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Application of methods of characteristics and perturbation in 
solving the wave problems of viscoplasticity(*) 

P. PERZYNA and K. WOLOSZYNSKA (WARSZAWA) 

THE AIM of the paper is to construct the mathematical procedure based on the method of per­
turbation along characteristics, describing the instantaneous state of stress and strain on 
the waves of strong discontinuity. Such a procedure is presented for the problem of a spherical 
hole in the elastic-viscoplastic medium subject to the impact loading on the surface r = r0 • 

The existence of the yield limit "1 is assumed. The viscoplastic deformations P appear above 
this limit. To account for the chang~ of viscoplastic properties of the material with the change 
of the deformation rate, the appropriate evolution equations are delivered for the inelastic 
deformation P. In the viscoplasticity, we face two ranges of P (11 and IV), in which two differ­
ent physical mechanisms are responsible for the permanent deformations. Bearing in mind 
the evolution equations for each region, the nonlinear ordinary differential equations are de­
rived to describe the stress change on the face of the shock wave. The perturbation method 
of solution is applied to these equations. The stress on the wave follows in the form of the power 
series with respect to the small parameter. The excess function lP introduced in the paper 
makes possible the utilization of this method to the equations for P in the region 11, while the 
assumption on the viscosity function A to depend on the small parameter yields the utilization 
of this method in the region IV. 

Celem pracy jest opracowanie procedury matematycznej polegajilcej na zastosowaniu metody 
perturbacyjnej wzdluZ charakterystyk do okre81enia aktualnego stanu napr~nia i odksztalcenia 
na falach silnych nieciilgloSci. Procedur~ t~ opracowano dla przyldadu zagadnienia pustki 
kulistej w osrodku sp~sto-lepkoplastycmym poddanej na powierzchni r = ro naglemu obciil­
ieniu. Zalot.ono istnienie granicy plastycmo5ci "h powyt.ej kt6rej pojawiajil si~ deformacje 
lepkoplastyczne P. Zrnieniaj~ si~ wraz ze zmianil pr~oSci wlasno5ci Jepkoplastycme ma­
terialu zostaly uwzgl~nione przez podanie odpowiednich r6wnafl ewolucji na deformac~ 
niespr~zys~ P. W lepkoplastycznoSci mamy do czynienia z dwoma zakresami zmienno5ci P 
(11 i IV), w kt6rych wyst~pu~ r6:Zne fizycme mechanizmy odpowiedzialne za trwale deformacje. 
Wykorzystujilc r6wnania ewolucji otrzymano dla kaZdego obszaru nieliniowe r6wnania r6Znicz­
kowe zwyczajne, opisujilce zmian~ napr~ia na czole fali uderzeniowej. Do rozwiillaJlia tych 
r6wnail zastosowano metod~ perturbacyjnil, nap~e na fali otrzymano w postaci szeregu 
pot~owego wzgl~em malego parametru. Zastosowanie takiej metody bylo moZiiwe, ponicwat 
do r6wnan naP w obszarze 11 wprowadzonil funkcj~ nadwyZki lP, a w obszarze IV funkcjct 
lepkoSci A przy,Kto jako funkcj~ malego parametru. Parametr ten mo:Zna dobrac na podstawie 
wynik6w eksperymentalnych. 

Uem.ro pa6ond JIBJUICTCH paspa6oTKa MaTeManAecJ<o:H npo~e.zzypbi, 38ICJIIO~eii:CH a npH­
MeHemm ne~om10ro MeTOAa BAom. xapai<TepHCTHK, .wm onpe,Aenemm :uanJUDI<eHHoro 
B Ae<i>oPManHOBlloro cocroHHIIii: Ha BOJIHaX CHJILHoro paapbma. 3Ta npo~e.znrpa paspa6oTa:ua 
AIDI CJiyqaJI38All1JB e<l>epJI'CiecKOii: nyCTOTbi B ynpyro·BJI3KOIIJiaCTB'Ieci<Oii: cpe,Ae, DO,ABepmy­
TOH :ua noaepmocm r = ro aaeaaumo:A: :uarpy3Ke. IlpeAIIono>l<eHo ~eCTBOaaHHe npe,AeJJa 
IIJJ8CTHQHOCTII X1, CBblllle KOToporo DOHBmn<>TCH BH3KOIIJI&CTBqeCJ<He Ae<i>oPMaiUIH P. lf3Me­
HJIIOIIUiecH COB.MCCTHO C H3MeHeHHeM CKOpoCTH BJI3KOIIJI8CTH'IecKHe CBOHCTBa .M&TepHaJia yq­
TeHhi nyTeM IIPHBeAeBWI COOTBeTCTByro~ ypaa:uemdi 3BOmo~ AJVI Heynpyroit A$pMa-
UHB P. B B.R3KOnnaCTiftlllocm BMeeM ,Aeno c ABYMH mrrepaaJI&MH H3MeHeliWI P (11 H IV), a KO­
TOpbiX BblcrynaiOT pa3Hb1e cj)113J111eCKHe MexaHH3Mbl OTBCllaiOliUIC 38 OCTaTOtm&Ie Aeclx>PManHH. 
Hcnom.ayH ypaauemm 3Bomo~, nonyqem.I, AJIH K8>f<AOH o6naCTH, BeJIRHclbu.Ie o6biKHo­
BeHHble AB<I$epelii:Oiam.Blde ypaaaemm, ormCbmaromue H3MeHeHBe mmp.R>Kemm Ha cj)poHTe 
YA&PHOii: Bo.11HLI • .lLM pememm 3THX ypaaaemdi npHMeHeH nePTYP6UU~ollllldi MeTOA; mmpH-

(•) The paper has been prepared within the framework of the problem 05.12 subproblem 02.7: "Methods 
of solution of the problems of statics and dynamics of plastic and viscoplastic media and structure". 
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meHKe Ha BoJIHe no.rrytieHo a BH,n;e creneHHoro pH,n;a no oTHomemno K MaJioMy napaMeTpy. 
IlpHMeHeHHe TaKOrO MeTo,n;a 6h1JIO B03MO>KHO, T. K. B ypaaHeHIDIX ,ll;JIH p B o6JiaCTH I! BBe­
,n;eHHaH <PYHimHH npeai>nneHHH (]),aB o6rraCTH IV, <lJymmHH BH3KOCTH A, npHHHTbi KaK <PYHK­
~ MaJIOrO napaMeTpa. 3TOT napaMeTp MO>KHO llO,ll;06paTL Ha OCHOBe 3KcnepHMeHTaJILHbiX 
pesyJILT~TOB. 

1. Introduction 

IN mE PAPER, the problem of a spherical hole in the infinite medium is solved for the 
impact loading of the boundary. The rate of deformation depends on the value of this 
loading: the high rates correspond to the large pressure. Since the medium under con­
siderations is elastic-viscoplastic then its properties depend on the deformation rates. For 
this reason the viscoplastic material cannot be described by a single constitutive equation 
for the whole range of rates (or, equivalently, for an arbitrary loading). Such problems 
have been treated in many papers for a limited rate (e.g. for aluminium up to 103 sec-1). 

Hence these considerations were limited to the so-called region II, in which the dissipation 
effects are due to the thermal activation mechanism (SEEGER 1955 [11], PERZYNA 1966 [10]). 
The experimental results of the recent years (DHARAN, IIA.usER [1], FERGUSON, KUMAR, 
DORN [2], KUMAR, KUMBLE [4]) allow to take into considerations also the higher rates, 
a so-called region IV. In this region, the constitutive equation (PERZYNA 1974 [7]), DHARAN, 
HAusER [1]) takes into account the influence of two mechanisms on the plastic flow. These 
are the mechanisms of the motion of dislocations, namely the mechanism of phonon 
viscosity and the mechanism of phonon scattering. 

For small deformation, this equation is of the form of the sum e = ee + P, where e - the 
total rate of deformation, ee- the rate of elastic deformation, p- the rate of inelastic 
deformation. Simultaneously, we assume that the properties of material are mainly in­
fluenced by the rate Qf inelastic deformation P. To determine the constitutive relations, 
the evolution equation should be, first of all, formulated for the rate of inelastic deform­
ation P in the regions II and IV. 

For such a formulation of the problem, bearing in mind all ranges of the rate of de­
formation P, the nonlinear differential equations are derived. They describe the change 
of stress along the ray on the face of the shock wave in the region 11 and the change of 
deformation in the region IV. 

To solve these equations, the perturbation method is applied. The stress (in the region Il) 
and the deformation (in the region IV) on the wave follow in the form of the finite power 
series with respect to the small parameter. 

This method can be utilized due to the excess function f/J introduced into the evo­
lution equations for the deformation rate P in the region II and the viscosity function A. 
depending on the small parameter -in the region IV. In the numerical calculations, 
the small pa~ameter can be chosen according to the existing experimental data. 

2. Constitutive relations 

As we have already mentioned in the introduction, the deformation rate e in the elastic­
viscoplastic medium is assumed to be of the form of sum e = ee + P. We assume the 
existenceoftheyieldcondition(inourcase,it is to be the Huber-Mises condition yll.., = u1 , 

http://rcin.org.pl



APPLICATION OP NBTHODS OF CHARACTERJSI'ICS AND PERTURBATION IN SOLVING THE WAVE PROBLEMS 283 

where Ds is the second invariant of the deviatoric part of the stress tensor, " 1 -hardening 
parameter), i.e. for S such that yll.~ > " 1 there appear the viscoplastic deformations 
P, and for }in. ~ "1 the material is elastic, linear and without viscous effects. 

II Wa Nb 

f3z /33 
FIG. 1. 

We assume that the curve yii.~-VJip" for the complex state of stresses (Fig. I) is the 
same as the curve in the test of axial compression (it is confirmed by the experimental 
investigations). According to the experimental data, it has been noticed that for the rates 
higher than {12 (the value of stress is such that yll.s > "2), the relation between the stresses 
and the rate of inelastic deformation is linear. However, it holds true only to a certain 
value of the rate, which is denoted by {13 in the figure; it is the region IVa. 

For high rates {bigger than {13), the material is very sensitive to the change of rate; 
the small variation of VJip" is accompanied by the big variation of Jlll: and, for yllp 
approaching the rate ex, the stress tends to infinity. The equality yll.;. = ex corresponds 
to the disJocation moving with the speed of sound, and ex = f!mbcc/)13, where f!m is the 
density of moving dislocations, b -Burgers vector, c - speed of sound in the material. 
We have here a certain kind of the relativistic effect related to the speed of sound (PERZYNA 

[7], DHAKA.N, HAusER [1]). 
The Fig. I, describing the influence of the rate P on the stress, is right only for the 

constant permanent deformation. During the whole process, the inelastic deformation 
changes, and, consequently, the curve {J/11,-yii;) is going to be more complex, i.e. in 
real materials " 1 , ":i and ex are functions of P. Taking into account the above considera­
tions, we can write the following evolution equation for P in all ranges of the deformation 
rate(!). 

(2.1) 

(1) The influence of the temperature is neglected in the paper. 
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where: y1 , y2 - coefficients of viscosity, tP- the excess function, A- viscosity function 
(see PBRzYNA (6]). 

The function l satisfies the conditions 

(2.2) lim A = oo and A = Ao for 
U;-+012 

Both functions tP and A are to be fitted to the experimental data (HAusER, SJMMONS, 
DORN 1961 [3]) and are chosen according to the physical theory of plasticity. 

3. Spherieal wave 

Let us consider an infinite elastic-viscoplastic medium with the spherical hole of the 
radius r0 subject to the impact loading on the surface r = r0 • In the spherical frame of 
reference (r, tp, 8), we have the following components of the displacement 

(3.1) u, = u(r, t), u, = u8 = 0, 

of the strain tensor 

(3.2) 
au e,, = Tr' 

u 
e, = 8oe = r' 

and of the stress tensor 

(3.3) a,(r, t), a,(r, t) = a16(r, t). 

The above problem is described by the two systems of equations, which differ one 
from another by the constitutive equation according to the actual value of the stress, viz. 
(2.1). 

Let us start with the assumption that the applied load is such that the constitutive rela-

tion (2.1)2 holds, i.e. it is the region 11, where e,1 = ],.. S11+y1 ~{V:: -1} ~ 

and e11 = 3~ a11 • Denoting v = ~~ , (! -density of the material, we obtain 

2 
a,-a,. 

0 -MJ ,+a,,+ = ' ~:;"-. . r 

(3.4) 

1 1 v .f'i:3 &(a,-a.. 1} 0 v,--2 a,,+-2 a. ,---v-'Yt"' .. 1'1 - = ' . I' . I' ,, r t' 3 ~t 

'V 
3Kv ,-a, ,-2a_ ,+6K- = 0, • • ....... r 

v,,- e,., = 0, 

'V 
e_ ,-- = 0 . 

.... T. r 

It is the system of five partial differential equations of the first order for five unknown 
functions (v, a,, a,, e,, e'H). The characteristic lines of the system (3.4) have the form 

(3.5) r = const, r = r0 ±at+const, 

http://rcin.org.pl



APPUCATION OF METHODS OF CHARACTERimCS AND PEilTUJUIATION IN SOLVING 1HE WAVE PROBLEMS 285 

where 

a --V 4,u+3K. ' 
3e 

,u and K- elastic constants. 

Appropriate conditions have to be fulfilled on each characteristics; in particular for the 
characteristics r = r0 +at, which is the wave of strong discontinuity in our case (the shock 
wave), we have 

(3.6) (4p+3K)dv-3ada,.+ [- ~ (a,.-a .. )-(4p-6K); -4p Jl'3r41]dr = 0. 

Additionally, assuming the unperturbed region ahead of the wave, we obtain the kine­
matic and dynamic continuity conditions along the discontinuity line for the spherical 
wave 

(3.7) 
v+ae,, = 0, 

eav+a, = 0. 
Due to the infinite value of e, on the wave, the following constitutive relation on the 

discontinuity line holds 

(3.8) 0' = (/ (•- ~)· ~ , eal 

Taking into account (3.8), (3.7) in (3.6), we arrive at the ordinary differential equation 
on the front of the shock wave with the initial condition 

(3.9) 
dff, _ a, _ 2!-'i't t/J( 2,u f1 I) 
dr - - r J13a J/3ea1x1 ,- ' 

a,l,.,,o = Po· 

The stress on the characteristics r = r0+at is solely the function of the location 
ff, = ff,(r ). 

The hardening parameter x1 on the wave is constant due to the zero value of the plastic 
work (see PERZYNA, BE1DA 1964 [8]). To solve the equation (3.9) different forms of the 
function t/J have been proposed (PERZYNA 1963 [9]). We assume that t/J is the function of 
the small parameter e, i.e.: 

(3.10) 41( y'~I, -I) = ii( y'::· -I, •) = c( y'~I, -I )+e<P+ y':,
1• -I). 

where C is the dimensionless constant. 
The parameter e and the function t/J* can be chosen for a given material according 

to the experimental data(l). We assume that the function t/J* has the derivatives a:~· I 
ut •=O 

for arbitrary k. Denoting 

(3.11) 

B 5 2,u!t ; 
y'3a 

*( ) _ 2,tti't ""*( 2p I ) tp 0',, E = -. _ - 'V .. ! ff,- , E , 
J13a ., 3ea1

" 1 

(
2
) An example of such a choice will be discussed separately. 

10 Arch. Mach. Stos. nr 2n9 
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we can write the initial problem (3.9) in the form 

(3.12) 
_!!;f~ = (-+-A) <1,.+B-erp*(<1, •), 

The solution (3.12) will depend on e, i.e. a,, = a,,(r, e). Substituting e = 0 in (3.12) 
we get 

(3.13) 
da~, = (- _!_ -A) ao +B 
dr r rr ' 

a~,(ro, 0) = Po, 

where a~, = a,,(r, 0). 
The equation (3.13) has the unique solution a~, and, hence, there exist (O'MALLEY 

1974 [5]) such constants e and D that the equation (3.12) possesses the solution of the form 

o , e2 " 3 a,, = a,,+ea,,+ T a,,+O(e ) for r such that lr-r01 ~ D, 

(3.14) 
, da,, I a,,= -d , 

E •=0 

The functions a;, and a;; are, respectively, the solutions of t)le differential equations 
following from (3.12) by the subsequent differentiation with respect to e for e = 0. Inte· 
grating (3.13), we have 

(3.15) 

The constant d~t is determined from the initial condition (3.13h. The equation for a;,: 

(3.16) 
d~, ~ (-! -.. +·,.,.-rp*(~,O), 

and, hence, 

(3.17) 

d2 is such a constant that the condition (3.16)2 is satisfied. Similarly, for a;; 

(3.18) d;; = (- ! -+r:;-2[rp~ ... (.r,', O)<{.,+rp~(~. 0)], 

and, after the integration 

(3.19) a;;= a;;(r, 0) = { -2 J [q.>~a,(a~, O)a;,+q.>~,(~, O)]re-4'dr+d3} e~'. 
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Now; the solution of (3.12) can be written in the form (3.14) 

(3.20) a,(r, E)= ~ - ~r +d1 e~A.r + e[-f,<p*(~,O)re-4"dr+d2] e~..A.r 

+e2
{-f [<p~cJrr(~,.,O)a;,.+<p~,(~,.,O)]reA"dr+d3} e~A.r • 

For the load applied in the hole of the radius To and such that r = 'o for viis > "2' 
we are in the region IV and the relation (2.1h holds for P. To utilize (2.1)3 in the governing 
set of equations, we have to express the function P in terms of S and e. It is possible for 
the nonlinear function A., under the additional assumption of the following dependence 
of A. on the small parameter E 

(3.21) ( 11_;.) -( 11_;. ) "( 11_;. ) A. 1 - (Xl = A. 1 - cx2-, e = A.0 + eA. l - (Xl , e , A.0 - const, . 

where 1 possesses arbitrary derivatives ~ : . Besides, 1 has to satisfy the condition "-I ue e•O 

(3.22) lim i = oo, 
n,: -+CX2 

following from (2.2). 
Fore= 0 we obtain the region lVa. 
The functions " 2 and >e1 , depending on the constant defoqnation P, can be expressed 

in terms of the arguments a and £by use of Hooke's relations, i.e. 

(3.23) 
"2 = "l(P) = 'H2(a, £), 

ex = ex(P) = Ci(a, £). 

As we show further in the paper, the function i is chosen to limit in a certain way the 
constants appearing in the relation of DHA.RAN and HAUSER. [1] between P and Sin the 
region IV. The substitution of (3.21) in the relation (2.1)3 yields the system of equations, 
describing P,.,. and P,.,: 

P., A.- :r y, w- : 3 y1vl0 = el ( 1- ~! , •)( :3 y, v-P ... ). 

(3.24) Pfl'lo+ ~- Y2W+ 
1
_ YlVAo = el(t- n: ,e)(- .. ~- ''ltv-P,.), 

Jl3 y'3 ex r3 

_ a,.,.- a,. 1 ( "2 ) 
w = y

3 
"

2 
- ' v = ll> -;; -1 , and w = w(e), v = v(e). 

Now we demonstrate briefly the procedure, applied to the system (3.24), to find 
P = f(a, E). 

For a given system of equations with respect to z 

(3.25) 

to• 

g1 (z, u) = ef1 (e), 

g2 (z, u) = t/2(e), 
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where z = (z1 , z2), u = (w, v) and z = z(e), u = u(e), we can find the approximate so­
lution of (3.25) in the form 

(3.26) z~ = dz1
1 . 

de ,.0 

The method to be applied is analogous to the perturbation method, which has been 
used for the differential .equation (3.12). We assume that, fore = 0, the system 

gl (z0
, u0

) = 0, 

g2(z0, u0
) = 0, 

(3.27) 

with the conditions 

u0 = u(O), z0 = z(O), 

has the unique solution z0• Then, for sufficiently small 8 and a certain region of the variation 
of z, we obtain the system (3.25). Differentiating (3.25) with respect to e at the point 8 = 0, 
we arrive at the linear system of equations for z': 

(3.28) 
gY, tZ~ +gt2z~ = /P-Ktu•U', 
Kt1z~ +g~.2zi =/2°-gtu•U'. 

The upper 0 stands for the values of these functions calculated at e = 0. For instance: 

!P=ft(O),gY,t= ~g~J · 
uzl ·-o 

From the Cramer's formulae 

(3.29) 

Similarly, the twofold differentiation of the equations (3.25) yields the system for z". 
To simplify the further calculations, let us assltme that the functions g,; i = 1, 2 are linear 
with respect to z and u. According to (3.24), it takes place in our case. Then 

(3.30) 
g?,lz~' +gf. 2Z~ = 2/t~.-g?.u•U", 

g~,1Z~ +gt2z~ = 2/2°,,-gtu•U". 

Hence, the solution is of the form 

(3.31) 
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In our case, according to the formulae (3.28), z = CP,,, P "'), i.e. we seek P,, and P f(1fp 

in the form 

(3.32) 

Let us notice that 

Kt.t = K2,2 = Ao, Kt,2 = K2,1 = 0. 
Hence 

l
g!,t Kt21 = A.~ • 

. K2,1 ~.2 
For e = 0, we obtain P~ and P~ from (3.24) in the form: 

• 0 2 1'2 0 2 0 2 I" ( 0 0) 
P" = ]IJAoW + VJYtV E )!J'o CJ ,E , 

(3.33) 
·o 1 1'2 o 1 o 1 I" (·_o o) 

P"' =- y"3To.w- yJYtV =- ¥J'ou-,E , 

W 0 = w(O), v0 = v(O) i.e. W 0 = ~,-~ -1, V0 = f/1("! -1) (l) . . Y 3 X2(fi', E0) X1 

Similarly to P, we assume here that a and E can be expressed in the form of the series 
with respect toe: 

2 

0',,( e) = a~,+ ea;,+ ~ a;;+ 0( e3
), 

2 

O'f(Jfp(e) = a~+ea'f(Jfp+ ~ d,;+O(e3
), 

(3.34) 

o , . e2 , . 3 
ef(Jfp(e) = ef(Jfp+ttf(Jfp+ 2 e .. +O(e ). 

The application of the formulae (3.29) yields 

P' - 2 i o o 2 r 2 , 2 I - 2 '" <_o o I ') 
rr-- ;=--,-Y2W + .;- -,-w + .. ;- YtV - .;- Jl u-,E ,CJ,E , 

l' 3 Ao r 3 Ao r 3 r 3 

(3.35) P• , I l 0 
· 0 1 y2 , 1 , I I" (_o 0 , ') 

f(1fp = JIJ ~ 1'2 W ~ yJ ToW - yJ Yt V = - y f J 1 u-, c , CJ , E , 

I dw I 
w = de •-o' 

, dv I 
v = de •-o· 

(3) w8 ·and v0 are not constant. They depend either on (cr0• c0) or on ( .,~, ,~ (see (3.23)). 
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In the same way, we have from (3.31) 

(3.36) 

P" = _2_~~ w" +Y .. v"- 2 ~ [wo dll -,to ( lo wo- w')]l " .. ;-3 A 1 A 2 de A t' 0 0 •-0 0 

2 !: (·_o 0 , , , , ') = yl · 2 u-, E , fJ , E , G , E , 

1 !: ( 0 0 I I fl ") =---=- 2 G,E,G,E,G,E. 
Jl3 

Finally, taking into ~~count (3.33), (3.35) and (3.36), we can write the expansion 
(3.32) of P with respect to e up to the term O(e3) in the form 

(3.37) • ( e
2 

) S P = fo+eft + 2/2 --,=, 
yll, 

Consequently, we are able to write the whole system of equations in the region IV, 
in the same manner as for the region 11: 

(3.38) 

a,- arptp 
-nv r+a, ,+2 = 0, 

~:: . . r 

v,,-e,,t = 0, 

'lJ 
E-.r--=0. ....... r 

The characteristic equation for this system is the same as for (3.4). Therefore we 
obtain the differential equation for the stress on the face of the shock wave E: r = r0 +at 

(3.39) 
- = ------ fo+ef.+-J: , da, a, 2p, ·( e

2 )I 
fir r J13 a . 2 :z E 

a,l,.,o = p 0. 

Due to the lack of jump of the inelastic deformation P on the wave E and the assump­
tion on the unperturbed state ahead of the wave, we have PIE = 0. Hence P'IE = P"IE = 0. 
The simple consequen~ of this fact and of the equation (3.8) is 
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Substituting the relations (3.40) in the function, appearing in the parentheses of the 
formula (3.39)1 , we can write the initial problem (3.39) in the different form 

da, a, A o B ( A ' ( o)} el ( " (...o ')) (3.41) ~ = - r- 1 (Jrr+ 1 +e - 1 (Jrr+'Pt (Jrr + T -At (Jrr+'Pl CTrr' (Jrr ' 

(Jrrlr .. r0 = Po' 
where 

B - 2f' ("l 01 ) 1 = j/3" a 1; -y 1 v E = const, 

( 0 , ) 4,uy2 [ dl I 0 lo ( lo 0 ')]I 'Pl l1rn arr = --xr- de •=O w - A~ 1'2 Tow -w E. 

Substituting e = 0 in the equation (3.41), we obtain 

{3.42) d:, = (- ~ -A,)~,+B,, .t,',l,a,, = Po· 
The equation (3.42)1 differs from the equation (3.13)1 by the constants only; hence 

(see (3.1 5)) 
B1 B1 e-A~ 

(3.43) a~r =---2-+C1 --. 
A1 A 1 r r 

Differentiating (3.41) with respect to e at the point e = 0, we get 

{3.44) d~, = (- ! -A,} u;, + 'I'• { .t,',), <7',1,.,, = 0. 

The integration of (3.44) (see (3.16) and (3.17)) yields 

(3.45) 

Similarly to (3.18) obtained from (3.12), we arrive at the equation for eT,; by use of (3.41) 

dei;; ( 1 ) " ( 0 ' ) dr = - ---,-At arr+'1'2 arr' arr , 
(3.46) 

and then 

(3.47) 

The solution of the _problem (3.41) can be written in the form ((3.41)1 ): 

(3.48) 

+ ~ [J tp2 (a~r' a;r)reA 1rdr+C3] e-;
1

r, 

cl' cl' c3 are such constants that the initial conditions are satisfied. 
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4. Final remarks 

The solutions (3.20) and (3.48) obtained in the previous Section gives the values of the 
stress on the face of the shock wave in terms of the assumed initial condition p0 • 

Due to the geometrical dispersion and the considered viscoplastic model, the stress 
on the wave is the decreasing function of the radius r. Hence, for sufficiently large p 0 , 

the stress a,(r) reaches the values corresponding to all regions. the solution (3.48) holds 
for r taken from the interval: r 0 ~ r ~ r1 , where r1 satisfies the condition 

yii.(rt) = "2, 

or, on the face of the shock wave 

a, being the solution (3.48). 
For r ~ rh the equation (2.1)2 for P holds (the region 11) and the value of the stress 

on the discontinuity line follows from (3. 12) with the different initial condition 

where 

VJ (!Q2
X21E 

Pt = 2/J • 

Similarly, the relation (3.20) holds for r from the interval r1 ~ r < r2 , being such that 

J"II,(r,) = "•, ( V:~• a .. (r2) = "•). 

For r > r2 , the elasticity equations hold (y'II, ~ x1). Then the solution is 

y'3 ea2
x1 rl 

a,= 2p -r· 
The calculation of arr and, hence, v and err (from (3.7)) on the wave r = r0 +at yields 

the possibility of approximate solutions of the equations (3.4). It may be, for instance, 
the method of finite differences along characteristics. 

The conditions on characteristics r = const and r = r0 ±at+const 

(4.1) 

3K{f3r4l+3; )dt+ (~~-I )da .. = { ~~ +2)da .. , 

de,.- 2~ da,.+ 2~ da .. - {; + Ylr4l}dt = 0, 

f) 

de"=- dt, 
r 
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the boundary condition 

(4.2) 
ll,(r0 , t) = -p(t}, 

p(t) > 0, p(O) = Po, 

and the known functions ll,, ll", v, e,, e" on r = r0 +at yield the unique solution in the 
region D = {(r, t):r > r0 +at}(4). For the constant or monotonically increasing function 
p(t), the region D is the region of viscoplastic strains. For different forms of loading p(t), 
both the elastic and viscoplastic strain regions will appear . in D. 

Let us determine now the function A, appearing in the formula (3.21). Choosing the 
function i, we apply the hint delivered by the results of Dharanand Hauser. Starting from 
the experimental data and the physical theory of plasticity, these authors have derived 
the relation between the stress and the deformation rate. Bearing in mind this relation we 
arrive at the form of the viscosity function A (P. ~YNA [7]) 

( 11·) [( II· )j ( 11 · )-~] ( 11· )-t (4.3) A 1- a.: =At 1- a.: + 1- a.: +A2 1- a.: . 
The first term in this formula for A corresponds to the dumping Il1echanism of the 

motion of dislocation, while the second one is connected with the phonon scattering. 
For the deformation rate satisfying the condition JIII.r > /13 (for alumium 

/13 ~ 104 sec- 1) the quantities At and A2 are related by the inequality At < A2 and both 
are smaller than unity in the room temperature. Neglecting the influence of temperature, 
the quantity A 2 is constant while At is the decreasing quantity with the increasing speed 
of moving dislocations (i.e. with the growth of P). It follows from the diminishing in­
fluence of the dumping mechanism on the motion of dislocation for high rates (the region 
IVb) and the dominant influence of the phonon scattering mechanism. For this reason, 
assuming A1 and A 2 to be the constants of the order e2 and e, respectively, we take the 
function A in the form 

t 3 

( IT;) " ( 11; :\ ( 11;.)-t 1 [( 11;.)2 ( 11,;)-2] A 1-~- =A 1--;r, e/ = A0 +e 1-~ +e 1--;r + 1--;r , 
i.e. 

t 3 

x( 1- ~: , e) = ( 1- ~: r +e [ ( 1- ~: r + ( 1- ~: fl 
For e = 0, we have A = A0 , and it is the region IVa. 

This approach allows to obtain the analogous differential equation for ll, both in the 
region 11 and in the region IV. Hence, it allows to apply the same perturbation procedure 
along the characteristics in both cases and to calculate the actual values of the stress a, 
on the waves of strong discontinuity. 
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