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U oilateral contact with dry friction: 
Time and space discrete variables formulation 

M. JEAN (MONTPELLIER) 

ONE CONSIDERS a continuous medium coming into contact with a rigid obstacle or another 
deformable body. Quasi-static evolution problems (i.e. with negligible inertia) are considered 
as well as proper dynamical problems. Formulations of unilateral contact are proposed for 
these two cases. Dry friction is taken into account through Coulomb's law. A system of equations 
for the time and space discretized problem is proposed together with an algorithm for solving 
this system. The derivation of equations when performing space variable discretization is specially 
developed in this paper. 

Przedmiotem pracy jest zagadnienie kontaktu osrodka ci~glego ze sztywn~ przeszkod.'l lub 
z innym cialem odksztalcalnym. Rozwarono quasi-statyczne, jak i dynamiczne problemy ewo­
lucji. Zaproponowano sformulowanie problemu kontaktu jednostrmmego dla tych dw6ch 
przypadk6w przy uwzgl~ieniu sucbego tarcia uj~tego przez prawo Coulomba. Przedstawiono 
podstawowy uklad r6wnan problemu po dokonaniu jego dyskretyzacji w odniesieniu do zmiep­
nych czasu i przestrzeni. Podano algorytm rozwi~zania tego ukladu. Szczeg6ln~ uwa~ poswi~ 
cono dyskretyzacji ze wzgl~u na zmienn~ przestrzellilll. 

IlpeAMeTOM pa6oTbl HBJIHeTCH sa~qa I<OHTal<Ta CllJIOlliHOH cpe~ C >f<ecTI<OH nperp~OH 
HJIH c .npyrHM .Ae<l>opMHpyeMhiM TeJIOM. PacCMOTpem.I I<B&3HCTan{tJeCKHe H ,AHH&MHtleci<He 
~atlll 3BOmol.U{H. Ilpe.AJiomeHa cl>opMynHpoBI<a ~q}f o,AHocropoHHero I<oHTai<Ta .AJIH 
3THX ,Aayx CJJyqaeB, npJ! ~ere cyxoro TpeHWI onHcaHHoro 3ai<OHOM KynoHa. Ilpe,ACTaBJieHa 
OCHoBHaH CHCTeMa ypasHemm 38,1Ulq}i noCJie npose,AeHHH ee ,AHCI<peTH3auHH no oTHowemno 
I< nepe.MeHHbiM BpeMeHH H IIpOCTpaHCTBa. IlpHBe,AeH a.nropHTM pemeHHH 3TOH CHCTeMhl. 
Oco6eHHoe BHHMaHHe noca.ameHo ,AHCI<peTH3al.U{H H3-3a npocrpaHcTBeHHoH nepeMeHHoil. 

1. Introduction 

WHEN DEALING from a numerical point of view with a continuous medium, a finite-dimen­
sional subspace of admissible velocity field { U} is selected (space variable discretization), 
together with its dual space {F} whose elements are representatives of the applied forces. 
These representatives are constructed through the principle of virtual power. When unilate­
ral contact and dry friction are involved, it is usual to select a finite number of particles, 
the candidates to contact, for which the contact and friction laws are invoked. Actually 
the boundary in contact is submitted to a density of reaction forces from the obstacle, 
satisfying the contact and friction laws. In the above discretization procedure, this distri­
buted reaction is represented by some R E {F}, while the considered velocity field is U e 
E { U}. The contact and friction laws assumed to hold for every particle of the boundary 
induce some relations between R and U, which might be called the discretized contact 
and friction laws. These laws are different from those obtained when concentrating the 
reaction forces on candidates to contact. The object of this paper is to propose a way 
of exhibiting the discretized laws between R and U. A comparison will be made between 
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678 M. JEA~ 

the usual procedure based on concentrated forces applied to candidates, and the above 
discretized laws in the case of T3 finite elements (linear interpolation on a triangle mesh). 

Section 2 presents a choice of unilateral contact conditions for the quasi-static case 
and for the dynamic case. The friction law adopted is Coulomb's law. 

Section 3 deals with time discretization and results are presented concerning space 
variable discretization of contact and friction laws, see also [6]. The method of constructing 
such laws is developed in Sect. 4, with examples and numerical comparison. 

2. Contact and friction equations 

2.1. Unilateral contact equations 

Let the position of a particle P of the deformable body relative to the boundary of the 
obstacle be measured by the real number q.¥: this is the distance of P to this boundary, 
counted as negative if Plies inside the obstacle. Impenetrability is thus expressed by qs ~ 0. 
The obstacle is supposed to be nonadhesive, i.e. the normal component of the reaction 
is non-negative. When P lies clear from the obstacle, then fJts = 0. In short, 

This has the well-known form of a complementarity relation, commonly accepted for 
unilateral constraints. An equivalent form is 

In the case of dynamical problems one has to provide more information about shock 
conditions. The velocity d/1 of P relative to the obstacle may be discontinuous; we shall 
assume it to be a function of the time t with locally bounded variation (l.b.v.). This secures 
the existence of the right and left limits of 0//, respectively denoted by ou+ (t) and d/1- (t). 
The reaction can no more be expected to be a finite-valued function of time. As a mathemat­
ical formalization of the traditional concept of percussion, we describe this reaction as 
a measure on the considered time interval. In the case of smooth motion, this measure 
possesses a density, relative to Lebesgue's measure, which is nothing but the force denoted 
above by fJt.¥. On the contrary, if a shock occurs at some instant t, the reaction measure 
presents an atom at t, i.e. it involves a Dirac mass at this instant. 

Generally, a non-negative measure 1-' is sure to exist (non-uniquely defined) relative 
to which the reaction measure possesses a density function [1]. By fJtr and fJt.¥ in the 
sequel, we shall denote the values of such density functions at the considered instant. 

With a view to such applications as metal forming, one proposes the inelastic shock 
law: 

At every instant such that q.¥ = 0: 

011}- = 0 

together with the relations (2.1)1 , where 011}- is the normal component of cw+. One may 
relax the previous law and consider the inelastic shock law only in the case of strict contact, 
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UNlLATERAL CONTACT WITH DRY FRICTION 679 

i.e. when ~.% > 0; otherwise Cft.} ~ 0. Together with 9l.% ~ 0 and at.%q.% = 0, these 
equations may be summarized as (the superscript + is now omitted). 

(2.1)4 1pR-(q.%)+Cf/.%;;:::: 0, &/.% ~ 0, (1f'R-(q.%+t1/t.%&/.%) = 0, 

where 1f'R- is the indicator function of R- (namely 1f'R-(x) = 0 if x ~ 0, and oo otherwise); 
the convention oo xO = 0 is made. The choice of the relations (2.1)19 (2.1)3 and (2.1)4 

to express unilateral contact depends on the contemplated problem. Formulation (2.1)1 

is suitable for a quasi-static situation, and the relations (2.1)3 or (2.1}4 for dynamical 
problems. One shall not make systematic comparisons. Observe that if t ~ ajl(t) is l.b.v. 
and t ~ Bl.%(t) is continuous, the formulation (2.1)1 implies the relations (2.1}4 • Also, 
the solutions of the relation (2.1 )3 satisfies the relations (2.1 }4 • 

2.2. Coulomb's friction law 

One uses Coulomb's friction law under the form given by J. J. MoREAu [2], 

fJt5" E 01p~( -Cf/5"), 

where Bl5" is the tangential component of the reaction and Cf/5" is the sliding velocity. Cis 
the convex set 

C = 9l.,y!!J where !!J is the unit section of the friction cone. 
This formulation is also equivalent to a variational inequality expressing the "principle 
of maximum dissipation" 

In the case of a one-dimensional motion with a friction coefficient p,, the relations (2.2) 1 

take the form 

!!J = [ -p,' p,]' {}l.%!!J = [-pat,%' ,u9l.%]' 

925" E [ -p,&t.¥, ,uat.%] Vf/ E [ -,uat.,y, ,uals], (f/-9t5")Cft5" ~ 0. 

3. Discrete variables and algorithms 

3.1. Discrete space variables 

For the purpose of numerical computation, the configuration of a continuous medium 
!J is approximately described through a n-dimensional variable X= (Xb ... , X,, ... ); 
for instance this may consist of the displacements of the mesh nodes in a finite element 
method. The position of every particle P of the medium is approximated by q(E) = 
= Xme,.(E) where em are interpolation functions, E is some parameter labelling the particle. 
The tangential and normal components of the density of reaction on the contact boundary 
a 1 D may be approximated as 

9t5"(E) = r,h.Fh(E), 

9t.%(E) = rnh~h(E}, 
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680 M. JEAN 

where §' 11 , h = I , ... , p are non-negative functions. It will be shown in Sect. 4, using 
a virtual power formula, that one may construct a n x p matrix H such that 

R = Hr = Hrr,+H,r,, 

R is the representative of the reaction forces for the parametrization X. It will be shown 
also that, under some conditions, an approximation of the relations (2.2)1 may be chosen 
as 

r, ~ 0, 

rt E r,g} Vs E r,!i}' (s-rt). a:(x -Xot) ~ 0, 

where 

means Vh r,h ~ 0, 

means Vh r1, E r,,!i}, 

X0 , is explicitly known and appears when dealing with obstacles moving with given veloc­
ities. 

3.2. Discrete time variables 

One adopts the usual implicit discretization during a time step 

X(i+ I)= X(i)+hX(i+ I), 

where X(i), X(i+I), X(i+I) are approximants of X(t;), X(t;+ 1), X(ti+ 1), h = ti+ 1 -t;. 
One may also accept for the normal component of the relative position of a particle with 
respect to the obstacle, considered in its position at time t;+ 1 , the following approxima­
tion: 

q,.,y(i+ 1' ~) = qvY(i, ~)+h"llvY(i+ 1' ~). 

A discretization of the formulation (2.1)1 is readily found to be 

V~ ~,.,y(i+ I, ~)+q.,.y(i, ~)Jh ~ 0, 9l,.,y(i+ I,~) ~ 0, 

("llvY(i+ I , ~)+q,.,y(i, ~)Jh) · BlvY(i+ I,~)= 0. 

This may also be considered as a discrete form of the relations (2.1)4 • 

One may as well write, omitting the index i + 1, 

(3.2)~. v~ m..¥(~) ~ o vf/ ~ o, (f/-tJt.,y(~)). (dli...Y(~)+q!Ara)Jh))~ o. 

It will be shown in Sect. 4 that an approximation of the inequalities (3.2)1 is . 

where X0 , is explicitly known from data at step i. 
One may notice that the inequalities (3.1h and (3.2)2 are quite similar to the expression~ 

found for a system of a finite number of particles [3, 4]. 
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UNILATERAL CONTACT' WITH DRY FRICTION 681 

3.3. Numerical algorithm 

In linear quasi-static problems as well as in dynamic problems, most numerical implicit 
or explicit schemes, used in order to solve the equilibrium equations, yield an expression 
such as 

X(i+ I)= X(i)+ WhA(i)+ WhR(i+ 1), 

where A(i) represents external loads explicitly known at time tl+ 1 and internal forces at 
time ti. In a quasi-static problem the matrix h2 W is the inverse of the rigidity matrix; 
in a dynamic problem Wis the inverse of a mass matrix. In the nonlinear case w- 1 might 
be considered as a tangent matrix and Eq. (3.3)1 is written for equilibrium subiterations, 
[4]. The set of equations for the discretized problem may now be summarized as follows, 
omitting the index i + 1 : 

The equilibrium equation 

(3.3)1 X= X(i)+ WhA(i)+ WhR. 

The change of variable formula 

(3.3h 
The unilateral constraint inequality 

Coulomb's friction law 

(3.3)4 
where the unknowns are X, R,, R,, r,, r, at step i + 1. The variables X, R,, R, may be 
eliminated using the inequalities (3.3)1 and (3.3)2 • The inequalities (3.3)3 and (3.3)4 become 

(3.3), 
(3.3)6 

r, ~ 0 Vs, ~ 0, (s,-r,) · (W,,r,+ W,ur,- Y0,) ~ 0, 

r, E r,!'} Vs, E r,!'}, (s,-r,) · (W,,r,+ Wur,- Y0 ,) ~ 0, 

where Y0,, Y0 , are data and 

W,, = H:.(Wh)- 1H,, 

W,, = Ht(Wh)- 1H,, 

W"' = H:(Wh)- 1H, 

Wu = H~(Wh)-1 H, 

are influence matrices. The system (3.3)5 and (3.3)6 is a system of coupled variational 
inequalities and may be solved by an iterative procedure such as the Gauss-Seidel method. 
It may be proved that such a system has a unique solution when the friction coefficient 
is less than a critical value. The next section is to emphasize the paragraph (3.1 ). 

4. Discrete space variables 

4.1. Approximation of the relative velocity and relative position 

For the purpose of numerical computation the configuration of a continuous medium 
is approximately described through an n-dimensional variable X= (X1 , ••• , Xm, ... ). 
For instance, this may consist of the displacements of aN nodes mesh in a finite element 
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method; there n = vN, with v = 2 in the two-dimensional case, v = 3 in the three-dimen­
sional case. The position of every particle of the medium is approximated by 

n 

q(1, E)= ~ Xm(1)em(E), 
m=l 

where Eisa parameter labelling the particle and E-+ em(E) e R" are interpolation functions. 
The components of the relative velocity in a local frame may be written as 

,. 
0/1(1, E)= ~ Xm(1)t1m(E)+Ollo(1, E), 

m=l 

where the functions C m are deduced from em by a change of variables. The term d/1 0 (1, E) 
appears when dealing with obstacles moving with given velocities. It is assumed that 
U1J 0 (1, E) may be approximated as 

,. 
d/1 o(1, E) = ~ 8 m(E)Xom(1). 

m=l 

An expression of the normal and tangential components of the relative velocity is thus 
n 

0/15"(1, E)= L 85"m(E)(Xm(1)-Xom(t)), 
m=l 

n 

Olt.¥(1, E)= ~ <f.¥m(E)(Xm(1)-Xom(1}). 
m=l 

As mentioned in the previous section about time discretization, the expressions 
of Cfl(t1+h E) will be used in the approximation process. One thus omits the variable 
ti+l , 

Olt5"(E) = ~ G5"m(E) (Xm-Xom), 
m=l 

n 

071.¥(~) = ~ <f.¥m(E)(Xm-XonJ• 
m=l 

For the normal component of the relative position of the particle, one uses the approxima­
tion 

q.¥(1t+1' E)= q.¥(1, E)+h0Ji.¥(1t+1' E). 

An approximant of q.¥(11, E) is supposed to be 
n 

q.¥(1, E)= ~ 1.¥m(E) Yom• 
m=l 

Omitting the variable 1i+l, one obtains 
n 

q.¥(E)/h = ~ 1.¥m(E) (Xm- Y~m), 
m=l 

Y~m = Xom- Yomfh. 
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4.2. Approximation of the density of reaction 

One intends to represent tangential and normal densities of reactions exerted on particles 
on a part a 1 Q of the boundary as 

p 

&l.r(;) = 2 rth~lt(;), 
h=l 

p 

9l%(;) = 2 rnlt~h(;), 
h=1 

where F'11 are functions defined on o1 Q and with value in R; r"11 E R and r,h e R"- 1 • 

One deduces from the virtual power formula an expression relating the components r,11 
of fJt5" with respect to the generating functions ~hand the representation R, of this reaction 
with respect to the parametrization X: 

p n 

J 9l.r(;) (Jo/J,r(;)d; = J 2 rth9i"h(;) 2 t! .1'"m(;) (JXmd; = (JX · Hr, = &x · Rr 
o1D ihD h=1 m=l 

so that 

where H, is the n-row x p-column block matrix with m-row, h-column element, 

J .Fh(;)&.1'"m(;)d; E R"-t, 
ihD 

Hn is similarly defined, 

R" = H"'"' 
H" is the n-row xp-column matrix with m-row, h-column element 

J Fh(;)&sm(;)d; E R. 
a1n 

4.3. Approximation of contact and friction laws 

The unilateral condition (2.1}2 and Coulomb's law (2.2}1 are expressed using densities 
of reactions (for the sake of simplicity they will be assumed to be L 2 functions as well as 
qJV and t1/l!f, t111s). 

(4.3)1 a.e.; 9l%(;) ~ 0 Vf/ JV ~ 0, (f/ .r-9ls(;))q.,y(;) ~ 0, 

(4.3)2 a.e.; 9l.r(;) E 9ls(;)qJ Vf/ .r e t/ts(;)qJ, (f/ .1'"- (;)) · o/iff(;) ~ 0. 

A similar formulation using density with respect to a positive measure has already been 
introduced by J. J. MOREAU [1] for time-varying reactions and relative velocities. Using 
Rockafellar's convex integrand theorem, these inequalities are, respectively, equivalent to 

t/ts ~ 0 Vf/ s ~ 0 J (f/ s(;)-9ls(;))qs (;)d; ~ 0, 
o1D 

91.1'" E 9lsqJ Vf/ .1'" E t/tsqJ J (f/ :r(;)-at.1'"(;))dlt.1'"(;)d; ~ 0, 
()}D 

where 9isqJ = {9l.r E L2
: a.e.; 91.1'"(;) e fits(;)qJ} is a closed convex bounded set. 
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One supposes now that ~h are positive functions. Using the approximations (4.1)1 , 

(4.lh and (4.2)1 , one may choose as approximations of the previous inequalities for the 
unilateral conditions 

(4.3h 

for Coulomb's law 

r, ~ 0 means Vh 

rt E r,~ means Vh 

r,h ~ 0, 

Trh E Tnh~• 

The dot denotes the scalar product in RP. It may be proven that this approximation 
is suitable in the following sense. 

PROPOSITION 1. 
The Fh are supposed to be the characteristic functions of a partition Sk of 81 Q. Let 

r!, s!, Xk, verify the inequalities ( 4.3h and ( 4.3)4 , and suppose that the sequences 

at!;v = r!11 ~,, ~} = r~11~11 , 

q!:v = (H!*(Xk-X~n))mtl~m, 
aJ/} = (H~*(Xk-Xor))mtl}m. 

converge to some at.}, at}, q.}, OJ/} when the partition fJ'k is refined. Then at.} , al}, q.}, 
'PI} satisfy the inequalities (4.3)1 and (4.3)2 • 

The mathematical framework to discuss this formulation and the results is to be found 
in [5]. 

4.4. Examples 

One considers the two-dimensional case where the generating functions em are associated 
with the nodes h = 1 , ... , N of a mesh 

em(~)= kifs(~), k1 = (1, 0), k2 = (0, 1), 

j=1,2, s=1, .. . ,N, m=2s-2+j. 

One supposes that the obstacle occupies the lower half plane x 2 ~ 0, with boundary, the 
x1 axis, Fig. 1. The obstacle has a translative motion with constant velocity (£1, £2). 
One considers a part 31 Q of the boundary of a continuous medium, which is the union 
of successive p- 1 segments of a straight line, parallel to the x 1 axis, with extremities 
the node h and the node h + 1, for h = 1 , ... , p- 1. The parameter ~ labelling the particles 
of 81 Q may be chosen as the x 1 coordinate of the particle; the node h has for x1 coordinate, 
~h. The normal and tangential components of the relative velocity of a particle of 81 Q 

(with x 1 coordinate ~) may be written as 
N 

\-,. 
0/IAF = / X2sfs(~)-E1, 

~ 

s=l 

N 

0/1~ = 2: X2s-1fs(~)-E2. 
s=l 
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One assumes that the constant functions may be generated by Is: 

with 

N p' 

0/1% = }; CXzs-X~Ns)fs(~) = 2; ~%z(~) (Xz-Xoz), 
s=l l=l 

N p' 

OU.r =}; (Xzs-1-Xors)fs(~) =}; ~.rz(~) (Xz-Xoz), 
s=l 1=1 

p'=2N, 

8.¥1 =0 if/ isodd, ~fz=ls if l=2s, s=1, ... ,N, 

8 fft = 0 if I is even, ~ .rz =Is if I = 2s- 1 , 

Xoz = XoNs if I = 2s, 
. . 
Xoz = XoTs if I= 2s-1. 

One deduces then the value of the p x p' matrices H:, H,* 

H:,,z = J cCNz(~)~h(~)d~, Ht,z = j ~ffz(~)Fh(~)d~. 
o1D o1D 

EXAMPLE 1 

685 

The reactions are described by the generating functions ~ h, h = 1 , .. . , p, associated 
with the nodes. Those are the step functions vanishing on o1 Q except on the interval 
[~h-e/2 , ~h+ s/2] for ~h' [~1 , ~ 1 + e/2] for F 1 , [~p-s/2, ~p] for F P' where they take the 
value 1 I e for F h, 2/ e for F 1 and F P. When e tends to zero, this is a way to describe con­
centrated forces on the nodes h = 1, ... , p. Let us assume that Is are continuous functions 
and fs(~h) = 1. One finds the limits of H:, H,* when s-+ 0, 

H: = L:, H: =L~ 

with 

L* = [~ 
1 0 0 

or 0 0 1 0 0 ~ p, n 0 0 0 
0 0 0 1 0 0 y 
~ ,.... 

2p 
~ ,.... 

p'=2N ll 0 
0 0 

or 0 0 1 0 0 0 ~.lP· L*-t- 0 0 ~ "{) ... 1 0 0 
~ ,.... 

2p 
~ ,.... 

p'=2N 

When the boundary of the obstacle is not a straight line, the terms of these two matrices 
are replaced by 2 x 2 blocks corresponding to the components of the unit normal and 
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tangent vectors in the local frame. For this kind of generating functions !F h (Dirac func­
tions), it is irrelevant to discuss now the question of convergence within the scope of 
proposition I. 

EXAMPLE 2 
The mesh is a T3 mesh; the relative velocities 111J9", 11/J,.,y are approximated by continuous 

affine functions. The generating functions Jj. have a graph as depicted in Fig. 2. The density 
of reactions are described by generating functions Xh, h = 1 , ... , p, associated with the 

nodes. They are the characteristic functions X• of the intervals [ ~ (~•-• + ~.), ~ (~. + 

+ ~.+,)]. h # I, p, X• of [ ~., ~ (~ 1 + ~2l]. x, of [ ~ (~•-• +~,). ~.]. One finds for the 

expression of n:, H,* 

H: = vlt*P*L:, H,* = vlt*P*L~ . 

.A* is the p x p diagonal matrix with the element Jt h equal to the measure of the support 

of X•• ( ~ (~.+1- ~._,), ... ) 

P* = 

-3/4 1/4 0 

1/8 3/4 1/8 0 
0 1/8 3/4 1/8 0 

0 

0 

0 

0 1/8 3/4 1/8 0 
0 1/8 3/4 1/8 

A 

I 

p. 

1/4 3/4 "f 
~ ~ 

p 

This approximation process is consistent within the scope of proposition 1. The unknowns 
rftlt, rth' have the dimension of a density of reaction. The images by vii, vltrn and J!trt 
have the dimension of a force and might be as well used as unknowns. The terms r~h, 
r;,, with 

may be considered as the concentrated forces to nodes h, equivalent (in the sense of the 
p p 

finite element method) to the densities of reactions }; r nh Xh, .}; rth Xh. One may wonder 
h=l h=l 

if the solutions of examples I and 2 may be compared. The following propositions allow 
one to answer this question. 

PROPOSITION 2. 
Let B be a mapping from RP into itself represented by a matrix with non-negative 

elements, i.e. 

Vi=I, ... ,p Vj=l, ... ,p Bu~O, 

and rows different from zero 

Vi 3_i Bii > 0. 
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Then, 

i) 

If r E (R+)P, 

ii) (Br11)q) c B(r11 q)), 

687 

Furthermore, if B is a diagonal matrix, the converse of i) is true, the equality in ii) is true. 
Proof 
The implication is obvious. The proof of the inclusion is as follows. Let rt E B(r11q)), 

p 

rt,. = .}; B,.ksk, sk E rnkq), 
k=1 

sk may be written, sk = rkn 'Yk with 'Yk E q). 
p 

rth = .}; B,.krnk'Yk· 
k=1 

If r, = 0, the assertion is true. If r11 -:/= 0, the term 
p 

is different from zero. One may write 

.}; Bhkrnk 
k=l 

The quotient term appears as a linear convex combination of y1 E q), It is an element of q). 
So r, E (Br11)q), 

The matrix P of example 2 satisfies the assumptions of proposition 2. 
PROPOSITION 3) 
Let P satisfy the assumptions of proposition 2. Let r n, rt be such that 

rn > 0 "flsn ~ 0, (sn-rn) · L:(X-X011) ~ 0. 

If r11 is an inverse image of r11 by P, r11 = Prn, such that r11 ;:::: 0, then 

rn ~ 0 Vsn ~ 0 (sn-rn) · P*L:(X-Xo11) ~ 0, 

In other words, if the inverse images r11 , rt of the solution of a problem with concentrated 
reactions satisfy the constraints equations, they are solution of the problem with weighted 
reactions. 

Proof 
Let s, ~ 0, then 

(sn-rn) · P*L:(x11 -Xo,.) = (Psn-Prn) · L:(x -Xon) ~ 0 

since Pr,. ~ 0, Ps11 ~ 0. 
Let St ET11~ 

(sr-rr)P*L~(X-X011) = (Psr-Prr)L~(X-Xot) ~ 0 

since Prt = rr Ern~' Psr E P(rnq)) c (Prn) = rn~· 
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4.5. Numerical examples 

The following examples are derived from a benchmark used in GRECO Grandes 
Deformations et Endommagement. 

An elastic isotropic parallelepiped withE= 0.13 · 1012 Pa, v = 0.2, is considered within 
the plane deformations hypothesis. The dimensions are 4 · 10- 3 m x 4 · 10- 3 m x 1 m 
(unit length thickness). The boundary conditions are as depicted in Fig. 3a. The parallelepi­
ped is set on a plane obstacle with the friction coefficient p = 1. A monotone increasing 
loading is applied to the free edges with final state as depicted in the figure. Computation 
is made using the quasi-static hypothesis. For this kind of loading it is thus possible to 
use only one step of loading. Two computations are made, with concentrated reactions 
and with weighted reactions (using the matrix P). The accuracy required for the computation 
of the reaction force is 10- 4 • 

On the tables Figs. 3b are depicted for each node candidate to contact from number I 
to 16: 

The horizontal and vertical displacements Ql, Q2, with respect to the reference con­
figuration. 

The tangential and normal components f!l~, 9l.,y of the reaction forces, (N/m, Newton/ 
unit length of thickness). In the first table, a computation with concentrated reaction 
is performed; the concentrated reactions are shown and also the inverse images of fJl5", 

9t.,y, by P (weighted reactions equivalent to concentrated reactions). In the second table 
a computation with weighted reaction is performed; the weighted reactions are shown and 
also the images of f!l~, f!l.,y, by P (concentrated forces equivalent to weighted reactions). 

Continuous medium Q 

t1 ~ Xt 

Obstacle 

FIG. 1. 

I 

~h f.h+1 
GeneraNng Functions 
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Ut . and fJt are the horizontal and vertical components of the resulting reaction. 
$ <Y • f 4 • d. I d The deformed configuration with displacements amplified by a factor o 10 IS Isp aye 

in Fig. 3a. The nodes 1 to 5 are not in contact; the nodes 5 to 12 are slidi~g and the nodes 
5 to 16· are sticking. While the two computations give good agreement w1th respect to the 
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values of Q1, Q2, and the resulting reactions !Yt~, !Ytry, and while some similarity may be 
noticed between the values of !Ytff, !Yt.%, these values are not to be compared since p-tr" ¢ 
¢ (R+)P and also p-trt ¢ p-1 Cfn~). 

In Figs. 4a and 4b a similar example is treated with a different final loading state and 
p, = 0.1. In this example, the nodes 1 to 16 are sliding. The two computations provide 
the same values of Q1, Q2 and of !Ytff, !Yt.%, with respect to the change of variable by P 
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or p- 1
• One may observe on the basis of these two examples that a computation with 

weighted reactions needs more iterations than a computation with concentrated reactions. 
This is probably due to the fact that in the first case there is more coupling than in the 
second case between the unknown reactions. 

Conclusion 

Other examples have shown that in general there is good agreement between the two 
ways of computation. They even coincide in the special case of full sliding or full sticking 
of the boundary candidates to contact. The two ways of computation seem thus acceptable. 
This is a particular situation due to the fact the matrix Pis positive. For other kinds of finite 
elements further investigation is needed. 
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