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Interactions of solitary waves in shallow water theory(*)

A. TEMPERVILLE (GRENOBLE)

WE CONSIDER wave motions in an incompressible inviscid fluid under the action of gravity and
having a free surface. The equations are in Lagrangian form. Shallow water theory is introduced
by a distortion of variables with a small parameter. So, it is easy to obtain progressive waves.
With the method of strained coordinates, we can obtain standing waves and the reflexion of
a solitary wave on a rigid wall. In this last case, we have studied: a) motion of point of maximum
amplitude, b) magnitude of phase shift between incident wave and reflected wave, ¢) maximum
amplitude attained by wave during interaction. We compare results with Maxworthy’s experi-
ments.

Rozwazamy ruch falowy w cieczy niefcisliwej pod dzialaniem pola sit cigzkodci o powierzchni
swobodnej. Rownania maja posta¢ Lagrange’a. Teori¢ wody plytkiej wprowadza si¢ przez za-
kiécenie zmiennych za pomocg malego parametru. Moina w ten sposob otrzyma¢ fale postepu-
jace. Stosujac metode odksztalcalnych wspbirzednych uzyskuje si¢ fale stojace oraz odbicie
fali solitonowej od sztywnej écianki. W tym przypadku przeanalizowano a) ruch punktu ma-
ksymalnej amplitudy, b) wielko§¢ przesuniecia fazowego miedzy falga padajaca a odbita, c)
wielkoé¢é maksymalnej amplitudy uzyskanej przez falg podczas oddzialywania. Wyniki porow-
nano z rezultatami dofwiadczalnymi Maxworthy’ego.

Paccmarpusaem BoNHOBOE OBHYKEHHE B HECHMMAEMONR YKHIKOCTH co cBOGOMHON NOBEPXHOCTEIO
IIOX [eliCTBHEM II0JIA CHJI TAKecTH. YpasHenns umeroT BuA Jlarpamxa. Teopmo Menxoit Boas!
BBOJHTCA ITyTeM BOSMYLLECHHA MePeMEHHBIX [IPH MOMOIIH MAIOro mapamerpa. Taxum obpasom
MOXKHO moy4HTs Geryunue Bomasl. [Ipavensan Merox qedOpMHPYEMBIX KOODIHHAT MOy 4al0TCA
CTOM4YHE BOJIHEI H OTPAYKCHHS CONHTOHOBOMH BOJTHEI OT *KecTKo# cremrd. B atom ciIy4ae npoaHa-
JIH3HPOBAHBI: a) JBHEHHE TOYKH MAKCHMAILHON aMIUTMTYLI, 0) Bemuunua (asoBoro casura
MEXIy majawoulel ¥ OTPAKEHHOH BO/HAMH, B) BE/IHUYHHA MAKCHMAMBLHON aMIUTMTYXBI, TIOIY=-
YeHHO# BomHON Bo Bpems B3aumojcHcTBHA. Pe3y/bTaThl CPaBHEHBI C IKCICPHMEHTATLHBIMA
peayssTaTaMn MaxcBOpTH.

1. Introduction

T. MAXWORTHY [1] has written a paper where he gives the results of experiments on a colli-
sion between solitary waves. In this paper I present the theoretical results and compare
them with Maxworthy’s results.

2. General equations

The two-dimensional motion of an incompressible, inviscid, irrotational fluid with
a free surface will be considered.

The relevant Lagrangian equations are expressed in terms of a fixed coordinate system,
such that the axis in the x-direction coincides with the still water surface and the y-axis
is vertically downwards (Fig. 1).

(*) Papzr presented at the XIII Biennial Fluid Dynamics Symposium, Poland, Septembzr 5-10, 1977.
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FiG. 1. Wave tank used for experiments.

It will be noted that: A—the bottom ordinate may be presumed to be horizontal,
(2) is the time at any instant, and (@, b) are the coordinates of a fluid particle at an initial
instant (o).

Let the unknown coordinates be x(a, b, t) and y('&,?;, t), whilst the pressure acting
on the particle be p(a, b, t). The value of (y) for the free surface particles shall be given
by 7(a, 7).

The equations of motion may thus be expressed as follows:

1) continuity equation

2.1) M =1
D(a, b)
2) momentum equation

20, x) 4 20.D) _ pa,p),
D(a,b)  D(a,b)
where (_x') and (') are the derivatives of (x) and (), with respect to (¢).
F(ab) will have a value equal to twice as much as the vorticity associated with the
particle under consideration and it shall be considered equal to zero.
3) Boundary conditions:
at the bottom
(2.3 y@,h,t) =h,
at the free surface

22)

dy dy 9%y ox d*x
8%~ ar T @
A priori, the condition at the free surface is difficult to express and its equation is unknown.
However, it is known that the Lagrangian variables may be replaced by other variables
without altering the equations, provided that the elementary volume is conserved and kept
unchanged during this transformation.

By adopting the MICHE coordinates [2], denoted now (a, b), we may verify that this
property is maintained, and the bottom surface conditions may be expressed as

b=k and b=0.
By putting X = x—aand Y = y—b, the equation above may now be re-written as follows:

oY ov X or ax v
da ob da 0b ob oa ?

(2.4) if b= n(a,1).

(2.5)
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X oX| ox ax | oy *y %Y oY
8 abax[”"é'&'] ~ b a0t T 0a bt 'a'aa:'[ a_b] =%

(2.7 Y(a,h,t) =0 for b=h,

oY _¥X X X oY Y
8%a = o2 T 9a o2 " da o2

(2.8) for b=0.

3. Shallow water theory

The variables shall now be re-defined as follows:

t=c¢)ght, a=aa[l+ Za,,s"] = eaf(e), B =0,

p=1

where (&) is a small parameter whose significance will become apparent later on, and a,,
a coefficient (to be defined by the classical method of multiscales). In the shallow water
case the original equations of motion may now be written as

oY ox X oY X oY
G4 '?”@hE?Tﬁhﬁﬁ]m

PX oo X EX _OX X ¥ BY ¥ BV a=r]zo
e T9 O\ G4 9par ~ 9 Gwor t 3w 0Por OB oudr ~ wdr

(3.3) Y(a,h,7) =0 for fB=h,

f) oY _ X .| X X ar_az] -
Tt T T ] o =0

Suppose that X and Y may be expanded in a series in (g).

(3.2)

(3.4)

[-+] oo
(3.5  X= D e, Y=o,

a=0 p=1

It may be easily seen that the relations developed above are in agreement with the general
validity of the problem.
By re-arranging the terms we obtain
X,

(3.6) B =0 where X, =JX(a,r1),

3.7 Y, = —(B-H o0

The condition at the free surface now becomes

32X, 9%X,

(3.8) e T 0, X;=fi(a—1)+g(a+1).
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Thus we have
2
(39) AP LEONS L T)
where X% is the value of X, at the bottom
(B-h? auq oxX, ) X% X,

(3.10) Y, = +(B—h) e
Likewise, the free surface condition to the fourth order is given by

X3 X% B X, L 0X, X, 3%X,
G0 B~ i Ry i e

Before developing these equations any further, the solutions for certain types of move-
ments shall be examined.

4. Progressive waves

We shall now seek solutions in the form X(a— 7, §), such that

4.1) X, = X,(a—7,8) Vn.

Thus we have

42 X, = fi(a=1),

“3 Y, = — (- Rfia-1),

44 na = Wila=1),

5 o= -8 pr i e,

) =& s G-n-fi-aati)

%) me= =2 fir hifivanfi-

The condition at the water surface, when considering terms up to and including the
4th order only, gives a differential equation enabling f; to be calculated:

h: r ptr 7]
(4.8) Ll(fl) = _Tﬁ4)+3fl 1 —202f1 = 0.

After integration, taking into account that there has been no transport of mass
4.9 fi() = —hAZ T‘,;u k=]

where (Z) is the Jacobi zeta function, K and E are the complete elliptic integrals of the first
and second space, h, k? and A the three wave parameters.
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The coefficient £2a, may now be given by

8a, 3E

Special case: when k — 1, the function f; tends to the following limit:

34
(4.11) fiw) = —hAth Ty ]
which is the equation for a solitary wave and in this case
2
(4.12) a, = — i';— .

If Egs. (3.1) and (3.2) are developed further, taking the higher order terms into account
the following is obtained:

@13 % =x3+ 8w prosapria [ rra-nan s G g,

@19 v =CW oGP opn g fi = Saafi 1+ G-DSifi- 1

X3 ’ ; ”
a; +2azf13‘azf3‘a4f1]-

The free surface condition, considering the 6th order terms and taking into account X¥ =
= fs(a—17), gives the following differential equation in terms of f3:

‘hz H ’ LAY hz L i’ l' 'fl
(4.15) 3 42a, 1y =3(f1,13) = _ﬁf(lﬂ']'fl (a3—2a,)+4a,fi fi h{f

+ 2 oy,

This equation gives a specific solution:
' 2"12 e ’
(4.16) /s ="Tf1 —ayfi+C,

where C is a coefficient dependent on the parameters k, ¢4, k? as well as a, and a,.

It may be shown, after J-P. GERMAIN [3], that the general solution derived from this
equation without the second member may be incorporated in the term f;(«— 7) without
having to modify the terms of higher order as a result of a small perturbation of one of
the parameters.

In order to arrive at a solution in terms of f3, C can be equated to zero, so that a,
may be calculated in terms of the parameters 4, e4, and k2.

Thus

4.17) fr=2 -

3 Arch, Mech. Stos. nr 2/79
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5. Standing waves

A solution, periodic in space, such that X = 0 for &« = 0, V7 is examined.
It may be seen that
(5.1 X, =file—1)+gi(a+7) with g,@) = —f,(w).

This corresponds to the superposition of two progressive waves propagated in the inverse
direction

(52) 72 = HIfi+gil,
(5.3) X;=-— (ﬁ—zh)" [fi' +g71+X3.
with

2y% *
54 O e LD+Le)+3igt +80 10,
where
(55) X5 = fy(a=)+gs(at D+ (figs Hig)
and
(5-6) &) = —fa(—u).

From 3rd order considerations, a term expressing the interaction may be seen to have

the form: % (figi+fig1)- If we take for f}, f5 and a, the expressions in Egs. (4.9), (4.10)

and (4.17), we obtain the solution for a shallow water standing wave [4]. In the case where
k — 1, the solution for the reflection of a solitary wave at a rigid wall is obtained. This
particular case is treated below and compared to Maxworthy’s experimental results.

6. Reflection of a solitary wave

It has been seen that the solution to this problem is given by the following:

fim -hAth[% (a-—r)],

X, =fi(e—71)+fi(a+1),

oxX,

oo

Therefore, we have the equation of the free surface in a parametric form. To have the
abscissa of a point of maximum amplitude, we must solve the equation:

an

da

n = e, = eh
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The following results are thus obtained:

1) If
ra 2 V3+1 )

V%’I>TO’

Qs _ 2 l+E)_ _]/ 3mi—1
h - 3ed ’“( i—£)’ 2=V mG=my

The abscissa of the maximum position is thus given by

xmu h aﬂ!l‘l X(aﬂll‘)

h  h B

Figure 2 shows the curve of x,, as a function of ¢; crosses denote Maxworthy’s experimen-
tal results, when Ahfh = 0.31, if Ah is the height of the incident wave. The agreement is
nearly perfect.

then @pa: = 0.
2)If

then

| X=X/ho

\
e = 8 &
1‘\,%' ‘\éf( Aax/hy |

T

0 2 4 6 8 . : : . :
Tt/(hylg) "2 0 @ 0z 03 04 O5pp/h
Fic. 2. Motion of point of maximum amplitude. Fi1G. 3. Phase shift 4X/ho for several values of
Ahlhg.
[] squares: experimental results of MAXWORTHY,
TEMPERVILLE,
—.— OIKAWA and Yasnima (1973), BYATT-SMITH

(1971).

It is also easy to prove that the phase shift (4X) between the incident wave and the

reflected wave is given by
ax _ 4/
h Y3V k-

kL3
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Figure 3 shows the plot of the curve of the phase shift as a function of 4k, which again
is in good agreement with Maxworthy’s results. But it is difficult to conclude, as Maxworthy
did, that there is a constant phase shift. It is my opinion that the BYATT-SMITH’S result [5]
is not exact.
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