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Unsteady flow of an elastic-viscous fluid past an infinite 
porous plate 

R. S. SHARMA (NEW DELHI) 

IN THE PRESENT work the motion of an elastic-viscous fluid past a two-dimensional unsteady 
porous plate was studied by using the Laplace transform technique. Expressions for the velocity 
distribution and the skin friction, for various types of plate motion, have been obtained. 

W niniejs~j pracy zbadano lllCh lepko-spr-ctystej cieczy wzdluZ dwuWYIJliarowej, niestacjonarnej 
porowatej plyty, stosuji\C technik-c transformacji Laplace'a. Otrzymano zalei:noki okre5laji\ce 
rozklad pr-cdko5ci w cieczy i wartoki tarcia powierzchniowego dla r62:nych przypadkow ruc.hu 
plyty. 

B HaCTomi.leA pa001-e BCCJie~osauo ~H>KeRBe B.R3Ko~ynpyroA ~oCTH saom. ,nsyMepuoii, 
HeCTa.IUIOHapHOit nopBCTOH DJIBTbl, npBMeHIDI '!'eXHBI<y npeo6p830BaHWI JIIIJJiaca. llOJIY'ICH&I 
38BHCHMOCTH onpe~eJVII()llUie pacnpe~eJieRBe CKOpoCTB B ~OCTH H 3Ha'leHWI DOBepXHOCT~ 
uoro TpeHWI AJISI pa3HhiX cnyqaes ABH>I<eHWI IIJDIThl. 

1. Introduction 

THE PROBLEM of unsteady motion of a porous plate in an infinite fluid is of practica 
importance in the analysis of the shaking table of the Fourdrinier paper-making machine. 
NICOLL et al. [I) have studied the laminar motion of a viscous fluid near an oscillating, 
porous and infinite plane. Their analysis is important because it yields an exact solution 
of the Navier-Stokes equations of motion. DEBLEll and MoNTOGOMERY [2) analysed the 
flow of a viscous liquid over an oscillating, porous plate with suction or with an interme
diate film. However, this analysis does not satisfy the initial condition. SHARMA (3] applied 
Laplace transformation to improve the work of DEBLEll and MONTOOOMERY [2] and extend
ed the analysis of NICOLL et al. [I] by considering the damped oscillatory motion of 
a porous, rigid plane in an infinite viscous fluid with suction or blowing. 

In the above referred studies, the fluid considered was a Newtonian one. However, 
a mixture of water and wood-pulp is essentially a non-Newtonian fluid because of the pres
ence of solid constituents in it. Thus the available analyses need to be modified before 
one can apply them to the actual fluid situation. 

In the present paper the analysis 9f a generalized unsteady motion of a porous, in
finite plate in an elastic-viscous fluid has been attempted. Different forms of motion im
parted to the plate have been considered. Velocity distribution and skin friction resulting 
from various modes of plate motion have been obtained. One of the special cases consider
ed can be regarded as a generalization of the analysis due to NICOLL et al. [I) and the 
other as that due to SHARMA [3]. 
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2. Formulation of the problem 

The fluid considered is characterized by the constitutive equations 

(2.1) 
I 

(2.2) f 1 QXf oxl 
p'k = 2 1p(t-t) ox'm ox'r e<t)mr(x', t')dt', 

-00 

where covariant suffixes are written below, contravariant suffixes above, and the usual 
summation for repeated suffixes is assumed. Heres~~; is the stress tensor, pis an arbitrary 
isotropic pressure, g11 is the metric tensor of a fixed coordinate system x 1, x'1 is the position 
at time t ' of the element which is instantaneously at the point x1 at time t, e<1>1k is the rate 
of the strain tensor and 

00 

'P(t-t') = J N;T)_exp[-(t-t')/T]dT, 
0 

N( T) being the 'distribution function of relaxation times. For fluids with short memory, 
Eq •. (2.2) is simplified to 

(2.3) 

00 

where 'lo = J N(T)dt' is the limiting viscosity at small rates of shear, k 0 is the coefficient 
0 

of elasticity of the fluid, 
00 

ko = J TN(t')d-r, 
0 

and 6f6t denotes the convected derivative. 
Using the simplified equation of state, the equations of motion for the fluid in the 

Cartesian frame of refenence can be written as 

(2.4) 

where e is the density. 
Consider the unsteady flow parallel to an infinite plane surface on which the normal 

component of velocity takes a given value of v' = - W ~ If x' and y' are measured along 
and perpendicular to the plane, the velocity components u', v' and pressure are inde
pendent of x'. From Eq. (2.4) the governing equation with uniform pressure becomes 

ou' ou' o2u' ( o3u' o3u' ) (25) - -W-= V-- -k* -- -W--. ot' oy' oy'2 o oy'2ot' oy' 3 ' 

where v = 'lole' and k~ = k 0 /e', and the continuity equation for flow is identically 
satisfied. 
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The boundary and initial conditions are 

(2.6) 

u'(O, t') = U0 [l +F(t')], 

u'(oo, t') = 0, 

u'(y', 0) = 0, 

201 

where U0 is a constant and F(t') is an arbitrary function of time. Let us assume that the 
fluid velocity in the neighbourhood of the plate is 

(2.7) u'(y', t') = U0 [u;(y')+u/(y', t')], 

where U0 [u;(y')] is the velocity at t = 0 and U0 [uj(y', t')] represents the change in velocity 
due to F(t'). On introducing the non-dimensional parameters 

- u' _ y'W - k~W2 - t'W2 

(2.8) u = u 0 ' y = -,- ' k = ---;r- , t = ~ ' 

Eq. (2.5), after dropping the bars, . reduces to 

1 ou ou o2u k o3u o3u 
<2·9> 4Tt- ay = oy2 -4 oy2 ot +k oy3 • 

The boundary and initial conditions given by Eq. (2.6) become 

u(O, t) = [1 +F(t)], 

(2.10) u(oo, t) = 0, 

u(y, 0) = 0. 

The fluid velocity in the neighbourhood of the plate given by Eq. (2.7) becomes 

(2.11) u(y, t) = [u,(y)+u1(Y, t)]. 

Substitution of Eq. (2.11) in Eq. (2.9) gives 

(2.12) ku;" +u;' +u; = 0, 

and 

(2.13) k 
Ill 11 1 1 au, k ou'J 

0 u1 +u1 +u1------= 
4 at 4 at ' 

where the prime denotes differentiation with respect toy. The corresponding boundary 
conditions are 

(2.14) 
u, = 1, u1 = F(t) at y = 0, 

u, = 0, u1 = 0 as y -+ oo. 

Following FRATER [4] the exact solution of Eq. (2.12) with corresponding boundary condi
tions is 

(2.15) _ [ ( 1- v (l-4k>) ] u, - exp -
2
k y . 

Equation (2.13) can be solved by applying the Laplace transform defined as 

00 

u(p) = J exp( -pt)u(Y, t)dt, 
0 
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whose inverse is 
c+loo 

u(y, t) = 2
1 

. f u(p)exp(pt)dt. 
nl c-loo 

Application of the Laplace transform to Eq. (2.13) yields 

(2.16) k_,, ( 1 1 k ) _, _, 1 - 0 u1 + - 4 :p u1 +u1 - 4 pu1 = , 

where u1 is the Laplace transform of u1 . The boundary conditions for Eq. (2.16), represented 
by Eq. (2.14), reduce to 

at y = 0, 
(2.17) u1 =0 as y-+oo, 

where F is the Laplace transform of F(t). 
Equation (2.16) is a third-order differential equation with two boundary conditions. 

Following the method proposed by BEARD and W ALTERS [5], and SoUNDALGEKAR and 
PllATAPPURI [6), we assume u1 in the form 

(2.18) 

This expansion is justified since the rheological equations are valid only for small values 
ofk. 

On substituting Eq. (2.18) into Eq. (2.16) and equating the various powers of k, one 
obtains 

(2.19) 

and 

(2.20) _, -, p - -11 I p 11 

Ut +u1 - --u1 = - u1 +-u1 . a a 4 2 a 4 a 

The corresponding boundary conditions are 

(2.21) 
ii1, = F, u1, = 0 at y = 0, 

u,, = 0, u12 = 0 as y-+ oo. 

From Eq. (2.18) through (2.21), one obtains 

(2.22) 

where 

(2.23) 

(2.24) 

(2.25) 

Pt = Fexp(-::-hy), 

- F(h 2 +p/4) 
pl = Jl(l +p) r yexp( -hy), 

h = ~ [I+ y (l +p)]. 
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3. Method of solation 

The unsteady velocity is found by inverting {i1 and P2 given by Eq. (2.23) and (2.24). 
In order to determine the inverse we put F = 1 and, inverting the values of 7ft and lf", [7], 
one gets 

(3.1) 
_ yH(4t/y2

) -( :- +Ytr 
Pt = £-l(fJ~> = 4 Jlnt3f'J. e • , , 

(3.2) 
yH(4tfyl) [ y4 y3 3 yl 3 yl 

fJ1. = L-
1
{{i2) = y (nt) 4096t4 + 256 t 3 - 256 (' + 128 t 2 

3y y 3 3 1 

1 
-( ;, + y,r 

- 32 t2 + 161 + 64 t2 - 16 t + M e 
4 1 

' 

where H(4tfy2) is the Heaviside unit step function. 
The shear stress in case of an elastic-viscous fluid is given 

orl ( o2u' o2u' ) 
(3.3) p~·,· = TJo oy' -ko oy'ot' +v' oy'2 . 

Non-dimensionalizing Eq. (3.3) with parameters given in Eq. (2.8) and dropping the bars, 
one gets 

(3.4) 

The skin friction at the plate is 

(3.5) Px1 ]1 .o = -1+cxt +kcx1., 

where 

(3.6) 

When F(p) ::P. 1, the values of {J1 and {J2 can be calculated by applying the convolution 
theorem [8]. Thus 

{J = J, F(t-A.) [yH(4A.fyl) e- ( .. {r+Yif]dA. 
1 o 4 Jl nl 3/l ' 

(3.7) 

t 

whereF(t- A.) is bounded and integrable over afiniterangeand J A. - 312F(t- A.)e-<A+12116>dA. 
0 

is absolutely convergent for timet. 
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4. Special cases of F(t) 

Now we consider some special cases of the function F(t), characterizing the motion of 
the porous plate, 

(i) The impulsive velocity field corresponds to 

(4.1) F(t) == Jrll(t), 

where Jr is constant. From Eqs. (3.7) and (4.1) one·obtains 

p, = -}KH<t>(e-•erfc(4 ~-,-- Yt}+erfc(4it+ Yt)]. 
(4.2) 

For very large values oft, P1 == Jre- 1 and P2 == Jrye- 1 so that u1 == (1 +ky)Jre-1 • For 
this type of motion, Eq. (3.6) gives 

er, = ~ KH(t) [' +erf{l + ;: l 
J(]f(t) [ 1 1 ] -t 

«2 == y(nt) 32t -16 e · 

(4.3) 

The results given by Eq. (4.2) and (4.3) are valid for t :1: 0. As t--. oo, (X 1 --. Jrll(t) and 
ct2 -+ 0. 

(ii) Single acceleration is defined by a function 

(4.4) F(t) == Jrtll(t), 

which is valid for all finite values oft. From Eq. (3.7) and (4.4) one gets 

p, = ~ KH(t) l{t- ~}e-•erfc( 4;-,- - Yt} + (t+ ~ }errc(4;-,- + Yt) J. 
(4.5) 

P2 == JrH(t) [ y(l ~St) exp {- ( ~- + vt)2l + y
4 

erfc( :r; + yr) 
16 J1 (nt) 4 f t 4 v t 

+ y (_!__- _!_ - L} erfc (-y --vr)] 
2 4 8 4y't ' 

and from Eq. (3.6) and (4.5) one gets 

(4.6) 
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For large values of 1, {11 -+ KH(t) ( 1~ ~} e-1 and {12 -+ KH(I)y (1-{- - ~ ) e-1 , 

and ot1 -+ x(l+ ! ) and "'• -+ (- !) . Thus the skin friction due to F(l) for large 1 is 

[- I + K { 1 + ! (I - k)}] . This implies that skin friction reduces on account of the visco

elastic property of the fluid. 
(iii) Multiple acceleration is defined by the function 

(4.7) F(t) = KtH(t)- K(t- t0 )H(t- t0 ), 

which is valid for t =I= 0. Let P~ (y, t) and p; (y, t) denote P1 and P2 for the case when 
F(t) = KtH(t); then, for the present case, one has 

P1 = P~(y, t)-p;(y, t-to), 
(4.8) 

P2 = P~(y, t)-p;(y, t-t0). 

The values of P1 and P1 and cx1 and cx2 can be obtained from Eqs. (4.5), (4.6) and (4.8). 
For large values oft, rt1 --. t0 KH(t) and cx2 --. 0. It is seen that these values are t0 times 
the corresponding values of «1 and cx2 given by Eq. (4.3). This is because the final increase 
in fluid velocity for the present case is t0 times the corresponding increase in fluid velocity 
when F(t) = KH(t). 

(iv) Periodic velocity field is defined by the function 

(4.9) F(t) == e1w'H(t), 

where w is the non-dimensional frequency of oscillations given by w = w' 4v I W 2
• The 

constant K has been dropped in the further analysis for the sake of covenience. Expres
sions for P1 and P2 are obtained as 

1 [ _..!..y(l+f(l+iw)} ( y ) 
P1 = 2e'(DIH(t) e 

2 
erfc 

4
y't -~(1+iw)t 

(4.10) 
_..!..y(l-f(l+/01)) ( y )] 

+e 
2 

erfc 
4 
y't + y (I +iw)t , 

P _ lwt H( ) lW -w lW I 2 

[ 
1 

( 
8(1+ . ) 2 • ) _ _!_,(t+{l+lw) 

2- e y t - . +-+ e 
4 8JI(1+iw) 2 

• 
x erfc --=- - y (l + iw )t + - 1 + - - ____;_""""i=====:=--( 

y ) 1 ( iw 8(1 +iw)-w
2

) 

4yt 4 2 y(l+iw) 

x e 2 erfc --=- + y' (1 +iw)t 
_ _!_y(t-y(l+io";}) ( y ) 

4v' t 

y ( y
2 

y 1 (7+iw) ) [ ( y .. ;-;-)
2

] + H(t) y' (nt) 256t2 + 16t - 32t + 16 exp - 4 v't + "t · 
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Similarly, one obtains from Eq. (3.6) and (4.10) the expressions for cx1 and cx2 as 

(4.1I) 

at:1 = 
2
I H(t) [e'Q)' + y' (I +ic.o)e'Q)'erfy' (I +iw)t + . I e-'], 

}" (nt) 

(v) The decaying oscillatory velocity field is represented by the function 

(4.I2) 

For this case the expressions for P1 and P2 from Eq. (3.7) and (4.12) are obtained as 

I [ _ _!_y(t+ Y(l-,>> ( y ) P1 = 2 H(t)e_, e 
2 erfc 

4 
y't - y (1-y)t 

(4.13) 

-~y(t- f(l-y)} ( y )] 
+ e erfc 

4
yt + y' (1-y)t , 

_ [I (8(I-y)+y2 y ) -fy(t+l"<t-r>> P2 = H(t)ye "' - . - - + 1 e 
4 8y(I-y) 2 

x erfc (-y-- y' (I-y)t) + _!_(1-L- 8
(
1
-y)+y

2
) 

4yt 4 2 y(l-y) 

x e erfc ----=- + y' (1-y)t 
-~y(t-Y(I-r>> ( y __ )] 

4Jt't 

y ( yl y I <'-">) [ ( y v-)2

] +H(t) y(nt) 256t 2 + 16t - 32t + I6 exp - 4v't + t ' 

where y = ).2-ic.o. 
Similarly, the expressions for at:1 and cx2 are obtained from Eq. (3.6) and (4.13) as 

(4.14) 

"• = -} H{l) [ •-"' + V (1- y) e-r•erf V (I-y)l + V (~I) ·-']. 

«2 = H(t)[-~e-Y'- }/if.=Y) e-'+ I e-'+(L_.L)(l-y)-~ 
8 I6y (nt) 32t y (nt) 8 16 

xerfV(l-y)ll 
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Consider a particular case when A. 2 = 1. For this case cx1 and cx2 simplify to 

(4.15) 
cx 1 = ~ H(t)e-' [sincot+ y(2co)(sincotSy'Wt +coswtCywt}), 

cx2 = H(t)e-'f 
8
1 

sincot- co
8 

cos cot- ; 
16 (nt) 

(l+w2) -
- y' (coswtSy'Wt -sinwtCywt )], 

8 (2w) 

where C(v'Wt) and S(y' wt) are Fresnel integrals. 
For the case when A. 2 :I= 1 and w ~ 11- A. 21, the expressions for cx1 and cx2 become 

(4.16) 
cx 1 =-} H(t)e-A1'(sinwt+ y(2w) {sinwtS(y wt )+coscotC(y'Wt)JJ, 

cx2 = H(t)[- ~ e-'+e-Al'{-
8
1 

sinwt- w
8 

coswt 
16) (nt) 

(l+w
2

) - }] - y (cos wtSy'Wt -sinwtC~I wt) . 
8 ~~ . 

S. Conclusions 

It may be seen by examining Eqs. (3.1) and (3.2) that P1 and P2 depend on the para
meter y/(4yt). Also, following WATSON [9], it may be noted that a secondary boundary 
layer is created when the plate velocity is subjected to an instantaneous impulse. 

Since the fluid elasticity reduces the skin friction, the power input to fluid at the plate 
per cycle, given by the expressions 

T 

P = - J Px1 ] u(O, t)dt, 
Y'""O 

0 

where T = 2n/w, is also reduced. Thus the power required to vibrate the shaking-table 
of the Fourdrinier paper-making machine is less than that estimated by treating the water
wood pulp mixture as a purely viscous liquid. 

For the case wherein a damped oscillatory plate velocity occurs about a constant mean, 
the dominant skin friction term, at large values of oscillation frequency, is cx2 • This term 
fluctuates with a phase lag of tan- 1 (S V wt /CV wt) with respect to the fluid velocity; and 
for very large values of wt, it becomes n/4. This result is in agreement with the work of 
STUART [10]. 
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