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Creep scatter as an inherent material property 

H. BROBERG and R. WESTLUND (GOTHENBT.JRG) 

STATIONARY creep with inhomogeneous material properties is studied. The inhomogeneity 
may arise owing to randomly varying material parameters along the specimen, e.g. due to the 
manufacturing process, or owing to random variations of the temperature along the specimen. 
The strain rate is described by a stochastic process and compared with experimental observa­
tions. This stochastic process is applied to an ordinary .creep test specimen. 

Rozpatrzono ustalone pelzanie materialu o niejednorodnych lokalnie wlasno§ciach. Niejedno­
rodno5C ta mote bye wynikiem losowych r6Znic we wlasno§ciach materialu, np. w wyniku 
zastosowanego procesu technologicznego lub tet losowej zmiennoSci temperatury wzdluZ pr6bki. 
OpisanQ stochastycznie pr~osc deformacji por6wnano z danymi doSwiadczalnymi, otrzyma­
nymi w typowych badaniach pelzania. 

PaccMOTpeHa yCTaHOBHBIIIaSICJI nonayqecr~ MaTepmuta c noK8JILHO Heo.ztHopoJU~biMH caoAcma­
MH. 3Ta HOO.ztHOpo.ztHOCTL MO>KeT 6biTh pe3}'m.TaTOM cnyqaAHbiX P83HIII.t B CBOACTB&X M&TepHa· 
na, HanpHMep, B peaym.TaTe npHMeHeHHoro TeXHononf\leCKoro nponecca, BJIH me c.nyqaAHoro 
B3MeHeHWI TeMnepaTypbl BAOJib o6paana. BbNHcneHIWI CTOx,aCTJilleCKH CKOpOCTL DOJ13}"1e­
CTH cpaaHeHa c 3KCIIepHMeHTI.JII>HbiMB ua6moAeHRJIMB. Pa~emm KacaiOTCJI o6p~os 
upuMeWieMbiX a TBIIHtmbiX uccneAoBammx uonayqecTB. 

1. Introduction 

DURING creep testing at constant stress level the scatter in creep deformation rate and 
creep rupture time is large for most materials. Experimental observations of local vari-a­
tions in the deformation rate are presented by GAR.OFALO [5, 1965]. He observed ·different 
creep rates at different locations of the specimen. WALLES [11, 1967] studied the scatter 
between different test specimens. This scatter was given a thorough statistical treatment. 

Tests presented in this paper show a good agreement with the tests carried out by 
Walles, although quite different materials were used. 

The scatter in creep deformation rate may occur due to uncontrolled variations in 
load, temperature, specimen geometry or material creep properties or due to unaccounted 
effects such as bending or friction. HAYHURST [7, 1974] has shown that this scatter can be 
reduced, but not eJiminated, through rigorous control of the test situation. The remaining 
scatter must be explained as an inhomogeneity in the material. 

BJORKENSTAM [I, 2, 1973, 1974] studied the scatter due to load variations. He consid­
ered a load that consisted of a constant part and a superimposed small randomly varying 
part. The expected values and the variances of the stresses and the strain rates for some 
structural elements were determined. The material was assumed to obey the Hooke-Norton 
constitutive equation. 

Creep bending of a circular plate in a random temperature field was analysed by SooNG 

and CozzARELLI [10, 1967]. They considered a temperature distribution that consisted 
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166 H. BllOBERO AND R. WESTLUND 

of a constant part and a superimposed small part with random variations in the radial 
direction. The infiuence of the temperature variations on the moments and the lateral 
deflection was analysed. 

In the present study the scatter will be assumed to be due to a spatial variation of 
material parameters. The material is assumed to obey a modified Hooke-Norton consti­
tutive equation, as suggested by BROBERG [3, 1973]. The variation is expressed as a stochastic 
process in space. Steady state creep of an ordinary test specimen is analysed. The expected 
value and the variance of the creep strain are calculated. 

l. Properties of creep scatter 

Due to inhomogeneous material properties the local strain rate e(x) is not consant 
(x being the axial coordinate). Experiments where the rate of elongation i over a certain 
gage length L is measured give the mean strain rate 

• L 

(2.1) BL = ~ = _!_f e(x)dx. 
L L 

0 

For different specimens at the same stress level the mean strain rate shows a scatter that 
originates from variations in the local strain rate e(x). 

If the material is assumed to obey Norton's creep law (a. being a standard stress) 

(2.2) i,(x) =e.( :.r. 
then the scatter originates from e0 and n. 

Observations from a number of creep tests, c.f. W ALLES [U, 1967] and BROBER.G [3, 1973], 
are presented in Fig. 1. Here the mean, a confidence interval and dist~ibution of the measur­
ed strain rate are presented. The shape of the distribution function shows no noteworthy 

logG 

Flo. 1. Scatter under steady state creep conditions. 
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CREEP SCAtTER AS AN INHERENT MATERIAL PROPERTY 167 

dependence on the stress level, i.e. at a change of stress level, state S1 to state S:z, the 
strain rate is changed as a parallel translation with the mean characteristic. 

Walles has shown that the scatter is log-normal distributed, i.e. normal distributed 
in log eLfloga. The notation log in the present paper designates the natural logarithm. 

From these observations it follows that the scatter originates from variations in a .. , 
and that n can be treated as a constant. 

3. Model material 

It is assumed that experimentally-observed steady state creep rates can be represented 
by the reJation 

(3.1) 

Here £0 and 11 are material constants and CL is a random variable that represents the 
scatter between different tests. 

If the same creep test machine and the same batch of materials are used for all the 
creep tests, then CL will be dependent on the local properties of the specimen only. Since 
the strain rate is observed to be a log-normal distributed, then CL is considered to be 
log-normal distributed as well. 

For constant temperature of the specimen the scatter in creep data is considered to 
originate from randomly varying material parameters in creep. The material is assumed 
to obey the modified Norton cteep law 

(3.2) t,(x) = 00 C(x){ :.r. 
where C(x) is a stochastic process along the specimen. For the ideal scatter-free material 
C(x) = 1. 

From Eqs. (2.1), (3.1) and (3.2) it follows, for steady state creep, 

(3.3) 

Hence 

(3.4) 

(3.5) 

L 

CL= ~ J C(x)dx. 
0 

E[C(x)] == E[C,J, 

Var[C(x)J ::1: Var[C,J. 

Here E represents the expected value, and Var the variance, of the stochastic process and 
the random variable. 

The stochastic process C(x) is assumed to be log-normal distributed, i.e. logC(x) is 
assumed to be normal distributed. Moreover, C(x) is assumed to be stationary and ergodig, 
hence the expected value and variance of log C(x) are independent of x and the autocor 
relation of log C(x) is a function of the difference between the two x-values considered. 
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The ratio 60 /U: is chosen such that 

(3.6) 

{3.7) 

E[logC(x)] = 0, 

Var(logC(x)J = r. 

H. BROBER.O AND R. WESTLUND 

It is assumed that the stochastic process is of Markov type and that autocorrelation, as 
a consequence, can be expressed as 

(3.8) 

Here x0 is the distance between the two points considered and P is a material constant. 
The statistical properties of C(x) are deduced from Eqs. (3.6), (3.7) and (3.8) as 

(3.9) E[C(x)] = e'2/2, 

(3.10) 

(3.11) 

Var[C(x)] = e52(e'1 -l), 

Rc(x0 ) = exp[s2 (1 +e-Pixol)]. 

All the calculations are performed in the appendix. 
Typical values of the variance s2 are 0.1 or less for specimens from the same material 

batch. Thus the exponential functions in Eqs. (3.9), (3.10) and (3.11) can be expanded 
in a Taylor series 

(3.12) E[C(x)] = 1 +s2/2+0(s4
), 

(3.13) Var[C(x)] = s2 +0(s4), 

(3.14) 

Moreover it is suitable to express C(x) as 

(3.15) C(x) = 1 +«H(x)+O(a2
), 

where H(x) is a stochastic process and IX is a constant chosen as half the variance, i.e. 

« = s2/2. The statistical properties of ttH(x) are derived from Eqs. (3.11) to (3.14) as 

(3.16) E[«H(x)] = «+0(«2), 

(3.17) 

(3.18) 

4. Experimental observations 

VadaH{x)] = 2«+0(«2), 

R,B(xo) = 2ae-P!xol + 0{«2). 

Steady state creep rates of 23 aluminium specimens at 190°C were measured. With 
the least-square method a straight mean characteristic was adapted to the data. The scatter 
of log CL was analysed and is presented on normal distribution paper in Fig. 2. The straight 
line· indicates log-normal scatter with the standard deviation sL = 0.42. The tests on 
aluminium are all petformed under rigorous laboratory conditions with material from 
the same batch and with identical heat treatment. The scatter for 49 stainless . steel speci­
mens at 550°C are shown in Fig. 3 for comparison. The. steady state creep rates of the 
stainless steel are from the STAL-LAVAL Company tests [9, 1972] performed over a long 
period. The material is from different bat-ches and there is no control of the heat-treatment 
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of the specimens, thus the scatter is larger with a standard deviation sL = 0.87. Both 
materials are ductile at the current test temperature, thus they can be adequately 
described by the constitutive equation (2.1). 
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170 H. BR.OBI!RO AND R. WESTLUND 

Moreover, the scatter along the specimen was studied in one test. The local strain of 
an aluminium specimen was measured with strain gages (SG) in four points, and compared 
with the ordinary measurements of the mean strain over the gage length with differential 
transformers (DT). In Fig. 4 the strain rate time diagram is shown for this test. The tertiary 

Aluminium 
100°C 
Initial stress 180 MPa 
Rupture time 586 h 

SG4 

SG3 

SG2 

SG1 

<; .1Q-9L---____ __._ _____ _.__ __ ------'-~ 
~ 0 100 zoo 300 t[h] 

F1o. 4. Creep rate at different locations along one alwniniwn specimen. 

phase is seen to be well begun. The strain gages, numbered from I to 4 from below, with 
the gage length of 8 mm, were placed with equal spacing along the total gage length of 
100 mm. Rupture took place after 586 h immediately below the upper clamping edge. 
Note that the difference in log C between strain gage 4 and 1 is 0.35 which should be compar­
ed with the standard deviation s£ = 0.42. 

S. Creep under random temperature 

DoRN [4, 1954] has shown that the temperatute dependence of the creep rate can be 
described as a variation of only 80 in Norton's law, Eq. (2.2). Other representations of 
the temperature dependence of the creep law are presented by PENNY and MARRIOIT 
[8, 1971]. 

Norton's creep law for an ideal scatter-free material can be written in the form 

(5.1) £(x) = e0 exp {- g [-1 
- -

1 
]} (_!!_)n. 

R T(x) To an 

Here i 0 and n are material constants, Q is the activation energy, R is Boltzmann's constant, 
T(x) is the absolute temperature along the specimen and T0 is a constant reference tempera­
ture. Thus the creep rate may be expressed as in Eq. (3.2) with 

(5.2) C(x) = exp{- Q [-
1 

- ~1}· R T(x) To 
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If the tempe1ature can be described as a small random variation superimposed on the 
constant reference temperature, 

(5.3) T(x) = To+ocT1 (x), 

where oc is a constant with the property locT1(x)l ~ T0 , then Eq. (5.2) may be written as 

(5.4) C(x) = exp{R~o la T ~:) +0(«2
)]}. 

Hence C(x) may be written as in Eq. (3.15) with 

(5.5) H(x) = R~o T ~:) . 
If random temperature variations, with normal distribution, are considered as the origin 
of scatter in creep rate, it follows from Eq. (5.4) that C(x) is log-normal distributed. 

6. Analysis of a creep test specimen 

A creep test specimen under constant tensile load is considered. The total strain is 
expressed as an elastic part and a creep part 

(6.1) e(x) = a/E+ec(x). 

The first order theory is considered, i.e. the stress is constant not depending on the strain. 
The equilibrium condition may then be simply stated as 

(6.2) 

where Pis the load and A0 is the initial area of the .specimen. The mean strain rate is 
given by Eq. (2.1). The constitutive equation (3.2) yields together with Eqs. (3.15), (6.1) 
and (6.2) 

(6.3) t(x) = <.!t +«H<xll( :.)" +0(«2
). 

Insertion of Eq. (6.3) in Eq. (2.1) gives 

(6.4) 

where 

(6.5) 

L 

HL = 1 J H(x)dx. 
0 

The statistical properties of the mean strain rate then follow as 

(6.6) 

(6.7) 

E[td = E[i:(x)] = (I +«)i:0 ( :. r + 0(«2
), 

var[i:d = <P~· <PL-1 +•-'L)·~( :.}"' +O(a'). 
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172 H. BR.OBERO AND R. WESTLUND 

The local variance follows from Eqs. (3.17) and (6.3) as 

(6.8) varre<x>J = 211ij( :.)'" +0(112
). 

The relation between the global and local variances is 

Var[e£1 = tR __ 2_ tR _ -fJL ( 2 
(6.9) Var[e(x)] V "'L) - (ftL)2 "'L 1 +e )+0 « ). 

The function V, cf. Fig. S, is a volume factor describing the influence of specimen size on 
creep scatter. When PL is large the measured scatter is small, and when PL is small the 

V(f3L) 

Fro. S. Ratio of measured scatter and material scatter versus specimen length. 

V(kf3L) 
"V(f3L) 

Fro. 6. Ratio of measured scatter at two different specimen lengths versus specimen length. 
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measured scatter is large. The material constant fJ determines the absolute value of the 
gage length necessary to yield a certain measured variance. It is possible to determine {J 
from two series of tests at constant stress level but at two different gage lengths L1 and kL1 • 

The value of {JL1 is read from Fig. 6 as the value of {JL that satisfies the relation 

(6.10) V(k{JL) = E 
V({JL) ' 

where E is the ratio of the measured variances. When the value of {J is known it can be 
used to determine the gage length necessary to keep the measured scatter below a desired 
level. 

7. Discussion 

A stochastic process was formulated in order to describe creep with inhomogeneous 
material properties. The same fofll?.ulation has been shown to be valid for random tempera­
ture distributions. The variation of material properties was supposed to be present in 
one direction only, in this case along the specimen. This can be justified from the manu­
facturing process of long cylindrical bars. For other geometries, such as thick cylindrical 
tubes, a variation of the material properties in radial direction could have larger influence 
on the scatter than axial varjations. 

This stochastic process was applied to a specimen under steady state creep. A volume 
effect was shown to exist. The influence of local variation of material parameters on the 
behaviour of the specimen decreases when the size of the specimen is increased. 

The results are now being used to study the influence of variation of mate1 ial para­
meters on stresses and deformations in hyperstatic structures. Moreover, the probability 
of ductile creep rupture, with the aid of extremum value analysis of the stochastic process, 
can be obtained with these results as a starting point. 

Appendix 

The stochastic process log C(x) is normal distributed, and assumed to be stationary, 
with the density function 

(AI) /('I/) = y' I exp(- 'f/,/2s,). 
2n s 

Hence the expected value and variance are 

(A2) 

(A3) 

00 

E[logC(x)] = J logrJf(n)d'YJ = p = 0, 
-oo 

Var[logC(x)] = E[(logC-p)2) = E[log2C)-p2 = s2
• 

If logC(x) is of Markov type then the autocorrelation is 

(A4) Rr01c(x0) = E[logC(x)logC(x+x0)] 

= J J log'Y}tiOgfJJ(f/1, f/2, Xo)df}Jdf/2 = S2
e-fliXol, 

http://rcin.org.pl



174 H. BROBEllG AND R. WESTLUND 

For a normal process the joint density function can be deduced from the autocorrela­
tion as 

(AS) 

Insertion of Eq. (A4) yields 

1 [ fJf- 2e-~IXolfJtfJl + 1]~] 
(A6) /(f}t' fJl, Xo) = 2nslJ/I-e-2~1xot exp - 2sl(l-e-2,9lxol) . 

The statistical properties of C(x) can be deduced froni the statistical properties of 
logC(x). 

The density function of C(x) is 

(A 7) /c( 1J) = Ji,.c(logf}) = y' 1 _!_ exp[- (log 1})2/2s2 J. 
1J 2ns 1J 

The joint density function of C(x1) and C(x2) is 

(AS) 

The expected value and variance of C(x) can be calculated from 
00 

(A9) 1, = E[C"(x)] = J 1J"[c(1J)d1J. 
0 

Insertion of Eq. (A7) and the variable substitution 

(AlO) y = lo;fJ 

yield 

(All) 

00 

1, == .. ! 
1 J exp[-(y2 /2-nsy)]dy. 

f 2n -oo 

The autocorrelation can be calculated from 
00 00 

(Al2) /,, = E[C"(x)C"'(x+xo)] = J J 1]~ 1J':fc(1Jh 1]1, Xo)d1Jt d1J2· 
0 0 

Insertion of Eq. (AS) and the variable substitutions 

(Al3) 

yield 

(Al4) 

logfJt 
Yt =--, 

s 
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The solution of the integral, c.f. GROBNER and HoFREITER [6, 1949] 

(AIS) J exp[-(ay2 +2by+c)]dy =, / n exp[(b2 -ac)/a], a> 0 
-oo V a 

yields, for Eqs. (All) and (Al4), 

(A 16) 1,. = exp (s2n2 /2), 

(Al7) 

Hence 

(Al8) 

(Al9) 

(A20) 

E[C] = It = e•lf2, 

Var[C] = /2-n = ~2(e' 2 -l), 

Rc(xo) = /11 = exp[(I +e-Pixo1)s2]. 

175 

If the scatter is small, the exponential functions may be expanded in a Taylor series. 
Hence Eqs. (Al8) to (A20) yield 

(A21) E[C] = I +s2 /2+0(s4
), 

(A22) Var[C] = [I +s2 +0(s4)][s2 +0(s4
)] = s2 +0(s4), 

{A23) Rc(x0 ) = l+s2(I+e-Pixo i)+O(s4). 

Moreover, C(x) can be expressed as 

(A24) C(x) = I +cxH(x)+O(a2), 

where a is chosen as half the variance, i.e. 

(A25) ex = s2 /2. 

Thus 

(A26) E[C] = I+ E[cxH], 

(A27) Var[C] = Var[aH], 

(A28) Rc(x0 ) = 1 +2E[aH]+Ra~H(x0) 

and 

{A29) E[aH] = a+O(a2), 

{A30) Var[aH] = 2a+O{a2), 

(A31) R«H(xo) = 2ae-Pixol +0(a2). 

The statistical properties of the mean of cxH 

L 

(A32) aHL = 1 J aH(x)dx 
0 

can be expressed in terms of the statistical properties of aH. 
The expected value of aHL is 

(A33) 

L 

E[aHd = 1 J E[aH(x)]dx = a+O(a2
). 

0 
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The variance of rxH L is 

(A34) 

where 

H. BR.OBER.G AND R . . WESTLUND 

L L 

(A35) E[(txlh)2
] = E[ ~ J rx.H(x1)dx1 • ~ J rx.H(x,)dx2] 

0 0 

By definition 

(A36) 

L L 

= ; 2 J J E[rxH(x1)(tH(x2)]dx1 dx2 • 

0 0 

Since R11H depends only on the difference x0 = x 2 -x1 , Eq. (A35) can be reduced to 
L 

(A37) E[(rx.H£)2
] = 1 J ( 1- ~) R.8 (x0 )dx0 • 

0 

Insertion of Eq. (A31) yields 

4rx 
(A38) E[(.rxH£)2

] = ({JL)i ({JL-1 +e-PL)+O(cx2
). 

From Eqs. (A33), (A34) and (A38) it follows that 

4rx 
(A39) Var[rxHL] = ({JL)2 ({JL-1 +e-PL)+O(rx2

). 
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