs. (A33), (A34) and (A38) it follows that

(A39) Var[aH.] = (BL—1+e?)+0(a?).

(ﬁL)’
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