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Application of methods of characteristics and perturbation in
solving the wave problems of viscoplasticity(*)

P. PERZYNA and K. WOLOSZYNSKA (WARSZAWA)

THE AM of the paper is to construct the mathematical procedure based on the method of per-
turbation along characteristics, describing the instantaneous state of stress and strain on
the waves of strong d:scuntmmty Such a procedure is presented for the problem of a spherical
hole in the elastic-viscoplastic medium subject to the impact loading on the surface r = ry.
The existence of the yield limit x, is assumed. The viscoplastic deformations P appear above
this limit. To account for the changes of viscoplastic properties of the material with the change
of the deformation rate, the appropriate evolution equations are delivered for the inelastic
deformation P. In the viscoplasticity, we face two ranges of P (II and IV), in which two differ-
ent physical mechanisms are responsible for the permanent deformations. Bearing in mind
the evolution equations for each region, the nonlinear ordinary differential equations are de-
rived to describe the stress change on the face of the shock wave. The perturbation method
of solution is applied to these equations. The stress on the wave follows in the form of the power
series with respect to the small parameter. The excess function @ introduced in the paper
makes possible the utilization of this method to the equations for P in the region II, while the
assumption on the viscosity function A to depend on the small parameter yields the utilization
of this method in the region IV.

Celem pracy jest opracowanie procedury matematycznej polegajacej na zastosowaniu metody
perturbacyjnej wzdhuz charakterystyk do okreélenia aktualnego stanu naprezenia i odksztalcenia
na falach silnych nieciagloéci. Procedur¢ t¢ opracowano dla przykiadu zagadnienia pustki
kulistej w o$rodku spreZysto-lepkoplastycznym poddanej na powierzchni r = ro naglemu obcig-
Zeniu. Zalozono istnienie granicy plastycznosci x;, powylej ktérej pojawiaja si¢ deformacje
lepkoplastyczne P. Zmieniajace si¢ wraz ze zmiang predkodci wlasnoéci lepkoplastyczne ma-
terialu zostaly uwzglednione przez podanie odpowiednich réwnad ewolucji na dcformacjg
niesprezyst P. W lepkoplastycznoéci mamy do czynienia z dwoma zakresami zmiennosci P
(I i IV), w ktorych wystepuja rozne fizyczne mechanizmy odpowiedzialne za trwale deformacje.
Wykorzystujac robwnania ewolucji otrzymano dla kazdego obszaru nieliniowe réwnania réznicz-
kowe zwyczajne, opisujace zmiang naprezenia na czole fali uderzeniowej. Do rozwigzania tych
réwnan zastosowano metod¢ perturbacyjng, napreZenie na fali otrzymano w postaci szeregu
potegowego wzgledem malego parametru. Zastosowanie takiej metody bylo mozliwe, poniewaz
do réwnad pa P w obszarze II wprowadzona funkcje nadwyiki @, a w obszarze IV funkcje
lepkodci A przyjeto jako funkcje malego parametru. Parametr ten moina dobraé na podstawie
wynikéw eksperymentalnych.

Llemeio paGoTh! ABNAETCA paspaboTKa MAaTEMATHIECKOM NpoNeayphl, 3alimovaiomelica B IpH-
MEHEHWH IepTYPOANHORHOTO METO/Ia BAOIE XAPAKTEPHCTHK, JULA ONpeeIeHAA HANPSDKEHHOro
H AedOpMAIHOHHOr0 COCTOAHMI HA BOJIHAX CHJILHOIO pasphiBa. JTa mpoleAypa paspaborana
JUIA cirydas 3anaun ccepradecKoil MycToThl B YNPYro-BASKOILTACTHYECKOMH cpefie, IOABEPIHY-
TOH Ha IMOBEPXHOCTH F = rp BHe3amHO# Harpyske. IIpeamono)keHo CyImecTBOBaHME Npeaecna
ILUTACTAYHOCTH ¥, CBBIIIIe KOTOPOro NOABJIAIOICA BA3KOMacTadeckue medopmaimm P. Hame-
HAIOIIHECA COBMECTHO C H3MEHCHHEM CKOPOCTH BAIKOILNACTHYECKHE CBONCTBa MaTepHaaa yd-
TeHBI IyTeM MPHBE/JeHHSA COOTBETCTBYIOMIMX YPABHEHMI SBOIOHY JUIA HeYNpyro# Aeopma-
1aH P. B BA3SKOILIACTHYHOCTH HMeeM JIeJI0 ¢ AByMA HuTepBanamu mamenenus P (II u IV), B ko-
TOPBIX BHICTYIIAIOT PasHble QHIMYECKHE MEXAHIMIMEI OTBEYAIONIHE 33 OCTATOUEBIE AedopMalHu.
Hcnomesys ypaBHeHAA 3B0JIOIMH, MONYIeHb!, JUIA KOKX0H 06nacTH, HeimueliHbIe OORIKHO-
BeHHble maddepeRnHaIEHEIe YPABHEHR, OMMCHLIBAIOLINE H3IMEHEHAE HANPSDKEHAA HA (poHTe
yAapHoi Boymel. [[na pelieHnsA STEX ypaBHEHHH NPHMEHEH NePTyPOANHOHHELN METO ; HANTPA-

(*) The paper has been prepared within the framework of the problem 05.12 subproblem 02.7: “Methods
of solution of the problems of statics and dynamics of plastic and viscoplastic media and structure”.
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JKeHHe Ha BOJIHE IOJIyYeHO B BH/E CTENEHHOrO PAAR MO OTHOUIEHHIO K MAjOMy IapaMeTpy.
ITpumeHeHTe TAKOTO MeToAa OBUIO BOSMOMKHO, T. K. B YpaBHeHMsaX Jisa P B obmacru II Bee-
meunas (ysxus npessnnenns @, a B obnacru IV, byHEKImA BASKOCTH A, TPHHATE! Kak GyHK-
LMY MJIOTO IapameTpa. DTOT mapameTp MOYKHO Iomo0paTh Ha OCHOBE SKCIEPHMEHTAILHBIX
Pe3yJILTATOR.

1. Introduction

IN THE PAPER, the problem of a spherical hole in the infinite medium is solved for the
impact loading of the boundary. The rate of deformation depends on the value of this
loading: the high rates correspond to the large pressure. Since the medium under con-
siderations is elastic-viscoplastic then its properties depend on the deformation rates. For
this reason the viscoplastic maferial cannot be described by a single constitutive equation
for the whole range of rates (or, equivalently, for an arbitrary loading). Such problems
have been treated in many papers for a limited rate (e.g. for aluminium up to 10° sec™?).
Hence these considerations were limited to the so-called region II, in which the dissipation
effects are due to the thermal activation mechanism (SEEGER 1955 [11], PERZYNA 1966 [10]).
The experimental results of the recent years (DHARAN, HAUSER [1], FERGUSON, KUMAR,
Dorn [2], KuMAR, KUMBLE [4]) allow to take into considerations also the higher rates,
a so-called region IV. In this region, the constitutive equation (PERZYNA 1974 [7]), DHARAN,
Hauser [1]) takes into account the influence of two mechanisms on the plastic flow. These
are the mechanisms of the motion of dislocations, namely the mechanism of phonon
viscosity and the mechanism of phonon scattering.

For small deformation, this equation is of the form of the sum & = &°+ P, where & — the
total rate of deformation, &® — the rate of elastic deformation, P — the rate of inelastic
deformation. Simultaneously, we assume that the properties of material are mainly in-
fluenced by the rate of inelastic deformation P. To determine the constitutive relations,
the evolution equation should be, first of all, formulated for the rate of inelastic deform-
ation P in the regions II and IV.

For such a formulation of the problem, bearing in mind all ranges of the rate of de-
formation P, the nonlinear differential equations are derived. They describe the change
of stress along the ray on the face of the shock wave in the region II and the change of
deformation in the region 1V.

To solve these equations, the perturbation method is applied. The stress (in the region II)
and the deformation (in the region IV) on the wave follow in the form of the finite power
series with respect to the small parameter.

This method can be utilized due to the excess function @ introduced into the evo-
lution equations for the deformation rate P in the region Il and the viscosity function 4
depending on the small parameter —in the region IV. In the numerical calculations,
the small parameter can be chosen according to the existing experimental data.

2. Constitutive relations

As we have already mentioned in the introduction, the deformation rate & in the elastic-
viscoplastic medium is assumed to be of the form of sum é = é*+P. We assume the
existence of the yield condition (in our case, it is to be the Huber-Mises condition J/II, = %, ,
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where 11, is the second invariant of the deviatoric part of the stress tensor, #, — hardening
parameter), i.e. for S such that J/TI, > x, there appear the viscoplastic deformations
P, and for /10, < %, the material is elastic, linear and without viscous effects.
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We assume that the curve J/II,—}/1I; for the complex state of stresses (Fig. 1) is the
same as the curve in the test of axial compression (it is confirmed by the experimental
investigations). According to the experimental data, it has been noticed that for the rates
higher than §; (the value of stress is such that ]/iT,, > 2,), the relation between the stresses
and the rate of inelastic deformation is linear. However, it holds true only to a certain
value of the rate, which is denoted by f, in the figure; it is the region I'Va.

For high rates (bigger than f;), the material is very sensitive to the change of rate;
the small variation of J/11; is accompanied by the big variation of }/II, and, for J/II;
approaching the rate «, the stress tends to infinity. The equality J/II; = a corresponds
to the dislocation moving with the speed of sound, and « = g,b.c/})/3, where g, is the
density of moving dislocations, b — Burgers vector, ¢ — speed of sound in the material.
We have here a certain kind of the relativistic effect related to the speed of sound (PERZYNA
[7], DHARAN, HAUSER [1]). ]

The Fig. 1, describing the influence of the rate P on the stress, is right only for the
constant permanent deformation. During the whole process, the inelastic deformation
changes, and, consequently, the curve (J/II,—/11;) is going to be more complex, i.e. in
real materials #,, #; and « are functions of P. Taking into account the above considera-
tions, we can write the following evolution equation for P in all ranges of the deformation
rate(?).

0 ]/E < %5,

1, S <o
Y1 ¢( '/"1 - l) I/E #y < ]/H.s < %,

V2 ('/H' _1) & +y,¢(ﬁ—l)-—§_—:-, VI, > %,
) My #y

A(l— % I, V1L,

(*) The influence of the temperature is neglected in the paper.

(21 P=
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where: y,, y, — coefficients of viscosity, @ — the excess function, 4 — viscosity function

(see PErRZYNA [6]).
The function A satisfies the conditions
(2.2) lim A=0 and A=4, for II; <€a?
o “a?

Both functions @ and A are to be fitted to the experimental data (HAUSER, SIMMONS,
Dorn 1961 [3]) and are chosen according to the physical theory of plasticity.

3. Spherical wave

Let us consider an infinite elastic-viscoplastic medium with the spherical hole of the
radius r, subject to the impact loading on the surface r = rq. In the spherical frame of
reference (r, @, 0), we have the following components of the displacement

(31) U, = ﬂ(?’, f), ﬂ, =ty = 0!
of the strain tensor

du u
(3.2) & = " Egp = Egp = =

and of the stress tensor
(3.3) 01, 1), Op(r, 1) = ag(r, 1).

The above problem is described by the two systems of equations, which differ one
from another by the constitutive equation according to the actual value of the stress, viz.

(2.1).
Let us start with the assumption that the applied load is such that the constitutive rela-
y & au 4 2 " 1 . II, S
tion (2.1), holds, i.e. it is the region II, where é&; =-ESU+:V, di( 5 —l) '/1‘1_':
and ¢, = -;k-o',;. Denoting v = %:_’ ¢ —density of the material, we obtain
_gv.:+drr.r+2 G~ How = os
1 1 v a,,—a,
YRS BV _——ﬂm("—"—l) ~o,
2 2u et
(3.4) # # V3n
3K0,,— O, — 2apg, i+ 6K~ = 0,

Vr— &t = 0;

v
Egp,t—— = 0.
Pp.t T

It is the system of five partial differential equations of the first order for five unknown
functions (v, @y, Ggy, &, &py). The characteristic lines of the system (3.4) have the form

(3.5 r = const, r = ro+at+const,
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where

a= "/ 4u :;:?31( , @ and K — elastic constants.

Appropriate conditions have to be fulfilled on each characteristics; in particular for the
characteristics r = ro+at, which is the wave of strong discontinuity in our case (the shock
wave), we have

(3'6) (4#+3K)dv-—30da,,+ [" '? (arr-aw)_'(“ﬂ_GK)—:j‘ —‘4}‘ ﬁy¢]df = 0.

Additionally, assuming the unperturbed region ahead of the wave, we obtain the kine-
matic and dynamic continuity conditions along the discontinuity line for the spherical

wave
v+ae, =0,
(3.7 _
gav+a,, = 0.
Due to the infinite value of ¢,, on the wave, the following constitutive relation on the
discontinuity line holds

(3.8) Opp = a,.,( - ﬂ‘—)

Taking into account (3.8), (3.7) in (3.6), we arrive at the ordinary differential equation
on the front of the shock wave with the initial condition

dd," O 2”?1 2#
di BT T e L 2 a,—1),
(39) r r y3a \y3eas
urrlr-r, = Po-
The stress on the characteristics r = ro+at is solely the function of the location
' = Gp(r).

The hardening parameter %; on the wave is constant due to the zero value of the plastic
work (see PERZYNA, BEIDA 1964 [8]). To solve the equation (3.9) different forms of the
function @ have been proposed (PERZYNA 1963 [9]). We assume that @ is the function of
the small parameter ¢, i.e.:

(3.10) a)(l/;? _1) = 6('/%-1, s) = c('/x—l?: —1)+ea>*(s, "f -1),

where C is the dimensionless constant.
The parameter ¢ and the function @* can be chosen for a given material according

o
to the experimental data(?). We assume that the function #* has the derivativesa;T

for arbitrary k. Denoting

4vi . g 2,
P PR =E—

3’ %, V3a
P’}’l ( - 1 . 8)
VY 3a V3 0a%x, Y ’

(%) An example of such a choice will bs discussed separately.

(3.11)
‘P‘(o'rr 2 8) =

10 Arch. Mech. Stos. nr 2/79
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we can write the initial problem (3.9) in the form
P O ST e . el ;
G.12) % ( A) o, +B—ep*(a,,, &),
arrlr-ro = Po-

The solution (3.12) will depend on ¢, i.e. a,, = 0,,(r, ). Substituting ¢ = 0 in (3.12)
we get

da®, _(
(3.13) dr r
62’(’0!0) = Do,

il A)u?,+8,

where ¢®. = a,,(r, 0).
The equation (3.13) has the unique solution o2 and, hence, there exist (O’MALLEY
1974 [5]) such constants £ and D that the equation (3.12) possesses the solution of the form

2
Oy = °3+£0"....+—£2—-0",:.+0(£’) for r such that |r~ro| < D,
3.14
( ) al — da" (- dza”
"7 de |t "7 dE? oo

The functions o], and o], are, respectively, the solutions of the differential equations
following from (3.12) by the subsequent differentiation with respect to & for € = 0. Inte-
grating (3.13), we have

B e

B

The constant d,, is determined from the initial condition (3.13);. The equation for a,,:

(3.16) - (“?I-‘ ‘A)"’""’"("g' 0.
Orlrer, = 0,
and, hence,
—~dAr
G.17) o, = dy(r, 0) = [—f¢*(ag,0)re“dr+d,] <,

d, is such a constant that the condition (3.16), is satisfied. Similarly, for g},

do,,

1 '
(3-18) dr " (— ? —A)o';r-zh‘.‘c,,(“?no)“’w"‘?’: aﬁ'l 0)]!

0‘:.:. |r-r. =0,
and, after the integration

e—all‘
r

G19) o= oi(r, ) = {~2 [ [9%, (08, 0+ 208, Olrevidr + s
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Now, the solution of (3.12) can be written in the form (3.14)

—-Ar
2 +d, eT_ + s[—f‘q:r‘(of,,ﬂ)re“’dr+d3] £

—dr

B
(320) a,(r,8) = e

—Ar
+6tf~ [ 192, (08, 0005 + 9208, Olrevdr-+ds) <

For the load applied in the hole of the radius ro and such that r = r, for Y11, > x;,
we are in the region IV and the relation (2.1); holds for P. To utilize (2.1); in the governing
set of equations, we have to express the function P in terms of § and &. It is possible for
the nonlinear function A, under the additional assumption of the following dependence
of A on the small parameter ¢

G21) 2(1_ f:_") - A(l— %”_, s) w Rk A(l— ] e), Ao — comst,

k

» . kA
where A possesses arbitrary derivatives 3
e=0

(3.22) lim 1=
“i-oﬂ’

. Besides, 7 has to satisfy the condition

following from (2.2).

For ¢ = 0 we obtain the region 1Va.

The functions %, and x,, depending on the constant deformation P, can be expressed
in terms of the arguments o and € by use of Hooke’s relations, i.e.

%y = #,(P) = %,(0, €),
o = a(P) = (o, €).

As we show further in the paper, the function  is chosen to limit in a certain way the
constants appearing in the relation of DHARAN and HAUSER [1] between P and S in the
region IV. The substltutlon of (3.21) in the relation (2.1), yzclds the system of equations,
describing P,, and P

(3.23)

> 2 1I; 2 ;
P, ho— —— y3W— ——p, VAo = eA[1 — —0, &) [—=y. V=P, |,
() V3 V2 V3 —=¥"1V4o ( o )('/3 "1 )
(3.249) ,,?.o+ — Y2W+ l_ Y1VAp = ei[1- I—If—,e (-—-—l_— y,v——ﬁ,,).
V3 V3 “ V3
ﬂ'"—(f" Xy
vWeE ———— 1 ¥ VE ¢ — -1 = = A
V3% ("=1 ), and w=w(e), v=v(g
. Now we demonstrate briefly the procedure, applied to the system (3.24), to find
P = f(a, €).
For a given system of equations with respect to z

8:1(z,v) = ¢fi(e),

el £2(z,1) = #3(9),

10*
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where z = (z;,2;), u = (w, v) and z = z(g), u = u(e), we can find the approximate so-
lution of (3.25) in the form

2
Z = z?+sz;+£7z','+0(53)
(3.26) 2, = %l
2 de e=0

2, = 28 +ezy+ %z’,’ +0(e%)

The method to be applied is analogous to the perturbation method, which has been
used for the differential equation (3.12). We assume that, for ¢ = 0, the system

2%, u% =0,

(3.27) &l i )
g2(z° %) = 0,
with the conditions
u =u(0), z°=2z0),

has the unique solution z°. Then, for sufficiently small & and a certain region of the variation
of z, we obtain the system (3.25). Differentiating (3.25) with respect to ¢ at the point ¢ = 0,
we arrive at the linear system of equations for z’:
8.121+8%.22; = fP—gl v,
82.121+8%,222 = f1—g3,.°0'.

The upper 0 stands for the values of these functions calculated at ¢ = 0. For instance:

=70, 1= 22

From the Cramer’s formulae

(3.28)

flo"'g‘!'.l'u‘ 8?.2 8?.1 f?'"g?.u'u'

0_ 0 .y o0 0 0_ 50 ot
(3.29) Zi = fl ggz.lll ;g 132,2 ; Z; = gi. 18?-{':‘ :;;': u
g%.2 8.2 gl.z 8.2

Similarly, the twofold differentiation of the equations (3.25) yields the system for z".
To simplify the further calculations, let us assume that the functions g,; i = 1, 2 are linear
with respect to z and u. According to (3.24), it takes place in our case. Then

0 o 0
gl,1z7 +8%.227 = 2f0,—g}. . 0",

50 L o0 ot _ 50 o
82.12y +83.227 = 27 ,—g3.u°0".

(3.30)

Hence, the solution is of the form

2f2.—8%.uu” g9.2 gl.1 20,8t
2fY—82.uu" 83 8.1 27— g3.uu"
331 z' = 2,8 2,u ?.2; 7V = 2,1 2,8 2,.u
=R ‘ & s ’ 'g?.l 22
22.1 £3.2 8'2.1 Eg.z
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In our case, according to the formulae (3.28), z = (I",.,, }5,,,), i.e. we seek }",,. and ﬁw
in the form

- - z -
P, (e) = PS+ePl+ — P +0(cY),

2
(3.32)

- - 2 .
P() = PO, +ePl+ %P;;,-#-U(e’).

Let us notice that

&i1=8.2=4%, &.,2=821=0.
Hence

g1 8.2
1821 &2.2
For ¢ = 0, we obtain PS and P2, from (3.24) in the form:

_Az

Py = %i—zwo‘{’%?l"o = '—/:'Zj—fo(aos ),
1 92 o, 1

5 1
Pl = — 2wy V0= — —_fi(a?, €,
o 1/3 10 ‘/3 1 ﬂfﬂ( ‘0)
I S P Y ﬁﬁ—l) A).
|/3 #2(a%, €°) "y
Similarly to P, we assume here that o and € can be expressed in the form of the series
with respect to &:

(3.33)

wl=w(0), v'=v(0) ie w'=

0,.(€) = o}, +ea,, .4 d"+0(s’)

Op(€) = a0y + eo’w-f- o’ +0(e%),
(3.34)

£2
en(€) = en +eep, + ?e‘"+0(8 )s

ep0(€) = sw+ssw+ s;;+0(a’)

The application of the formulae (3.29) yields

21 2 v, 2 9 ,
Ppp = — — i 72w+ ]/_—-W+ 75 71V _fo‘(ao"o’d")’
e 1 iﬂ 0 i Y2 ' 1 ! 1 »
(3.35) Pw—‘i/*g—*z—?zw ‘.'"—/?"j:“’—%——ﬂ" = —““‘/3- fi(@®, &, 0, €),
§0=i(l——é§§’%,0), W'=% o, V'..—_'-j—v— o

(*) w® and v° are not constant. They depend either on (a°, €°) or on (a®, P®) (sée (3.23)).
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In the same way, we have from (3.31)

P,,—'[_{—w +y, v 2;‘2 ?}—-

2
== 'f;(ﬂe, el)’ ata G', UN, ‘")s
(3.36) V3

DIt Yz dj 1 ‘io o
P” = - ‘-——W +)’1 2 Az[ de ‘-0""/10 (1:“(0 w )]}
f2(e% €%, 0, €, 6", €).

./3

Finally, taking into account (3.33), (3.35) and (3.36), we can write the expansion
(3.32) of P with respect to & up to the term 0(¢%) in the form

(.37 (fo+afl+ f,) R P=Po, e, ¢,a",¢").

Consequently, we are able to write the whole system of equations in the region IV,
in the same manner as for the region II;

G —0,
_w.t+arr.r+2% =0,

1 1 v g? -0
v,— T“—Un.r'l'ﬂﬂw,:*j— ‘/i fo+€f1+sz =0,

(3.38) 3Kv,,— 0y, 20, ,+6K%=0,

U, =&, =0,

v
EW“— T = 0.
The characteristic equation for this system is the same as for (3.4). Therefore we
obtain the differential equation for the stress on the face of the shock wave Z: r = ro+at
do,, g, 2u &?
L= = | fotefi+—
(3.39) dr r ]/3a(f° e/ 3 fz);

arrlr-rn = P,.

Due to the lack of jump of the inelastic deformation P on the wave X and the assump-
tion on the unperturbed state ahead of the wave, we have Py = 0. Hence P’|z = P"|z = 0.
The simple consequence of this fact and of the equation (3.8) is

”glz = const, VOLE = const, x;lz = x',']; = V'iz = V"'g = 0,
3.40 2 2 ,
CO ihpm 2 o1, whea® g, W= _a
V3eas|x V 3ea*%3lz V3ea*s3lz
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Substituting the relations (3.40) in the function, appearing in the parentheses of the
formula (3.39);, we can write the initial problem (3.39) in the different form
dcﬂ' r
(341) ‘_&;" .. A t,":}'E'Bl'*":( A +'P1(arr))+"""( —A Urr+v2(ar°n d’n));

olrr'rnro = Pos
where

4u’y, 2u (72
A= ——-""—— =const, B, =-—"—|[Z%—9,V%z| = const,
Yoa"Todls L (Z-n "')

2
Pi(0%) = V;"’;, 7012wz,
oy Awya [dR]| (1" o
va(0d, 07,) = A2 [—J;.IOW—I.;Yz lo“’ w 5

Substituting e = 0 in the equation (3.41), we obtain
da®, 1
dar. - _'}'_Al)o‘i?r'{'Bh dg'lrara = Po-

The equation (3.42), differs from the equation (3.13), by the constants only; hence
(see (3.15))

(3.42)

B, B, e““l'
(3.43) oy = T Py
Differentiating (3.41) with respect to e at the point & = 0, we get
da,, 1 ’
(344) —d;'_ = (_ ? "'Al) o'rr'l'vl(aa?r}s O,rrlr-r, = 0.

The integration of (3.44) (see (3.16) and (3.17)) yields

—A,r

(3.45) = 0,(0,r) = [f pi(o)rets dr+Cz]

Similarly to (3.18) obtained from (3.12), we arrive at the equation for g}, by use of (3.41)

do;, 1 >
gz ar . (_-'F_Al) Un"‘%(o'fn 0’;,),
( ' ) a:-;lr_-ro = 0;
and then
-A,r

(3.47) % = 00,7) = [ [ wa(et, adretvdr+ ]

The solution of the problem (3. 41) can be written in the form ((3.41),):

e Air
(3.48) oa,(e,r) = o o Cl —_— + & [y, (a8)retrdr+ C,)
A1 Al r
—A,r
+ [ [ vatet, are .»d,+c,] -

C,, C;, C; are such constants that the initial conditions are satisfied.
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4. Final remarks

The solutions (3.20) and (3.48) obtained in the previous Section gives the values of the
stress on the face of the shock wave in terms of the assumed initial condition p,.

Due to the geometrical dispersion and the considered viscoplastic model, the stress
on the wave is the decreasing function of the radius r. Hence, for sufficiently large po,
the stress @,,(r) reaches the values corresponding to all regions. The solution (3.48) holds
for r taken from the interval: ro < r < ry, where r; satisfies the condition

]’ Hl(rl) =%,

or, on the face of the shock wave

2u
———— O, \r) = #;3]z,
]/3902 ( l) 2]2
o,, being the solution (3.48).
For r > r,, the equation (2.1), for P holds (the region II) and the value of the stress
on the discontinuity line follows from (3.12) with the different initial condition

dﬂ'[r-r‘ =P1;

where
= l/?ea’xz =
2u )
Similarly, the relation (3.20) holds for r from the interval r, < r < r,, being such that

1

VIL(r) = %y, (ﬁ On(rs) = x,).
For r > r,, the elasticity equations hold (|/ I, < %,). Then the solution is
ﬁ@“z"x rz
iy 5= i
2u r

The calculation of a,, and, hence, v and ¢,, (from (3.7)) on the wave r = ro+at yields
the possibility of approximate solutions of the equations (3.4). It may be, for instance,
the method of finite differences along characteristics.

The conditions on characteristics r = const and r = ro+af+const

v 3K 3K

de,, — —J—dd,,+—l—do'w— (~'l + ﬁydi)dt =0,
2u 2u r
4.1
v
dgw == ? df,

[ii:i'(“rr‘“ww)+4l/§nﬂr¢+ ;(%—6&’)] dr—(4u+3K)dv + 3ada,, = 0,
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the boundary condition

‘-frr('o, f) — _P(f),
p(®) >0, p(0) = po,
and the known functions 6,,, Gy, U, &, & 0N r = ro+at yield the unique solution in the
region D = {(r, t):r > ro+at}(*). For the constant or monotonically increasing function
p(1), the region D is the region of viscoplastic strains. For different forms of loading p(t),
both the elastic and viscoplastic strain regions will appear in D.

Let us determine now the function A, appearing in the formula (3.21). Choosing the
function 4, we apply the hint delivered by the results of Dharan and Hauser. Starting from
the experimental data and the physical theory of plasticity, these authors have derived
the relation between the stress and the deformation rate. Bearing in mind this relation we
arrive at the form of the viscosity function A (P. PERZYNA [

@43 a( -5 _A,[(I_T) ( “ﬁ) ] Az( m)

The first term in this formula for A corresponds to the dumping mechanism of the
motion of dislocation, while the second one is connected with the phonon scattering.

For the deformation rate satisfying the condition yYII; > f; (for alumium
B3 ~ 10* sec™!) the quantities 4, and A, are related by the inequality 4, <€ 4, and both
are smaller than unity in the room temperature. Neglecting the influence of temperature,
the quantity A, is constant while 4, is the decreasing quantity with the increasing speed
of moving dislocations (i.e. with the growth of P). It follows from the diminishing in-
fluence of the dumping mechanism on the motion of dislocation for high rates (the region
IVb) and the dominant influence of the phonon scattering mechanism. For this reason,
assuming A4; and A, to be the constants of the order &2 and &, respectively, we take the
function 4 in the form

(4.2)

3

o) e 2 2 2
(-t -2 o2 -2

For ¢ = 0, we have 4 = A,, and it is the region IVa,

This approach allows to obtain the analogous differential equation for g,, both in the
region II and in the region IV. Hence, it allows to apply the same perturbation procedure
along the characteristics in both cases and to calculate the actual values of the stress o,
on the waves of strong discontinuity.
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