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Unilateral contact with dry friction:
Time and space discrete variables formulation

M. JEAN (MONTPELLIER)

ONE CONSIDERS a continuous medium coming into contact with a rigid obstacle or another
deformable body. Quasi-static evolution problems (i.e. with negligible inertia) are considered
as well as proper dynamical problems. Formulations of unilateral contact are proposed for
these two cases. Dry friction is taken into account through Coulomb’s law. A system of equations
for the time and space discretized problem is proposed together with an algorithm for solving
this system. The derivation of equations when performing space variable discretization is specially
developed in this paper.

Przedmiotem pracy jest zagadnienie kontaktu osrodka ciaglego ze sztywna przeszkoda lub
z innym cialem odksztalcalnym. Rozwazono quasi-statyczne, jak i dynamiczne problemy ewo-
lucji. Zaproponowano sformulowanie problemu kontaktu jednostronnego dla tych dwéch
przypadkow przy uwzglednieniu suchego tarcia ujetego przez prawo Coulomba. Przedstawiono
podstawowy uklad réwnan problemu po dokonaniu jego dyskretyzacji w odniesieniu do zmiep-
nych czasu i przestrzeni. Podano algorytm rozwigzania tego ukladu. Szczegdlng uwage poswig-
cono dyskretyzacji ze wzgledu na zmienna przestrzenna.

Ilpenmerom paGoThl SIBNAETCA 3aJjaya KOHTAKTA CIIOMIHOM Cpelbl C JKECTKOH IIperpanoit
WIH C ApPYrEM OedOpMEPYEMBIM TeJioM. PacCMOTpeHBI KBAa3HCTaTHYECKHE H [HHAMHYECKHE
3amaun sBosmoimH. IlpemmoykeHa ¢opMyJIHpOBKa 3afadd OMHOCTOPOHHErO KOHTaKTA [UIsA
9THX ABYX CJIYYaeB, IPH y4eTe CYXOro TPeHHs ommcaHHoro sakoHom Kysowma. Ilpencrabnena
OCHOBHAsl CHCTeMa YPaBHEHHii 3aJlauM IIOCJIE NPOBEJCHHUS €€ MMCKPETH3ALMH 10 OTHOLIEHHIO
K OEpeMEHHbIM BPEMEHH H IPOCTpaHCTBa. IIpHBeNeH WITOPHTM pEIIeHMS 3TOH CHCTEMBI.
OcobenHoe BHHMAHHE NOCBSIIEHO AMCKPETH3AlMK ¥3-32 MPOCTPAaHCTBEHHOH IIEPEMEHHOI.

1. Introduction

WHEN DEALING from a numerical point of view with a continuous medium, a finite-dimen-
sional subspace of admissible velocity field {U} is selected (space variable discretization),
together with its dual space {F} whose elements are representatives of the applied forces.
These representatives are constructed through the principle of virtual power. When unilate-
ral contact and dry friction are involved, it is usual to select a finite number of particles,
the candidates to contact, for which the contact and friction laws are invoked. Actually
the boundary in contact is submitted to a density of reaction forces from the obstacle,
satisfying the contact and friction laws. In the above discretization procedure, this distri-
buted reaction is represented by some R € {F}, while the considered velocity field is U e
€ {U}. The contact and friction laws assumed to hold for every particle of the boundary
induce some relations between R and U, which might be called the discretized contact
and friction laws. These laws are different from those obtained when concentrating the
reaction forces on candidates to contact. The object of this paper is to propose a way
of exhibiting the discretized laws between R and U. A comparison will be made between
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the usual procedure based on concentrated forces applied to candidates, and the above
discretized laws in the case of T3 finite elements (linear interpolation on a triangle mesh).
Section 2 presents a choice of unilateral contact conditions for the quasi-static case
and for the dynamic case. The friction law adopted is Coulomb’s law.
Section 3 deals with time discretization and results are presented concerning space
variable discretization of contact and friction laws, see also [6]. The method of constructing
such laws is developed in Sect. 4, with examples and numerical comparison.

2. Contact and friction equations

2.1. Unilateral contact equations

Let the position of a particle P of the deformable body relative to the boundary of the
obstacle be measured by the real number g, this is the distance of P to this boundary,
counted as negative if P lies inside the obstacle. Impenetrability is thus expressed by g4 > 0.
The obstacle is supposed to be nonadhesive, i.e. the normal component of the reaction
is non-negative. When P lies clear from the obstacle, then #4 = 0. In short,

2.1, I]IZO, Ry =20, qvyRyr=0.

This has the well-known form of a complementarity relation, commonly accepted for
unilateral constraints. An equivalent form is

@.1), Ry 20, Vs 20, (Fu—Ri)qw > 0.

In the case of dynamical problems one has to provide more information about shock
conditions. The velocity % of P relative to the obstacle may be discontinuous; we shall
assume it to be a function of the time ¢ with locally bounded variation (1.b.v.). This secures
the existence of the right and left limits of %, respectively denoted by %*(t) and %~ (¢).
The reaction can no more be expected to be a finite-valued function of time. As a mathemat-
ical formalization of the traditional concept of percussion, we describe this reaction as
a measure on the considered time interval. In the case of smooth motion, this measure
possesses a density, relative to Lebesgue’s measure, which is nothing but the force denoted
above by %.4-. On the contrary, if a shock occurs at some instant ¢, the reaction measure
presents an atom at t, i.e. it involves a Dirac mass at this instant.

Generally, a non-negative measure u is sure to exist (non-uniquely defined) relative
to which the reaction measure possesses a density function [1]. By £s and £+ in the
sequel, we shall denote the values of such density functions at the considered instant.

With a view to such applications as metal forming, one proposes the inelastic shock
law:

At every instant such that g4 = 0:

(2.1); Uk =0

together with the relations (2.1),, where %% is the normal component of #*. One may
relax the previous law and consider the inelastic shock law only in the case of strict contact,



UNILATERAL CONTACT WITH DRY FRICTION 679

i.e. when #Z4 > 0; otherwise %} > 0. Together with #4 > 0 and &4 g4+ = 0, these
equations may be summarized as (the superscript + is now omitted).

(2.1), V(@) + Uy =20, Ry >0, (ya(gr+UsBy)=0,

where yg- is the indicator function of R~ (namely yp—(x) = 0if x < 0, and o otherwise);
the convention co x0 = 0 is made. The choice of the relations (2.1);, (2.1); and (2.1),
to express unilateral contact depends on the contemplated problem. Formulation (2.1),
is suitable for a quasi-static situation, and the relations (2.1); or (2.1), for dynamical
problems. One shall not make systematic comparisons. Observe that if ¢ — %(¢) is L.b.v.
and 7 — #_(t) is continuous, the formulation (2.1); implies the relations (2.1),. Also,
the solutions of the relation (2.1); satisfies the relations (2.1),.

2.2. Coulomb’s friction law

One uses Coulomb’s friction law under the form given by J.J. MoREAU [2],
Ry € Opt(—Us),

where # 4 is the tangential component of the reaction and # s is the sliding velocity. C is
the convex set

C = R4+2 where Z is the unit section of the friction cone.
This formulation is also equivalent to a variational inequality expressing the “principle
of maximum dissipation”

(2.2), Rr€eRvD, VL ER¥yD, (L—Rs)Us 2 0.

In the case of a one-dimensional motion with a friction coefficient g, the relations (2.2),
take the form

D= [~p, 4, RwD=[-pRy, Rl
Ry € [—pRw, uRy]l VL €[—puRu, uRy), (¥—Rs5)Us 2 0.

3. Discrete variables and algorithms

3.1. Discrete space variables

For the purpose of numerical computation, the configuration of a continuous medium
£2 is approximately described through a »-dimensional variable X = (Xi, ..., Xpm, ...);
for instance this may consist of the displacements of the mesh nodes in a finite element
method. The position of every particle P of the medium is approximated by g(§) =
= X, en(£) where e, are interpolation functions, £ is some parameter labelling the particle.
The tangential and normal components of the density of reaction on the contact boundary
d; £2 may be approximated as

92;(5) = ra#4(£),
Ry (&) = ruF (),
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where #,, h =1, ..., p are non-negative functions. It will be shown in Sect. 4, using

a virtual power formula, that one may construct a #»xp matrix H such that
R = Hr = H,r,+H,r,,
rr:(rrla'--’rtlu“')s rn:(rnls"-9rnha-“)y

3.1,

R is the representative of the reaction forces for the parametrization X. It will be shown
also that, under some conditions, an approximation of the relations (2.2); may be chosen
as

r,z0,
(3.1); i i
reern,9 Vser,2, (s—r) HfX-X,)=0,
where
r,=20 means Vi r, =0,
reEr,9 means VA ry€ry92,

Xo, is explicitly known and appears when dealing with obstacles moving with given veloc-
ities.

3.2. Discrete time variables

One adopts the usual implicit discretization during a time step
X@i+1) = X(@)+hX(i+1),

where X(i), X(i+1), ;Y(i+l) are approximants of X(#), X(ti,,), j{(r,“), h=ti . —1.
One may also accept for the normal component of the relative position of a particle with
respect to the obstacle, considered in its position at time ¢#;,,, the following approxima-
tion:

g (i+1, 8 = qu (i, ) +hUx(i+1, §).
A discretization of the formulation (2.1), is readily found to be
VE Up(i+1,H+qr(, 20, Ry(i+1,8) >0,
(n(i+1, 8+ qu G, E)/h) Ry(i+1,6) =0.

This may also be considered as a discrete form of the relations (2.1),.
One may as well write, omitting the index i+1,

(B2: V& R4(O20 VL 20, (L—Rs(®) (Us(E+gw(©)/h)>0.
It will be shown in Sect. 4 that an approximation of the inequalities (3.2), is.
(3.2) 20 Vs20 (s—n) H¥(X-Xo) >0,

where X, is explicitly known from data at step i.
One may notice that the inequalities (3.1), and (3.2), are quite similar to the expressions
found for a system of a finite number of particles [3,4].
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3.3. Numerical algorithm

In linear quasi-static problems as well as in dynamic problems, most numerical implicit
or explicit schemes, used in order to solve the equilibrium equations, yield an expression
such as

(3.3), X(i+1) = X()+ WhA() + WhR(i + 1),

where A(7) represents external loads explicitly known at time #;,, and internal forces at
time #;. In a quasi-static problem the matrix A2W is the inverse of the rigidity matrix;
in a dynamic problem W is the inverse of a mass matrix. In the nonlinear case W~! might
be considered as a tangent matrix and Eq. (3.3), is written for equilibrium subiterations,
[4]. The set of equations for the discretized problem may now be summarized as follows,
omitting the index i+1:

The equilibrium equation

(3.3 X = X(i)+ WhA(i)+ WhR.
The change of variable formula

3.3), R.,=H,r,, R,=H,r,.
The unilateral constraint inequality

(3.3), >0 Vs,>0, (s,—r) HYX-Xo,) > 0.
Coulomb’s friction law

(3.3), FEMMD Ns,€r,2, (s;—r) HY(X-X,) =0,

where the unknowns are JA", R,, R,, r., r, at step i+ 1. The variables j(, R,, R, may be
eliminated using the inequalities (3.3); and (3.3),. The inequalities (3.3); and (3.3), become
(3.3)s rnz0 Vs, 20, (s,—r) (WantatWar,—Yo,) 20,
(3.3)s rer? Vs,er,?, (s;—r) (WatatWyri—Yo) 20,
where Y,,, Y,, are data and

W = HY(Wh™'H,, W, = H}(Wh)™'H,

W,,= H*(Wh)'H,, W, =H}!(Wh)™'H,
are influence matrices. The system (3.3)s and (3.3)¢ is a system of coupled variational
inequalities and may be solved by an iterative procedure such as the Gauss-Seidel method.

It may be proved that such a system has a unique solution when the friction coefficient
is less than a critical value. The next section is to emphasize the paragraph (3.1).

4. Discrete space variables

4.1. Approximation of the relative velocity and relative position

For the purpose of numerical computation the configuration of a continuous medium
is approximately described through an »-dimensional variable X = (X, ..., Xp, ...).
For instance, this may consist of the displacements of a N nodes mesh in a finite element
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method; there n = ¥N, with » = 2 in the two-dimensional case, » = 3 in the three-dimen-
sional case. The position of every particle of the medium is approximated by

9, & = D) Xu(t)en(®),
m=1

where £ is a parameter labelling the particle and & — e,(&) € R” are interpolation functions.
The components of the relative velocity in a local frame may be written as

U@, &) = ) X En(®) +Us(t, ),
m=1

where the functions &,, are deduced from e, by a change of variables. The term (¢, &)
appears when dealing with obstacles moving with given velocities. It is assumed that
WUo(t, &) may be approximated as

Uo(t, ) = D E(®)Xon(t).
m=1

An expression of the normal and tangential components of the relative velocity is thus

Us(t, ) = ) E5nl(®) (Xnlt)— Xom(D)),
@.1), "
Un(t, &) = ) 6 4m(E) (Xnt) — Xom(®))-

As mentioned in the previous section about time discretization, the expressions
of %(t;41,&) will be used in the approximation process. One thus omits the variable

lisa

U () = D Erml(®) (Xn—Xom),

m=1

U () = D, Etml®) K= Xom).
m=1

For the normal component of the relative position of the particle, one uses the approxima-
tion

q.«r(ti-{-l: E) - q.ff’(th E)+h021_,¢(t‘+1, E)'
An approximant of g4(t;, &) is supposed to be

@t ) = Y Em(E Yon.
m=1

Omitting the variable #;,,, one obtains

ar©Oh = ) Ebrn(®) Kn— Yo,

m=1

4.1 :
( )2 Y(;m = XOm P Y()m/h'
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4.2. Approximation of the density of reaction

One intends to represent tangential and normal densities of reactions exerted on particles

on a part J, 2 of the boundary as
P

R (&) = X raF (b,
h=1

4.2), 5
Ra(E) = D ruF (),

h=1

where &, are functions defined on 4, £ and with value in R; r,, €R and ry eRL,
One deduces from the virtual power formula an expression relating the components ry,
of # 4 with respect to the generating functions %, and the representation R, of this reaction
with respect to the parametrization X:

P n
J2:©0us©ds = [ D raFu®) D Esn(6) 8K, d = 6X- Hr, = 8X - R,
m=1

212 212 k=1
so that
Rz = Hrrn

where H, is the n-row X p-column block matrix with m-row, A-column element,

[ #4(&) 6 (&) dé e R,
9,2

H, is similarly defined,
Rn = Hnrln
H, 1s the n-row x p-column matrix with m-row, /i-column element

[ Fu© Erm@)de e R.

2

4.3. Approximation of contact and friction laws

The unilateral condition (2.1), and Coulomb’s law (2.2), are expressed using densities
of reactions (for the sake of simplicity they will be assumed to be L? functions as well as
qv and Uz, Uy).

(43), aeé Ay 20 VL4220, (Lu—Rs(E)gs(€) 20,
(43); aeé RrEeRy(b)2? VL7eR4 (02, (F5—() Us(&) = 0.

A similar formulation using density with respect to a positive measure has already been
introduced by J. J. MoRrEAU [1] for time-varying reactions and relative velocities. Using
Rockafellar’s convex integrand theorem, these inequalities are, respectively, equivalent to

Rir>0 VL4 20 [ (S5 &) - R8s () d > 0,
912

RreRiD NS5 €RsD [ (Lr(E)-Re(®)Us(E)dE > 0,

810
where Zy D = Ry € L?: aeé Ry(E) e R4 (£)P} is a closed convex bounded set.
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One supposes now that &, are positive functions. Using the approximations (4.1),,
(4.1), and (4.2);, one may choose as approximations of the previous inequalities for the
unilateral conditions

(4.3) 20 Vs, >0, (si—r) H¥X—Yo) > 0

for Coulomb’s law

(4.3), e D Ns,€rn®, (s—r)H*X-X,)=>0,
r,z20 means Vi r,; =0,

rrer,?2 means Vh rpera9.

The dot denotes the scalar product in R?. It may be proven that this approximation
is suitable in the following sense.

PROPOSITION 1.

The %, are supposed to be the characteristic functions of a partition S* of ¢; 2. Let
rk, sk, X* verify the inequalities (4.3); and (4.3),, and suppose that the sequences

Ry = r}yFy, Fo= i hs
@y = (HE* (X = X5 )8 ms
Uy = (H*(X*—Xo) In€ 5 m-
converge to some #%, %, g, 4% when the partition &#* is refined. Then #%-, 2%, ¢%-,
% satisfy the inequalities (4.3), and (4.3),.
The mathematical framework to discuss this formulation and the results is to be found
in [5].

4.4. Examples

One considers the two-dimensional case where the generating functions e,, are associated
with the nodes A = 1, ..., N of a mesh

em(®) = ki f(&), k= (1,0), k,=1(0,1),
=12, s=1,...,N, m=25s—2+j.

One supposes that the obstacle occupies the lower half plane x, < 0, with boundary, the
x, axis, Fig. 1. The obstacle has a translative motion with constant velocity (E,, E,).
One considers a part 9, £ of the boundary of a continuous medium, which is the union
of successive p—1 segments of a straight line, parallel to the x, axis, with extremities
the node 4 and the node h+1, for 2 = 1, ..., p—1. The parameter & labelling the particles
of 3, £ may be chosen as the x; coordinate of the particle; the node 4 has for x, coordinate,
&,. The normal and tangential components of the relative velocity of a particle of d, 2
(with x; coordinate £) may be written as

N
Uy = ¥ Xoofu(O—E,,
1

i

5

=z

Uy = Y Xy 1 fi(5)—E,.

§=

oy
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One assumes that the constant functions may be generated by f;:

N r
Uy = D (o= Xondi®) = D, Eari(®) (hi—Xo0),
s=1 I=1

N P
Uy = D, (geer =Koz () = D, €58 (Ki—Xo),
s=1 =1

with
p =2N,

Ey,=0 ifl isodd, Euy=f f I=2s5 s=1,..

=0 ifl iseven, &5y=f if [=25—1,
,’Yo[ = XONE if I= 2S, "XOI = j’OTS if = 2-5""1.

One deduces then the value of the p x p’ matrices H¥, Hf

Hiy= [6m@FOd, Hiv= [En@OF (E)dE.
2102

10

EXAMPLE 1

N,

The reactions are described by the generating functions &,, h = 1, ..., p, associated
with the nodes. Those are the step functions vanishing on &, £ except on the interval
[En—2e/2, &+ /2] for Fy, [£1, & +¢/2] for F,, [6,—¢/2, &,] for & ,, where they take the
value 1/e for #,, 2/e for #, and % ,. When ¢ tends to zero, this is a way to describe con-
centrated forces on the nodes A = 1, ..., p. Let us assume that f; are continuous functions

and f,(&,) = 1. One finds the limits of HY, H¥ when ¢ - 0,
H}=1%, Hf=IL}

with
01 .. .00 01A
a_fooon 00 ..0
"~ o .00 ..0||"”
00 .. 010..0]y
< >
2p
< >
P =2N
10 .. .00 .. 01A
_|00 10, .00 ..0
t=lo .. .00 ..0}]"
00 .. 100 .0
< >
P =2N

When the boundary of the obstacle is not a straight line, the terms of these two matrices
are replaced by 2x2 blocks corresponding to the components of the unit normal and
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tangent vectors in the local frame. For this kind of generating functions #, (Dirac func-
tions), it is irrelevant to discuss now the question of convergence within the scope of
proposition 1.

EXAMPLE 2

The mesh is a 73 mesh; the relative velocities % 5, % 4 are approximated by continuous
affine functions. The generating functions f, have a graph as depicted in Fig. 2. The density
of reactions are described by generating functions y,, # = 1, ..., p, associated with the

.. , . 1
nodes. They are the characteristic functions y, of the intervals [5 (Er- 1+ &), —;—(5,,+

+5h+1)]a h#1, Ps X1 of [51;%(51 +§2)]a Xp of [%(fp—l"‘&p)’ f‘p] One finds for the

expression of HY, H}
H® = #4*P*I}, HY= M*P*L}.

A* is the p x p diagonal matrix with the element .#, equal to the measure of the support

1
of xu, (‘f(fhﬂ—fh—l), )

73/4 1/4 0 ... O‘J‘t
1/8 3/4 1/8 0 ... 01
O 1/8 3/41/8 0 .. 0

P* = p.

0 1/8 3/41/8 0
0 1/8 3/4 1/8

L 1/4 3/4 |y

< >

p

This approximation process is consistent within the scope of proposition 1. The unknowns
Taws Tey, have the dimension of a density of reaction. The images by #, #r, and #r,
have the dimension of a force and might be as well used as unknowns. The terms ry;,
I',’h, with

rn= PMr,, ri= Pdr,

may be considered as the concentrated forces to nodes 4, equivalent (in the sense of the

P P
finite element method) to the densities of reactions > rusxs, 2, Fe s One may wonder
h=1 h=1

if the solutions of examples 1 and 2 may be compared. The following propositions allow
one to answer this question.

ProPOSITION 2.

Let B be a mapping from R? into itself represented by a matrix with non-negative
elements, i.e.

Vi:l,...,p ijl,...,p BU;O,
and rows different from zero
Vi 3]' 'Bij > 0.
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Then,

i) r, € (R*)? = Br, € (R*)?.
If r € (R)?,

ii) (Br)? < B(r,2).

Furthermore, if B is a diagonal matrix, the converse of i) is true, the equality in ii) is true.
Proof
The implication is obvious. The proof of the inclusion is as follows. Let r, € B(r, %),
L
1-Bhksrn Sk €2,
k=1

I'th =
s may be written, s, = ry, ¥, With y, € 9.

)4
Fen = ZBhk"nka-
k=1

If r, = 0, the assertion is true. If r, # 0, the term

P
2 Bhkrnk
k=1

is different from zero. One may write

P P P
Fep = (2 B Tuk Vil ;Bhkrnk)kZZBhkrnk-
k=1 =1 =1

The quotient term appears as a linear convex combination of y; € 2. It is an element of .
So r, € (Br,)2.

The matrix P of example 2 satisfies the assumptions of proposition 2.

PROPOSITION 3]

Let P satisfy the assumptions of proposition 2. Let r,, F, be such that

Fa>0 V5,20, (,~F) LEX—Xo) > 0.
If r,is an inverse image of 7, by P, ¥, = Pr,, such that r, > 0, then
P20 V5,20 (s,—r) P*LA(X—X,,) = 0,

In other words, if the inverse images r,, r, of the solution of a problem with concentrated
reactions satisfy the constraints equations, they are solution of the problem with weighted
reactions.

Proof

Let s, = 0, then

(5a= ) * PXLE(Xy —Xon) = (Psy—Pr,) - LE(X~Xo,) > 0
since Pr, = 0, Ps, > 0.
Let s, €r,2
(S,—P',)P*L:"(X—X’O,,) = (PS,—PI‘,)L?‘(X—XM) 20
since Pr, =r,€r,9, Ps,€ P(r,2) < (Pr,) = r,9.
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4.5. Numerical examples

The following examples are derived from a benchmark used in GRECO Grandes
Déformations et Endommagement.

An elastic isotropic parallelepiped with E = 0.13 - 10*2 Pa, » = 0.2, is considered within
the plane deformations hypothesis. The dimensions are 4-1073 mx4-10"°> mx1 m
(unit length thickness). The boundary conditions are as depicted in Fig. 3a. The parallelepi-
ped is set on a plane obstacle with the friction coefficient 4 = 1. A monotone increasing
loading is applied to the free edges with final state as depicted in the figure. Computation
is made using the quasi-static hypothesis. For this kind of loading it is thus possible to
use only one step of loading. Two computations are made, with concentrated reactions
and with weighted reactions (using the matrix P). The accuracy required for the computation
of the reaction force is 10~4.

On the tables Figs. 3b are depicted for each node candidate to contact from number 1
to 16:

The horizontal and vertical displacements Q1, 92, with respect to the reference con-
figuration.

The tangential and normal components £, &.+ of the reaction forces, (N/m, Newton/
unit length of thickness). In the first table, a computation with concentrated reaction
is performed; the concentrated reactions are shown and also the inverse images of %,
R4, by P (weighted reactions equivalent to concentrated reactions). In the second table
a computation with weighted reaction is performed; the weighted reactions are shown and
also the images of #5, &4, by P (concentrated forces equivalent to weighted reactions).

Continuous medium Q

XzT
)
&1 & & Envr P *
Obstacle
\ (E1,E2)
Fic. 1.

|
én
Generating Runctions
Fic. 2.
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R and Ry are the horizontal and vertical components of the resulting reaction.

The deformed configuration with displacements amplified by a factor of 10* is displayed
in Fig. 3a. The nodes 1 to 5 are not in contact; the nodes 5 to 12 are sliding and the nodes
5 to 16 are sticking. While the two computations give good agreement with respect to the

a y
X
-
8
' -05-10%a !
]
[]
[
.
N\ E
\ »
®
*
L
°
: AN
\ |
X
7 _3 16 noconfacrl slip ] stick
| 4-10"m . %
= Deformed configuration
Unsirained configuration and loading
MFASS 1 TPS= Q. 10000De01  1S= &2 ITT= &) INN= 62 H= O, 10000D+0]
01 02 RT RN RT AN
Concentrated reactions Whei. reac. equ. conc. reac.
1 0, 220135D-04 0.72137D-0S 0. 00000D+G0 0. 00000D+00 0, 334636D+01 =0.33682D+01
2 0. 20169D-04 0.350655D-05 0. 00000D+00 0. 00000D+00 =0.20193D+02 0. 20209D+02
3 0. 18367D-04 0.31304D-05 0.00000D+00 0. 00000D+00 0.11443D+03 -0.11452D+0%
4 0.16532D-04 ©.15878D-05 0, 0000OD+00 0. 00000D+00 -0.664638D+03 0, 4664690D+03
5 0.14542D-04 0.48193D-06 0.00000D+00 0.00000D+00 0.38839D+04 =0, 38869D+043
& 0. 12310D-04 =0.31084D-09 ~0.274669D+05 0.274683D+05 —0.22637D+05 0.224654D+03
7 0.98259D-05 =0.71824D-0% -0.83808D+05 0.83817D+05 -0.89416D+05 ©.87426D+05
a 0.74151D-05 =0.78711D-09 -0.11171D+06 0.11171D+06 —0.11134D+0& 0.11133D+06
? 0.514681D-05 «67232D-09 -0.13597D+06 0. 13597D+06 =0. 13626D+0& 0.13632D+06
10 0.31771D-0% =0, 48273D-09 15849D+06 0. 19848D+06 -0.15889D+06 ©.15851D+06
11 0.15512D-05 ~0.28817D-09% =0.18013D+06 0.18012D+06 -0.17832D+0& 0. 18044D+06
e 0.43084D-06 =0.12944D-09 =0.20050D+06 0.20049D+06 =0.21226D+06 0. 19972D+06
13 -0.71149D-10 —0.23030D~-10 -0.14698D+06 0.22461D+06 —0.13210D+0& 0.22517D+06
14 -0.51152D-10 0.25630D-11 ~0.62609D+05 0.24258D+0b6 =0.,50985D+05 0. 24615D+06
15 -0.33412D-10 0.456946D-11 ~0.40996D+05 0.24587D+06 =0, 42863D+05 0.23854D+0s
16 -0.17018D-10 —0.33881D-20 -0.20211D+05 0.244698D+06 =0.19805D+05 0.28955D+06
R Ry

“.116910+07 0.18583D+07

NFAS= 1 TRS= 0.10000D+01 IS= 85 [TT= 8BS INN= 85 H= 0. 10000D+0]
01 oz RT RN RT RN
Wheiahted reactions Conc. reac. equ. whei. reac.
1 1. 22042D-04 0.718653D-05 0. 00000D+00 0. 00000D+00 0, OOO00D+00 0. 000DOD+O0
By 0.20196D-04 0.50212D-05 0. 00000D+00 0 POOD+Q0 QL OO00OOD+0O0 ) 0
=) 0.18395D-04 0.31089D-0S 0. 00000D+00 0. 00000D+00 0. 00000D+00
4 1.16561D-04 0. 15476D-05 0. 00000D+00 0. 00000D+00 0. 00000D+00
5 0.14595D-04 0. 44082D-06 0. 00000D+00 0. 00000D+00 =0.12022D+04 0.12002D+04
& 0. 123764D-04 =0.740B7D-07 -0.96178D+04 0.96015D+04 —0. 19641D+05 0. 19652D+05
7 ©.98309D-05 ©.11814D-07 =0.99583D+05 0.99509D+05 -0.89521D+0% 0.89537D+0S
B8 0.74188D-0% =0, 145609D-08 -0.10905D+06 0. 10903D+06 =0.11137D+0& Q. 11136D+06
9 0.51647D-0% 0.12290D-09 =0.13705D+06 0.13706D+06 -0, 13624D+04 0. 13624D+06
10 0. 31675D-0S5 0.34018D-10 =0.15853D+06 0.13852D+06 =0.15854D+06 0.15856D+06
11 0.15343D-05 0,.39268D-10 =0.18025D+06 0.18024D+068 =0.18012D+06 0.18012D+0&
e ©.40443D-06 -0,971350D-11 =0.20093D+06 0.20093D+06 -0.194616D+06 0.20094D+06
13 -0.69381D-07 0.23745D-10 =0.18342D+06 0.22184D+06 =0.16593D+04 0.22279D+06
14 ©.11895D-07 =0.26392D-11 -0.26007D+05 0. 28035D+06 =0.48741D+05 0.24517D+06
15 -0.20381D-08 ©.37773D-11 =0.50469D+05 0.23738D+0é =0.43351D+0% 0.23557D+06
16 0.33927D-09 =0, 42955D-12 =0.179846D+0S 0. 28996D+06 =0, 19798D+0S 0.24714D+06
Rx Ry

“.11729D+07  0.18946D+07

Fi1G. 3.
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values of 01, 02, and the resulting reactions #a, £+, and while some similarity may be
noticed between the values of #5, %4, these values are not to be compared since P~r, ¢
¢ (R*)" and also P~'r, ¢ P~1(r,9).

In Figs. 4a and 4b a similar example is treated with a different final loading state and
1 = 0.1, In this example, the nodes 1 to 16 are sliding. The two computations provide
the same values of Q1, Q2 and of &5, #.4, with respect to the change of variable by P
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S] . \\
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<o - \[\ :
<Q * s
= = X
a X % i
L]
)
L—,- .
” "
u=01 [ 21073 15_1 Stiding
| m
f—
HFAS= 1 1S5= 42 ITT= 41 INN= 42 H= 0, 10000D+01
(a3} 02 RT RN RT RN
Concentrated reactions Whei. reac. equ. Conc. reac.
! 1. 9096ID-05 0.33282D-09 =0, 40952D+04 0.40945D+0% ~0.35443D+04 0.354310+03
z 11, 83546D-0S -0, 11685D-09 -0.10944D+05 ©.10945D+06 -0.11496D+05 011897004
3 76545D-05 17365D-09 -0.11548D+05 ©.11547D+06 -0.11490D+05 (1, 118890 w08
4 0. 69801D-05 0.34581D-09 -0.11916D+05 ©0.11915D+06 ~0.11944D+05 0. 11944De06
S (1. 63244D-08 0. 41693D-09 -0.12164D+05 0. 12164D+06 -0.12172D+05 ©9.12172D+06
& . 568470 €. 41047D-09 -0, 12352D+08 0. 127520406 0. 12357D+06
7 1. 50584D-05 0.38916D-09 -0.12500D+05 0. 12500D+04 -0, 12503D+05 0. 12507006
8 (1. 844690-05 0.25711D-09 -0.12625D+05 0.12625D+06 -0, 12627D+0S 0.126270+06
? 1. 38%05D-05 0. 16086D-09 -0.12736D+05 0.12736D+06 -0.12737D+0S 0.12737D+06
10 0.32703D-05% 0.78356D-10 -0.12839D+05 0. 12839D+06 -0.12839D+05 01, 128800+06
117 0.27083D-0%5 . 21654D-i0 -0. 12938D+05 0. 12939D+06 -0. 12938D+05 0, 12938D+06
12 0.21675D-05 -0.65229D-11 -0. 13038D+05 0. 13038D+06 ~0. 13040D+05 0. 13080D+08
13 (.16516D-05S -0.14278D-10 -0.13141D+05S 0.13141D+06 -0. 13128D+05 0. 13128D*0e
14 0. 11666D-05 .12097D-10 0. 13247D+05 0. 13247D+06 ~0.133130+05 0. 1TT1ISDe0s
IS 0.72068D-06 -0,58080D-11 =0, 13351D+05 0. 13351D+06 -0, 12959D+05 0.12958D+05
16 0.3T607D-06 0. 67763D-20 -0. 13428D+05 Q. 13428D+06 -0, 15744D+05 0. 15784004
R Rv
S0 19786DC06 0. 19286D+07
HF AS= 1 TFS= 0,10000D+01  1S=146 ITT=146 INN=146 H= O, 100COD+01
o1 o2 RT RN RT RN
Wheighted reactions Conc. reac. equ. whei. rea:.
1 0.909550-0% 0.141580-08 -0.35645D404 0. 35636D4+05 =0.41058D+04 0.41058D+013
< ©.835844D-05 -0.96408D-0% -0.11450D+05 0.11461D+06 =0, 10925D+05 0. 1G926D+05
3 0.76542D-05 0.42332D-09 -0.11516D+05 0.11515D+06 =0.11560D+05 9. 11360D+06
4 0. 69600D-05 -0.19221D-09 -0.11930D+0S 0. 11931D+06 =0.11909D+05 0.11907D+05
5 0.6324ZD-05 0.54583D-10 -0.12176D+05 0.12176D+06 1. 12168D+05 0.12167D¢0Ox
& 0.S6842D-05 ~0.26062D-10 -0, 12355D+GS 0.12355D+06 1. 123591D+0% 0. 1233510+0a
7 0, S0S84D-0S 0.23965D~11 -0. 12503D+05 0. 12503D+06 ). 12500D+05 0. 12S00D 06
8 0.84470D-05 -0.53240D-11 -0.12627D+05 ©.12627D+06 —11.12625D+05 0. 12625D+0s
? 0.2B505D-0S .57421D-12 =0.12737D+05 0.12727D+06 -0.12736D+0S 0. 12736D+056
10 0.32707D-08 0.23196D-11 =0. 12840D+05 0, 12840D+06 —0.12839D+05 0.12839D+0s
11 0.27084D-05 -0.47256D-12 -0.12939D+05 0.12939D+06 3, 12939D+05 0.12939D+08
12 0.21675D-0% -0.94924D-12 -0.13040D+05 Q. 13040D+06 13038D+05 0. 130380+24
13 0. 16516D-05 -0.33129D-12 -0.13129D+05 0.13129D+05 0.13141D0+0s
14 0. 118666D-05 -0.27656D-12 -0. 13315D+0S 0.13315D+08 0. 13247D+05
S 0.72069D-06 -0,97491D-13 1. 12959D+05 0. 12959D+06 0.133S1D+'s
16 0. 3260BD-04 0.16248D-13 -0.15744D+05 0. 15744D+06 =0, 13428D+05 0. 13428D+05
Fis: Rv

M, 19483D+06 0.1948ID+07

FiG. 4.
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or P~!. One may observe on the basis of these two examples that a computation with
weighted reactions needs more iterations than a computation with concentrated reactions.
This is probably due to the fact that in the first case there is more coupling than in the
second case between the unknown reactions.

Conclusion

Other examples have shown that in general there is good agreement between the two
ways of computation. They even coincide in the special case of full sliding or full sticking
of the boundary candidates to contact. The two ways of computation seem thus acceptable.
This is a particular situation due to the fact the matrix P is positive. For other kinds of finite
elements further investigation is needed.
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