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Numerical and experimental study of a form of damage in plasticity 

T. DESOYER (POITIERS), 0. DEBORDES (MARSEILLE) 

and A. DRAGON (POITIERS) 

THE DAMAGE mechanism by oriented cavity growth from hard inclusions in metals is examined 
from the viewpoint of mechanical factors conditioning its evolution. The basic features of the 
homogenization procedure applied by DRAGON [1] to set up damage evolution equations are 
confronted with experimental and numerical simulations. The experimental approach is only 
briefly referred to. Attention is particularly focused on the finite element investigation of the 
problem for a ba&ic cell subjected to boundary conditions relevant to periodicity of the aggregate 
due to regular inclusion spacing. The contact finite elements are employed on the matrix-inclusion 
interface within the cell. The local matrix deformations are studied and correlated with the 
cavity growth after debonding. Numerical result~ in terms of the components of the hybrid 
damage tensor are given for some loading paths. 

Celem pracy jest analiza mechanizmu uszkodzenia materialu przez zorientowany wzrost pustek 
wok6l twardych wtrqcen w metalach z punktu widzenia czynnik6w wplywaj(\cych na ich ewo
lucj~. Podstawowe cechy procedury homogenizacyjnej zastosowanej przez A. DRAGONA [1] 
do sformulowania r6wnan ewolucji uszkodzen por6wnano z symulacjC~, eksperyrnentalnq i nume
ryczJU!. Wyniki badan eksperymentalnych przedstawiono skr6towo. Gl6wny nacisk poloi:ono 
na rozwiqzywanie metodq element6w skonczonych zadania dla podstawowej kom6rki z nalo
i:onymi warunkami brzegowymi, zwiqzanymi z okresowosciq budowy agregatu spowodowafl'l 
regularnq strukturCI wtrCicen. Na powierzchni granicznej, rnatryca-wtrC~,cenie, zastosowano 
skonczone elementy kontaktowe. Zbadano lokalne deformacje matrycy i skorelowano je ze 
wzrostem pustek. Rezultaty numeryczne wyrazone w skladowych hybrydowego tensora uszko
dzenia przedstawiono dla r6znych dr6g obciqienia. 

l.leJihiO pa6oThi HBJIHeTCH aHaJIIf3 MexaH:U3Ma noapem~eHHH MaTepHana -qepes opHeHTHpo
aaHHhiH pOCT nyCTOT BOI<pyr TBep~blX BI<JIIO'-IeHHH B MeTaJIJiaX C TO'tll<lf 3peHIDI cpai<TOpOB 
BmfmO~HX aa HX 3Bomoumo. OcHoBIIbie caoifcTaa roMoreHH3aQHoHHOH npoue~ypbi npu
Meaeiibi A . .IlPAroHoM [1] .wm cpopMyJmpoai<:u ypaaaeHHH 3BomoUHH noapem~emlli If cpaa
HeHhi c 3I<cnepHMeHTaJibHOH u "tiHCJieHHOH HMHTauHHMif. Pe3yJILTaTbi 3I<cnepHMeHTaJibm.IX 
lfCCJie~oBaHHH npe~CTaBJieHbl cmaTbiM o6pa30M. rnaBHOe BHI{MaHUe o6p~eHO Ha pernemo~e 
MeTO~OM I<OHe't!HblX 3JieMeHTOB 3a,l:{a'tllf ~JIH OCHOBHOH H'tleHI<H C HaJiomeHHbiM:H rpaHU't!HbiM:H 
ycnoBHHMH, CBH3aHHbiMH c nep:Ho):{:H"tiHocThiO crpoeHHH arperaTa, Bbi3BaHHOH perynHpHoH: 
crpyi<Typoif BI<JIIO'tleH:Hii. Ha rpaH:H't!HOH noaepXHOCTH MaTp:HUa-BI<JIIO'tleH:He npHMeHeHhi Ro
HeqHbie I<OHTai<THbie 3JieMeHTbi. Mccne~oBaHbi JIOI<aJibiibie ~ecpopMaunu MaTP:HUhi u OHH 
I<OppeJI:HOpOBaHbi C pOCTOM nyCTOT. q:HCJieHHbie pe3yJibTaTbi, BbipameHHbie B COCTaBJIHIOIW'IX 
rH6p:H~oro TeH3opa noapem):{eHHH, npe~cTaaneHhi ~JIH pa3HhiX nyTe:H Harpymemm. 

1. Introductory remarks on homogenization. Scope of study 

THE DAMAGE phenomenon is commonly qualified as "ductile" when it is coupled with 
more or less advanced plastic deformations. Focusing on the plastically deforming metals 
at ambient temperatures, the damage process is principally due to the nucleation and 
growth of voids around inclusions and second phase particles. Passing through void 
coalescence mechanisms, it leads eventually to failure relative to the development of 
a macroscopic crack, see, e.g. BEREMIN [2]. The complex stress/strain configurations 
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are inherent to the yielding pattern on the microscale where inclusion misfit and subsequent 
cavity growth occur. 

In order to study and to quantify macroscopic consequences of such events, it is pre
ferable to employ something more than just a single scale phenomenological viewpoint 
in the framework of damage- and plasticity-modelling with intuitively guided selection 
of thermodynamic state variables. Indeed, to distinguish and control eventually the princi
pal factors influencing the overall properties and the evolution of a heterogeneous medium, 
it is useful to go down to the scale level well enough to discern relative heterogeneities. 
On such a level the characteristic size of constituents and heterogeneities (inclusions, 
cavities, microcracks) becomes of the order of a unity. In other words, by a proper rescaling 
one has an enlarged view of what is beforehand chosen as a representative volume element 
or a unit cell of a material. By determining local fields in the cell through the solution of a 
proper auxiliary "microscopic" boundary-value problem or having just effected useful 
estimations of the micro-constitutive laws and local fields, one may proceed to relate 
the corresponding macro-variables through the homogenization process, see SUQUET [3]. 
In such a way one may precise, for example, an overall elastic behaviour and also, under 
some conditions, the dissipative one, e.g. the plasticity and/or damage relationships for an 
.aggregate. The accuracy of homogenization depends on the degree of refinement of the 
analysis of the micro-mechanisms concerned. The behaviour of an equivalent homogeneous 
medium the one viewed on a macroscale, is the one of the given heterogeneous "real" 
material, when the phenomena of interest are viewed "globally", i.e. on a very large scale 
with respect to that of the size of heterogeneities. 

The homogenization approach largely exploited in continuum mechanics, e.g. in the 
context of polycrystalline aggregates is the one deriving from the Hill-Mandel mean-value 
or averaging method, see, for example HILL [4]. In general framework of analytical connec
tion between the local deformation of individual constituents in situ and the overall beh
aviour of an aggregate (composite material), the employment of the averaging method gives 
rather rough estimations with regard to the convergence methods using asymptotic develop
ments, SANCHEZ [5]. Nevertheless, it remains reasonable for the moderate concentrations 
of heterogeneities (up to "' 20%) with a representative volume element cautiously defined, 
i.e. sufficiently large, with no heterogeneities meeting its boundary. The framework wherein 
the choice of mean values as the limits of highly oscillating local fields relative to hetero
geneities is justified in the sense of convergence is the one characterized by periodicity 
of the aggregate. In the latter context the relative homogenization is thus exact. In the 
sequel we postulate the quasi-periodicity for a matrix-with-inclusions aggregate in a ref
erence configuration (no damage) resulting from a regular inclusion spacing. Consequently, 
for the damaged material (cavities around inclusions) the basic cell can be regarded as an 
element containing a single defect (oriented cavity partially or totally separated from an 
inclusion) surrounded by a ductile homogeneous matrix. The micro-defects (cavities) 
represent specific heterogeneities for the damaged medium. Their size can vary continuously 
on the macroscopic scale. However, viewed on the microscale (enlarged domain), these 
size variations as well as those of the variables involved in are not perceived. The material 
remains quasi-periodic in the presence of damage, SuQUET [3], CHIHAB and DRAGON [6]. 

For a basic cell located sufficiently far from the boundary of the homogeneous body, 
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the fields representing stress a, strain e and eventually other quantities, conform at the 
microscopic level to the periodicity of the geometry: they represent periodic fields. The 
local fields a(z; x) and e(z; x) as depending on the "macroscopic" coordinates z (zi; i = 

= 1 , 2, 3) can vary from one place to another in a way similar to that of their averages 
a(z), e(z). The local variations accounted for by their dependence on x are supposed to be 
periodic; xlxi, i = 1, 2, 3, are the "microscopic" coordinates after rescaling. This leads 
to the formulation of the specific periodicity boundary conditions for the local boundary
value problem for the cell. These conditions reflect the periodic character of stress and strain 
at the microscopic scale and differ much from Hill's classical conditions postulating the 
uniformity of the stress or that of the strain on the cell faces. The periodicity boundary 
conditions are more akin to the weakened Hill's conditions (see HILL [4]) requiring the 
respective fields to be merely "macroscopically uniform" on the cell boundary (macro
homogeneity assumption). As regards the boundary conditions for the local problem 
in the ductile fracture context, see, for example GILORMINI et a!. [7]. 

At the beginning (Sect. 2) the concept of damage-related tensorial variables is briefly 
resumed. Particular forms of these variables are made suitable to the homogenization 
context given above (periodicity, the basic cell containing a single cavity). The definition 
of a damage tensor supposes appropriate averaging over the basic cell which assures the 
macroscopic character of the entity in question while conserving the essential features of the 
micro-events relative to the damage mechanism as, for example, non-spherical cavity 
forms. Furthermore, a return to the micromechanics problem is operated. Its solution, i.e. 
determining microscopic fields for given global (mean) quantities, makes it possible to 
establish the damage evolution relationship by homogenization. It is stressed that the 
expression for the local velocity field in the matrix and in particular its form on the cavity 
surface constitutes the basis for the homogenization procedure mentioned. The latter allows 
to express the damage tensor rate ip as a function of the global strain rate f, of the actual 
damage cp and eventually of some scale and periodicity factor k. 

The finite element approach for the basic cell problem is considered in Sect. 4, the cell 
domain being subjected to the periodicity boundary conditions. The latter allows in some 
manner to account for the effect of interaction between neighbouring cells (and cavities~ 
see [7]. The experimental tests resumed in Sect. 3 were intended to follow the void growth 
from artificial inclusions periodically spaced. The tests and their finite element simulation 
for a whole specimen with a limited number of cells seem to confirm the periodicity of local 
fields and the choice of relative boundary conditions for the basic cell. 

In the finite element analysis of the cell problem (Sect. 4) the matrix and inclusion 
materials are assumed as elastic-plastic with isotropic hardening in finite strain; the rigidity 
of an inclusion is taken to be much higher in comparison to that in a matrix. The singular 
interface finite elements completing the code MEF-Plasticity · (origin: UTC-Compiegne, 
G. Touzot, modified into a large strain version by Debordes, see [8]) are employed on the 
matrix inclusion interface as long as the contact is assured. Several global histories are 
considered for the plane strain case. The displacement increment charts and those concern
ing the evolution of plastic deformations in the matrix are correlated with void-shape 
changes. The results of numerical homogenization regarding the damage kinetics in terms 
of damage tensor components are presented. 
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Concluding remarks (Sect. 5) concern diverse correlations, e.g. those between the 
macrostress-macrostrain curves and cavity growth, the effect of inclusion presence on 
plastic strain localization and the like subjects. 

2. Damage tensors. Evolution of damage from the solution of a local problem 

In the presence of damage zones as cavity-like microdefects the averaging in the basic 
cell is still well-founded if accounting for extended fields to the interior of a cavity. When 
the kinematic quantities like the deformation gradient F, the displacement gradient Vu, 
i.e. different strain tensors, are considered, the actual position vector x and the displacement 
u are respectively extended. The extended fields may be arbitrary except for verifying 
necessary regularity postulates and being compatible with the real matrix field at the cavity 
surface. So, only the surface expressions relative to cavity deformation are kinematically 
consistent, see, to example Bu1 eta/. [9], DRAGON and CmHAB [10] and also [3, 6]. For 
the displacement gradient the surface expression and its volumetric counterpart have 
the following classical form: 

(2.1) J (u®n)ds = J Vudv, 
OfJc=Sc fJc 

with n standing for an outward unit normal to the current cavity surface sc, and vc represen
ting the actual cavity domain. For the sake of simplicity vc will also stand for the volume 
of Vc. A microcrack may be looked upon as a limiting case of a cavity. As the displacement 
discontinuity b = [u] is to be considered across the surface sc at a point of a normal n, 
the displacement gradient in the cavity tends to infinity. It does it in a manner that its 
volume integral over the cavity remains finite, see, for example, Horu1 and NEMAT-NASER 
[11]. By introducing the delta functional ~(sc) on the proper space of functions, we have 
analogously to Eq. (2.1) 

(2.2) J (b®n)ds = J (b®n) ~(sc)dv. 
avc=Sc fJc 

In the case of a cavity and/or microcrack growing from the matrix inclusion interface, 
one can interpret bas the decohesion (debonding) displacement. Noting by eX the current 
position of a material point on the cavity surface and by iX its reference position coinciding 
with a point on the inclusion surface, i.e. the interface corresponding to initial (perfect) 
cohesion, we have (Fig. 1) 

(2.3) 

where the dot stands for the time derivation. We may repeat the argument (2.1)-(2.2) 
for the velocity field replacing the displacement one. For a single cavity within the represen
tative volume element (the basic cell), the averaging formulae for the rate of the deformation 
gradient (the Lagrangian velocity gradient) F, the Eulerian velocity gradient Vv = I and 
the small strain rate tensor £ are as follows: 

(2.4) F = {F}vm+ ~ f b®NdS, 
IJYc 
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2C 

FIG. 1. Basic cell and debonding vector b. 

(2.5) - I f. I = {l }vm +-V b®nds , 
ovc 

(2.6) 

with the notation g}v = ~ J ~dV and {~}v = ! J ~dv, where dV is a differential element 

of volume in the reference configuration F 0 and dv its counterpart in the current configura
tion Fr. The subscript m accompanying V and v indicates the matrix volume in the cell. 
No confusion should be made between the current volume v (denoting also the respective 
domain) and the velocity vector v (vector quantity). The bar placed over a symbol designates 
a macrovariable (an average) in the sense of the proper limit: 

(2.7) l(z) = {~(z; x) }~ 

where !I represents the basic cell, see [3, 6] for details. We have V = l~lro = vol fliro; 

v = l&l'ln = vol f£ rn respectively, and ds = nds; dS = N dS designating the current 
and reference surface differential elements. The quantities appearing as the last terms 
on the right-hand side of Eqs. (2.4)-(2.6) characterize the rate of deformation of a damage 
zone (cavity) in the cell f£. They represent, recpectively, the rates of the mixed, Eulerian 
and infinitesimal damage tensors. Passing to the indicia! notation, we have 

(2.8) 
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(2.9) 

(2.10) 

In the infinitesimal context (2.6), the formula (2.10), the distinction between Nx 
and n", dS and ds, between capital and small indices, is no more significant as the distinction 
between the reference and current configurations is neglected. Practically, when exploiting 
the surface formula (2.10) one will perform the integration over the interface surface 
supposed to be known rather than over an unknown a priori cavity surface; see, for example 
[10]. If there were several defects in the cell PI, the respective tensors and their rates (2.8)
(2.10) would contain the sum of corresponding integrals. In the formula (2.10) one can 
identify the damage parameter proposed by V AKULBNKO and KACHANOV jr [12]. According 
to the terminology proposed in the paper [6, 10], we will use the terms "deterioration", 
"rate of deterioration" for the symmetric parts of~' cp; ~' cp respectively, parallelly to the 
terms "strain", "strain rate" used in the framework of the classical deformation theory. 

DRAGON [I] proposed a homogenization procedure to establish the damage evolution 
law in terms of the damage tensor cp. It may be generalized to the advanced (finite) damage 
problem; see [6], in terms of~ or '1'. To clarify the approach, we will rest tentatively in the 
infinitesimal context, though the numerical procedure based on the finite element solution 
discussed in Sect. 4 will concern the components of PiJ. The procedure in question is based 
on micromechanical data concerning the local velocity field v(x) = u within the cell PI. 
Such a field constitutes in general a solution of a local boundary value problem for the 
cell PI with the loading consisting of a given average value of ii or [. This problem should 
be properly formulated as regards boundary conditions. Without going into details 
on different possible, we follow the guidelines and assumptions of Sect. 1 and turn to 
the "well-posed" boundary conditions reflecting the periodic character of the different 
field on the microscale, viz: 

on av a. n antiperiodic (opposite on opposite sides of av) 

(2.11) u = t · x+u*(x), 

u*(x) periodic (equal on opposite sides of av). 
The local velocity field u belongs to the set of fields generating periodic strain rate. 

It is split into a linear and a periodic part; the tensor~ is the macroscopic (average) strain 
rate associated with u. Parallelly, the local strain rate £(u(x)) is split into its average and 
fluctuating terms: 

(2.12) i(u) = i+ e(u*), {e(u*) J~ = o. 
To have the complete statement of the problem, one should put together microscopic 

constitutive laws for constituents (i.e. these for a matrix and inclusion in our case), the 
local equilibrium equations divxa = 0, an average given, e.g. {e(u)} = l and join Eq. 
(2.11). Suppose that one can resolve the problem in question and get 

(2.13) U = V(E, X, ... ). 
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The connexion of Eq. (2.13) with the damage and/or deterioration rate (2.10) is direct 
as b itself represents a local velocity vector on the cavity surface (see Eq. (2.3)2 ) 

(2.14) b =eX= v(i, X, ... )lex• 

We may express the position vector eX on the cavity surface in the form 

(2.15) 

where, in comparison with Eq. (2.3)1 , we discard X and put x0 to indicate infinitesimal 
damage context. We have now to integrate the tensor product of the type 

(2.16) 

over the interface, i.e. inclusion surface having the outer normal N(Sc ~ sc in the infini
tesimal context) according to the formula (2.10). This integration standing for a homogeni
zation procedure makes appear integrals involving dyadic expressions biNi, i.e. the compo
nents of f/Jli. We thus arrive at the damage evolution equation having the form 

(2.17) <P = <P(e-, cp, k), 

where k resulting in particular from the integration for x0 is a parameter characterizing 
eventually the inclusion size and spacing, i.e. the type of periodicity under consideration, 
see [1]. For the sake of simplicity, in Eq. (2.17) and possibly in some other expressions 
we use the same symbol for a function and its value. 

The particular form of Eq. (2.17) obtained from a semi-analytical approximation 
of the local field (2.13) for a cell composed of an elasto-plastic matrix and a cavity is given 
in [6]. In the same paper the difficulties of homogenization in the presence of nonlinear 
constituents (and, in particular, that of elastic-plastic constituents) are briefly resumed, 
see also SUQUET [3]. In [6] the periodicity of voids distribution was assumed. The elementary 
cell problem with a cavity in a periodic structure in the context of plasticity was studied 
frequently using the finite-element method. To the best of the authors knowledge the 
pioneering work was that of NEEDLEMAN [13]. However, there are no partial results con
cerning the velocity and/or displacement field that could serve us to construct the evolution 
equation (2.17). We found it thus propitious to proceed with the following investigation: 

(i) experimental tests that might simulate ductile damage by void growth from in
clusions and provide us with reasonable void-disturbed local velocity estimations; 

(ii) the finite element simulations in an elastic-plastic context aiming to describe the 
evolution, accounting for the separation and further void growth from an inclusion, and 
considering different global histories; 

(iii) numerical homogenization based on (ii) resulting in global description of damage 
by cavity growth in terms of damage tensor components. 

3. Experimental modelling 

DESOYER [8] performed a series of experimental tests aiming to follow the void growth 
from artificial cylindrical inclusions embedded in an aluminium plate. The double periodic 
square and hexagonal arrangements of inclusions were realized. The aim was to give 
access to mechanical factors conditioning void growth, these factors being hardly accessible 
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on the metallurgical scale level. So, the approach was in the spirit of the macroscopic 
modelling of damage by LITEWKA and SA WCZUK [I 4] and CORDEBOIS [I 5] with the charac
teristic remark that in Desoyer's investigation the local response within a basic cell was the 
centre of interest. The laser-speckle measurements of displacement increments were perfor
med within a cell chosen while the whole structure was loaded to the plasticity range 
with cavity growth occurring. Some preliminary results were presented by DRAGON and 
DESOYER [16]. 

Simultaneously with experimental tests and basically local considerations, the finite 
element analysis was performed for the whole structure (with a limited number of inclusions 
/cells). Its aim was to evaluate the border effects for a whole specimen, the validity of the 
Hill macrohomogeneity assumption and the periodicity property for the displacement 
and deformation fields. The results for the model structure are particularly positive as 
regards the periodicity of local fields calculated in a series of contiguous cells taken in 
diverse directions (parallelly to the whole specimen axis, transversally and obliquely). 

4. Finite element simulation for the basic cell with inclusion. Numerical results 

In connection with the foregoing programme and with the aim to approach in some 
way the in situ state for a representative volume inside the aggregate with inclusions and/or 
microcavities we assume the periodicity boundary conditions (2.11) for the unit cell prob
lem. Following [7], this choice is a largely simplified but accessible way to account for the 
effect of other cavities for the one in the cell under consideration. The double square array 
is considered. The symmetries resulting from the latter permit to formulate the local 
problem for a quarter-cell. Its subdivision into finite elements and the types of elements 
chosen for the plane strain elastic-plastic analysis are given in Fig. 2. They are 

A' A 

L 
0 

~ T6 

FIG. 2. Elements employed, basic cell mesh and boundary conditions. 

the 6-node + 3 Hammer integration-point triangular element T6, 
the 8-node + 4 Gauss-point quadrilateral element Q8. 

Both elements admit a quadratic displacement variation. The total number of nodes in the 
mesh is 73 for 23 elements, namely: 

eight T6 elements, 
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eleven Q8 elements, 
four contact elements on the interface inclusion/matrix. 
The contact elements are singular layer elements obeying the Coulomb friction rule 

completed to account for the normal de bonding. So, the minimum node separation distance 
is fixed. Below it the perfect adherence conditions are assumed. In addition to the friction 
coefficient, the contact element is characterized by its normal (tension-compression) 
and shear stiffness parameters. The friction coefficient should be chosen rather great to 
simulate the matrix-inclusion cohesion. Generally the normal (compression) stiffness KN 
is very high during contact (KNl) to ensure the matter non-penetrability. The same is 
valid for shear stiffness KSl when no gliding occurs. On the contrary, when the interface 
separates, the normal "tensile" stiffness KNO becomes small and the contact element be
haves then as a boundary. Much the same is the shearing stiffness variation if gliding 
occurs. In our case the respective values chosen are as follows: 

KNl = KSl = 107 MPa, 

KNO = KSO = l0- 3 MPa. 

The finite element mesh may seem rather simple to take into account complex stress/ 
strain configurations in the matrix in the vicinity of inclusion/cavity. However, it has been 
confirmed by other calculations in the plasticity context that multiplication of elements 
beyond the number mentioned above for a quarter-cell has no significant effect on final 
results, see, for example, the work of DEBORDES eta!. [17] on the limit load evaluation for 
an analogous cell with a hole. The last work cited employed of course the same code 
MEF (origin UTC Compiegne; G. Touzot) as the present study. 

The matrix material is an elastic-plastic isotropically hardening solid. The calculations 
were carried out using the MEF version employing the large plastic deformation model 
by SIDOROFF [18] adapted to the code structure by Debordes. The material parameters 
employed are these of the 1050 A aluminium after annealing (400°C, 1 hour), producing 
recrystallization and thus increasing the ductility. The elastic moduli are E = 70 GPa, 
v = 0.3, the uniaxial yield stress (Jy = 14 MPa. For computation the hardening curve 
is introduced point-by-point. The inclusion material is described by the same mechanical 
model as the matrix material. However, due to elevated elastic stiffness, E = 210 GPa, 
and higher plasticity limit, (Jy = 500 MPa for the inclusion compared to the matrix ma
terial, no plastic deformation occurred in our analysis carried out for different loading 
paths up to the global mean strain£,, = 12.5%. The symbol Ei1 stands for the global 
accumulated strain components defined by 

t 

Eu = f Jljdt, Ciij = symlij = v(l,J>· 
0 

Numerically, the step-by-step incremental procedure is employed, each step being further
more discretized into sub-steps. The velocity gradient components vi,J are fairly approxi
mated from displacement increments through the implicit or partially implicit schemes. 
These variants as well as the integration scheme for the constitutive equation according 
to the MEF version employed are resumed in [8]. 
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Different global paths are examined. They are characterized by the ratio ex = ~1/Exx 
indicating the external profile of the unit cell deformed. Each loading path was monitor
ed by imposing the L1~1 increment for each element through the supplementary fictitious 
node. Consequently, the displacement and deformation increments effectively calculated 
in nodes and the Gauss points of finite elements concern uniquely the locally fluctuating 
part of these quantities (see Eqs. (2.11) and (2.12) by analogy in the infinitesimal context). 
Practically the L1E,y increments corresponding to consecutive loading steps were fixed 
and the relative L1Exx values were calculated: L1Exx = L1Enfex. Eight loading steps were 
considered for each ex. The corresponding LJ.ff,, increments are as follows: 

Step 1 : L1Eyy = 0.05%; Step 2: L1Eyy = 0.5%; 

Steps 3-6: L1Eyy = 1%; Steps 7-8; L1Eyy = 4%. 

Selected results relevant to the loading paths corresponding to ex = oo, i.e. Bxx = 0; 
ex = 1; ex = 2; a = -1.5 and a = -3 are illustrated in Figs. 3-6. 

The displacements charts related to the loading paths a = oo and a = -1.5 are shown 
in Fig. 3. For a = oo corresponding to unidimensional global deformation and multiaxial 

------- ---- - -

1 t t 
t ~ 1 I 

a:= oo, step B a=-1.5, Step 8 

FIG. 3. Cavity form and displacement maps at last step of loading for two values of rx. 

tensile stress state, an oblate shape of the cavity is observed, i.e. its extension opposed 
to the global strain aspect. This result is in agreement with the finite element study by 
NEMAT-NASSER and TAYA [19] of the problem of a unit cell with a hole, i.e. neglecting the 
inclusion effect. The oblateness effect was studied, for an infinite block of nonlinear viscous 
solid containing an isolated void, by BUDIANSKY eta!. [20]. We may note, following the last 
authors, that this effect is "obviously significant in void interaction and coalescence under 
tensile straining". The case a = -1.5 approaches the in-plane loading path for the basic 
cell at the experimental investigation summarized in Sect. 3. However, due to the out-of
plane deformations within the cell in experimental procedure, one can admit merely 
qualitative comparisons of respective results. 

Having established the "reactions" (iii for macrostrains imposed in each element, we 
were able to trace the curves shown in Fig. 4 representing the mean global stress comp_?
nents ayy, axx versus E11 • The abscissa scale chosen and sometimes the magnitude of L1E,, 
for the first step of loading eliminates parts of the mounting branches in some cases. 
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FIG. 4. Macrostress-macrostrain curves for two values of ex. Softening effect 
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However, the interest lies mainly in exemplifying the descending branches (global softening) 
due to cavity growth. One may conclude that the inclusion presence influences the curves 
by provoking a load drop more pronounced in the vicinity of the maximum in comparison 
to analogous curves for a finite cell with a cylindrical void(hole), even if in the latter context 
the emerging of secondary voids is simulated by vanishing of elements in the matrix, 
see LI et a!. [21]. The stress drop effect may be related to advanced inclusion debonding 
and depend in general on inclusion size and spacing. 

Another effect of inclusion presence is illustrated in Fig. 5 where the effective plastic 
strain maps are given for a = - 1.5 respectively for the cell with a hole growing from 
initial circular cylindrical shape and for the cell with a cavity growing from an inclusion. 
The strain concentration in the vicinity of the debonding point is clearly perceived in 
Fig. 5b; note also the cavity form after partial separation. The respective frontiers of the 
elastic-plastic zone near the horizontal axis are noticeably different. 
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b 

D 
(%) 

0- 0.027 

om 0.027-0058 

~ . 0.058-0.090 

~ 0.090-0.120 .. 0.120- 0.193 

FIG. 5. Maps of equivalent plastic strain after the first step of loading for ~ = -1.5; a) basic cell with 
a hole, b) basic cell with an inclusion. 

The displacements calculated by finite element analysis in the nodes of contact elements 
give access to the damage tensor components (see Sect. 2). In particular, with respect 
to the initial interface geometry as the one characterizing the reference configuration, 
one may compute the components of the mixed (hybrid) damage tensor. It was done 
using the formula (2.8)2 in a discretized manner, i.e. from the nodal displacement values 
using the shape functions for contact/border elements. The respective curves giving lFyy 
versus lJfxx are shown in Fig. 6. We find for ex = 2 and ex = oo the curves indicating lJfxx > 
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FIG. 6. Damage kinetics; lJf.,., -lJfxx curves for the five values of ~ studied. 
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> Pn, i.e. greater global cavity extension along the x-axis while the global straining 
aspect is inverse: Eyy > Exx ~ 0. This illustrates again the oblateness effect remarked 
before. 

5. Concluding remarks 

The finite element study of the problem of the unit cell in the aggregate composed 
of an elastic-plastic matrix and cavities formed around periodically set inclusions permitted 
to evaluate the inclusion effect on the cavity growth and shape, on the concentration of 
plastic strain in the matrix during inclusion-matrix separation and on the overall stress
strain behaviour for different loading histories. The inclusion-matrix interface was modelled 
using special contact finite elements capable of accounting for the normal and gliding 
separation modes corresponding to the one of ductile fracture damage mechanisms. 
The modelling presented made it possible for the numerical homogenization to give an 
overall damage-kinetics representation in terms of damage tensor components. It may 
encourage further studies on the relative phenomena tending to better evaluations of 
ductily limits of engineering materials. 

The results presented agree with the output of the homogenization model relating 
the damage evolution to actual accumulated damage and to a parameter relative to inclusion 
size and spacing, i.e. finally to the void nucleation and growth history. Other recent finite 
element-based analyses (see, for example, [21]), even when neglecting the inclusion effect, 
conclude with the similar assertion, i.e. stress the effect of void shape and growth history 
on actual behaviour and ductility limits. It seems that accounting for the nu9leation mech
anism, i.e. for the inclusion presence, contributes to refinement of the like modelling 
and of final averaging evaluations. 
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