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Statistical approach to elastoplastic behaviour of polycrystals 
at finite deformations 

P. LIPINSKI, M. BERVEILLER and F. CORVASCE (METZ) 

THE AIM of this study is to determine the elastoplastic properties of metallic polycrystals at large 
strains using the statistical methods developed by Kroner. The large number of microfields 
describing the internal structure evolution is taken into account. The evolution laws for these 
parameters are recalled or proposed. A few numerical results are finally presented which illustrate 
the evolution of the internal structure. Special attention is focussed on internal stresses and on 
stored energy linked with these second-order residual stresses and their influence on the overall 
behaviour of the polycrystal. 

Celem pracy jest okreslenie sprcczysto-plastycznych wlasnosci polikrysztal6w metalicznych 
w zakresie dui:ych deformacji przy ui:yciu metod statycznych rozwini~tych przez Kronera. 
Rozwai:ono wiele mikrop61 opisuj(lcych ewolucjcc struktury wewn~trznej. Dla parametr6w 
charakteryzuj(lcych te pola zaproponowano nowe (lub wykorzystano znane) r6wnania ewolucji. 
Przedstawiono kilka przyklad6w numerycznych, kt6re ilustruj'l ewolucj~ struktury wewncctrznej. 
Ze szczeg6ln(l uwag(l przeanalizowano problem wewncctrznych naprcczen resztkowych oraz 
energii ukrytej zwi(lzanej z tymi naprcczeniami, pod k(ltem ich wplywu na globalne zachowanie 
si~ polikrysztalu. 

Uem,ro pa6oTbi HB.IDieTCn onpe~eneHHe ynpyro-llJiaCTlf'IeCI<HX caoiicrn MeTaJIJIHtlecKHX no
Jim<pHCTaJIJIOB B o6JiaCTH 60JII>IIIHX ~e<l>opMamdf npH HCIIOJI1>30BaHHH CTaTHCTHqecKHX MeTO
~OB pa3BHTblX KpeHepoM. PaccMoTPeHo MHoro Mm<pononeii, onHCbiBaiOIIUfX 3BOJilOnHIO 
BIJYTPeHHeH CTPYHTYPbi. ,IlJm napaM~oB, xaprucrepH3YIOI.l.UIX 3TH noJIH, npeMo>KeHbi uo.:. 
Bble HJIH HCIIOJII>30BaHbl H3BeCTHbie ypaBHeHHH 3BOJilOUHH. flpe~CTaBJieHO HeCI<OJII>KO ~C
JieHHbiX npHMepoB, KOTOpbie HJIJilOCTpHpyroT 3BOJilOUHIO BuyrpeHHeif CTPYJ<TYPbl, C oco6eu
HbiM BHHMaHHeM npoaHaJIH3HpOBaH8 npo6neMa BuyrpeHHHX OCTaTOtmbiX HanpH>Kemrii H BHY
TPeHHeH 3HeprHH, CBH3811Ho'li c 3THMH uanpH>KeHHHMH no~ yrnoM HX BJIIDIHHH Ha rno6aJII>uoe 
rroae~em'fe noJIHKpHCTaJIJia. 

List of notations 

B(x) concentration tensor, 
C elasticity tensor, 
d local strain rate tensor, 
D overall strain rate tensor, 

g(x) local velocity gradient, 
g0 (x) velocity gradient of some fictitious reference medium, 

G overall velocity gradient, 
<:§ Green tensor for the fictitious medium, 

H 9h hardening matrix, 
I identity tensor, 
I local elastoplastic tangent moduli tensor, 

t51 deviation part of /, 
L 0 tangent moduli tensor of <;orne fictitious and homogeneous medium, 

Lcrr effective elastoplastic tangent moduli tensor, 
ii local nominal stress rate tensor, 
N overall nominal stress rate tensor, 
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m11® n" orientation tensor of the h-th slip system, 
R11 symmetric part of the orientation tensor, 
Q11 antisymmetric part of the orientation tensor, 
Sr current external surface of the solid, 
Vr current volume of the solid, 
w local spin tensor, 

W overall spin tensor, 
y11 plastic slip rate on the h-th system, 
Tc critical shear stress, 
a Cauchy stress tensor, 

v 
a* Jaumann-Zaremba true stress rate with respect to the crystal lattice. 

As FAR as linear elastic properties of the metallic polycrystal are concerned, a complete 
solution to the averaging problem may be obtained via the recently developed systematic 
statistical theories [1, 2, 3]. Until very recently, studies on plastic or elastoplastic properties 
of inhomogeneous materials have been limited to the applications of SACHS [ 4] and TAYLOR 
[5] models or eventually to the different extensions of these. 

It is obvious that the processes of metal forming lead, in general, to the finite elastoplastic 
strains which simultaneously modify the internal structure and mechanical state of the 
deformed material. The internal structure is essentially concerned with the critical shear 
stress on all glide systems of the polycrystal, the second-order internal stresses associated 
with plastic incompatibilities between grains and the crystallographic and morphological 
textures. In order to describe well the deformation process, and especially complex loading 
histories, the evolution rules for these micro-parameters must be established and taken 
into consideration. The first real tentatives of microstructure evolution modelling are 
related with the application of the self-consistent method to the elastoplasticity of metallic 
polycrystals [6, 7, 8, 9]. Parallelly the elastoviscoplastic or viscoplastic models were devel
oped [10, 11]. 

The aim of this study is to answer the question of how to incorporate the evoked micro
parameters into the polycrystal modelling and to give the rational evolution laws for 
them. To start with, we recall very briefly the theoretical bases of the self-consistent method 
at finite deformations. In the second section the single crystal behavior is reviewed. Special 
attention is paid to the evolution rule of the critical shear stresses on slip systems. 

Finally, a few illustrative examples are presented for a FCC polycrystal modelled by 
a set of 100 grains (inclusions) with isotropic elasticity. The evolution laws for the crystal
lographic and morphological textures and internal stresses are proposed and discussed 
with respect to the obtained results. 

2. Integral equations and its resolution methods 

As it was demonstrated in [9], the self-consistent method is in fact only a particular 
case of the more general concentration problem whose aim is to connect local and overall 
mechanical measures such as nominal stress rate it and velocity gradient g. IWAKUMA 
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and NEMAT-NASSER [12] proposed the self-consistent model at finite strain based on the 
general self-consistent scheme developed by HILL [13]. They applied this model to the case 
of plane polycrystal idealization by imposing only two active slip systems by grain. In 
this study we use the results obtained in [9]. 

Let us suppose, for the moment, that single crystal behavior may be characterized 
by the relation 

(2.1) 

Thus the considered problem may be described by the following set of equations: 
equilibrium equation in the absence of body forces: 

(2.2) izu. tCx) = 0, x E Vr; 

boundary conditions 

(2.3) 

and constitutive relation (2.1 ). 
Applying the Green tensor technique, the solution of this problem may be presented 

in the form of the integral equation 

(2.4) gu(x) = g?j(x) + f rtjkz(x-x') MkzmnCx')gnmCx')dV', 
v, 

where g?j is the solution of the homogeneous equivalent problem, Fijkt(X-X') = ~il,kj(X

-x'), C§u is the Green tensor, Vc presents the current volume of the material, Sr is its 
current external surface. 

In order to obtain this expression, the tensor of the local properties of material has 
been decomposed on a constant part L 0 and the deviation 61 such that 

(2.5) 

Moreover, the L0 tensor is chosen to be symmetric with respect to second and fourth 
indices. 

2.1. Formal solution of the integral equation 

The formal solution of the integral equation (2.4) may be presented in a form of the 
development on multiple integrals. The approximation of zero order is obtained neglecting 
the integral term in Eq. (2.4). This leads to the so-called Taylor-Lin model 

(2.6) 

The approximation of first order is accomplished by substituting gii(x) in Eq. (2.4) by 
g?1(x). In this case one may write 

(2.7) gu(x) = g?JCx)+ f Ft1kz(x-x') MklmnCx')g~m(x')dV'. 
v, 

Finally, substituting gii(x) under integrals successively by new and more and more precise 
approximations, one has 
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(2.8) Kti(x) = K?i+ j F,Jkt(x-x')~!,,.,."(x')g,..,.(x')dV' 
v; 

+ J J +FtJlk(x-x') ~lktmn(x')Fnmpq(x' -x") ~lqprsCx")g~,(x")dVjdV" + .... 
v' v;' 

Expression (2.8) may be rewritten after factorizing g0 in the form 

(2.9) g(x) = (1+ j r(x-x'):Sl(x')dV' + j j r(x-x'): 
v; v; v~' 

Sl(x') :r(x'-x") :Sl(x") dV' dV" + ... ) : g0(x) 

or 

(2.10) g(x) = a(x) :go, 

where the a(x) operator is defined by the relation (2.9). One deduces the overall velocity 
gradient G from the expression (2.1 0) by averaging operation over the whole material 
volume 

(2.11) G = { J g(x)dV = {{ J a(x)dv,):g0 = A:go. 
t ~ t ~ 

Expressions (2.10) and (2.11) lead finally to the concentration equation 

(2.12) g(x) = a(x):A- 1 :G = B(x):G. 

The overall properties of the polycrystal may now be found using the concentration equa
tion. Indeed, introducing Eq. (2.12) into the relation (2.1), one has 

ri(x) = l(x) :B(x) :G 

which, after averaging over all material volume, becomes 

(2.13) N = {+. J l(x):B(x)dv,) G: = L'":G. 
t v, 

Equations (2.12) and (2.13) remain valid irrespectively of the current internal structure 
of the inhomogeneous material. 

2.2. One-site "quasi"-self-consistent method 

In the case of the small elastoplastic strain theory, the one-site self-consistent method 
is obtained choosing the tangent properties of the reference medium to be equal to the 
effective ones and considering only the interactions between a given grain and the matrix 
characterized by Lerr. When the large elastoplastic deformations are considered, a similar 
approach is not possible because the tensor of the effective properties of the medium does 
not possess the symmetries required by L0 • Accordingly, we propose to choose for L0 the 
symmetric part of L err 

(2.14) L o 1 (Leff + Leff ) 
i)kl = 2 i)kl tlkJ • 
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In what follows we limit our consideration to the polycrystalline medium composed 
on grains of various crystallographic orientations (eventually various crystallographic 
structure). Supposing the uniform elastoplastic properties within each grain, the deviation 
part of the instantaneous moduli tensor may now be written as 

(2.15) 

where 

6/,Jkl(x) = 2 LJ/JJkl 01(x), 
I 

O'(x) = {~ if X¢ V., 

if X E VI 

and VI is the volume of grain I. 
Similarly, noting the average value of the velocity gradient over a grain I as 

gi = * J g(x)dV, 
I VI 

the field of the velocity gradient may be expressed: 

g(x) = 2 g101(x). 
I 

In consequence, the integral equation, after some simple algebra, becomes (see detail 
in [9]) 

(2.16) gl = gO+Tn:L11I:g•, 

where 

In this case 

and 

(2.17) 

a• = (1-TII:LJII)-1, 

A= 2f1(1-T11 :L111)-I, 
I 

Bl = (1-TII:LJII)-1: lL7 J•(I-TII:L111)-1 ]-1 
I 

Lerr = 2 f'l' :Br, 
I 

where / 1 is the volume fraction of grains family with label I. 

In the next sections we present the evolution laws for four microparameters describing 
the internal structure of the polycrystal as a function of the local velocity gradient. 
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3. Single crystal behavior. Evolution of critical shear stresses 

The single crystal elastoplastic behavior at large strain has been developed by MANDEL 

(14], HILL and RICE (15], AsARO (16], NEMAT-NASSER (17] and is based on the additive 
decomposition of the strain rate into elastic and plastic parts. 

(3.1) Ku = (df1 +dt~)+(wf1 +wf1) 
where the strain rate d and the spin w have been introduced. 

The plastic part of g is supposed to result from the plastic slip on different glide systems 
defined by the normal vectors to the glide plane n and the slip direction vectors m. Thus 

{3.2) \", h h. h 
gfj = ,L.J mi n1 y , 

h 

where ·? is the plastic slip rate on system h. 
Decomposing the expression (3.2) into symmetric and antisymmetric parts, one has 

{3.3) 

(3.4) p 1 '\"1 h h h " ·h ~, h ·h 
wil = 2 .L.J (min1 -m1nJy = .L.J Q11 y . 

h h 

The elastic constitutive relation is supposed to be 

{3.5) 

where Cil'" is the matrix of the elasticity constants and 

(3.6) 
v 
dfJ = D-u-wf"a"i+a1"w:1 

is the Jaumann-Zaremba true stress rate with respect to the crystal lattice. The relation 
between nominal stress rate nii and ail 
(3.7) lzu = Cru-(dti,+Wtk)akJ+aud:k 

leads to 

(3. 8) nu = cijkl d"' - d,k (] k}- (] kt Wkj- .2; ( Ct}kl Rf, + Qf/c (] kj- QfJ (] tk) Y9
. 

g 

The above expression determines the behavior of the single crystal. In order to eliminate 
the unknown y9 in this relation, one has to establish, as it is common in plasticity: the 
yield criterion, flow rule and evolution law for the yield stress of the single crystal. When 
classical plasticity of the single crystal is considered, the Schmid law corresponds to the 
yield criterion. It states that the plastic glide may take place on the g-th slip system if the 
resolved shear stress on this system reaches some critical value noted Tc 

(3.9) 

It is obvious that the relation (3.3) in such a situation defines the corresponding flow 
rule. 
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The linearized law for the critical shear stress evolution has been proposed by MANDEL 

[14] and may be written in the form 

(3.IO) T~ = .2 flUhyh, 
h 

where summation is performed on all active systems and H 9h is the so-called microscopic 
hardening matrix. 

The experimental results on copper and aluminium single crystals [I8, I9] indicate 
a very complicated dependence among all the slip systems for different primary shear 
strain in stage I. Nevertheless, the hardening matrix may be supposed to be constant, 
at least for stage II, and composed in four terms reflecting short range interactions between 
primary and latent dislocations [I8]: 

HO is the self hardening term, 
HI is the term describing interactions between dislocations on coplanar or colinear 

systems, 
H2 defines the systems leading to formation of glissile junctions, 
H3 describes Lomer-Cottrell sessile locks formation 

and such that HO < HI < H2 < H3. 
Still, according to, [18] the hardening matrix for FCC single crystals may be presented 

in the form 

A2 A3 A6 B2 B4 B5 Cl C3 cs 01 04 06 
HO Hl Hl Hl H2 H2 Hl H2 H3 Hl H3 H2 A2 

Hl HO Hl H2 Hl H3 H2 Hl H2 H3 Hl H2 A3 

Hl Hl HO H2 H3 Hl H3 H2 Hl H2 H2 Hl A6 

Hl H2 H2 HO Hl Hl Hl H3 H2 Hl H2 H3 B2 

(H.9) = H2 Hl H3 Hl HO Hl H3 Hl H2 H2 Hl H2 B4 

H2 H3 Hl Hl Hl HO H2 H2 Hl H3 H2 Hl B5 

Hl H2 H3 Hl H3 H2 HO Hl Hl Hl H2 H2 Cl 

H2 Hl H2 H3 Hl H2 Hl HO Hl H2 Hl H3 C3 

H3 H2 Hl H2 H2 Hl Hl Hl HO H2 H3 Hl cs 
Hl H3 H2 Hl H2 H3 Hl H2 H2 HO Hl Hl 01 

H3 Hl H2 H2 Hl H2 H2 Hl H3 Hl HO Hl 04 

H2 H2 Hl H3 H2 Hl H2 H3 Hl Hl Hl HO 06 

where the letters A, B, C, D indicate four planes (f I 1), (I I I), (1 I I), (I I I) and numbers 
1, 2, 3, 4, 5 and 6 the slip directions (0 I I), (0 II), (I 0 I), (l 0 I), (l I 0), (I I 0), 
respectively. 

It is obvious that this constant hardening matrix constitutes only the first-order approxi-
mation of the real phenomenon of interaction, creation and annihilation of dislocations 
during any plastic deformation of the single crystal. Nevertheless, this rather rough descrip 
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tion induces realistic responses when modelling the polycrystal behavior, as it can be 
discovered in the following sections. 

As in the case of phenomenological plasticity, the given slip system becomes really 
active if and only if the stress vector remains on the yield surface. This condition can be 
written in the following form: 

. -f' = Rf1uu- i-~ = 0 

or, after some algebra, 

(3.11) R' ~!I'= ~ y 1h,vh 
ij I} L.J t,F • 

h 

Now, combining the above equations, one can deduce the expression for y' 

(3.12) 

where 

y' = 2 M'h (R7J CiJkl dkr - R~1 au dkk), 
h 

M gh _ (H'h+Rh c Rh}-1 
- ij i}kl kl • 

Introducing Eq. (3.12) into Eq. (3.8), the final expression for the single crystal behavior 
is obtained: 

il11 = [ C11 .. - ~ ( 6,. "u + 611 u.1) + ~ ( 611 "" - 61• <111) 

-2 (CumnRlfnn+Qfmamj-Q'fnJamt)M'h(R;q Cpqkt-R;qa pq <5kl)] g1k, 

g,h 

which has the form of Eq. (2.1). 
In order to model the polycrystal behavior, one has to follow the evolution of the 

critical shear stress on each slip system and for all grains of the aggregate. 
In the next chapter we discuss the evolution laws for the morphological and crystal

ographic textures as well as for the internal stresses. 

4. Morphological and crystallographic textures. Internal stresses 

In this chapter we discuss the evolution laws for the three remaining interna I structure 
parameters and their influence on the macroscopic behavior of a polycrystal. This discussion 
is supported by a few examples of numerical calculations performed for the FCC pol ycrystal 
represented by 100 ellipsoidal inclusions whose initial crystallographic orientations are 
random. The elasticity of the individual grain as well as that of the polycrystal is supposed 
to be isotropic and defined by two Lame's constants. The initial value of the critical shear 
stress for all slip systems is chosen to be the same. It is assumed that the hardening matrix 
may be defined by only two different terms such that Hw = HO = HI which represents 
weak interactions whereas HF = H2 = H3 describes strong ones. All calculations have 
been performed for Hw = p)250 and various values of the anisotropy parameter A = 
= HpfHw. The value of Hw = p)250 corresponds to stage II of the single crystal behavior. 
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4.1. Evolution of grain shape and principal axes orientation 

In what follows we assume to know the velocity gradient g1 for all inclusions. 

(4.1) g1 = B1:G. 

The decomposition of g1 on the strain rate tensor d and spin w enables us to determine 
the stretching of the principal axes (fibers) of the 1-th inclusion as well as their rotations. 
Indeed, it is easy to show that 

(4.2) 

20 

0 2 

aTuiT=t = d, 

0-rRIT=t = W, 

4 6 
Plastic strain[%] 

• 'l:.tt=F(Eft ) 

o Ezz= F(£~2 ) 

8 10 

~ FIG. 1. Tensile curves at three orthogonal directions showing the initial isotropy of the polycrystal. 
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70 
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!£: 60 
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~50 
II) 

~ 
Vs 40 

30 

20 

0 2 4 6 
Plastic strain[%] 

8 

x 'En= f(£~1) 

0 E22=F(£ff2) 

+ E33 = P(£f3 ) 

10 

FIG. 2. Influence of the initial morphological texture on the anisotropy of the tensile curves. The grain 
aspect ratio is defined by a I c = b I c = 5. 
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the rate of stretch and rotation tensors with respect to the current configuration, are equal 
to the strain rate and spin tensors. The mapping U stretches the principal fibers without 
change of angles between them as it is known from the po]ar decomposition. From the 
above we conclude that the evolution of the morphological texture is imposed by· the velocity 
gradient g1

• 

In order to show the influence of the morphologica] texture on the overall behavior 
of a polycrystal, different initial grain shapes have been chosen. The amplitude of the 
plastic strain has been limited to about 10%. For such a strain it can be assumed that the 
induced morphological and crystallographic textures are neg1igible. Figure 1 presents 
three tensile curves in .E11 , .E22 , and .E33 directions when a spherical shape of inclusions 
has been chosen. This figure indicates a good isotropic behavior of the modelled polycrystal. 
The influence of the initial morphological texture on the anisotropy of the aggregate 
is i11ustrated in Fig. 2. Once more, three tensile curves in three orthogonal directions are 
plotted in this figure but this time for disk-shaped inclusions with the principal axes parallel 
to the reference frame and such that afc = bfc = 5. A very pronounced anisotropic 
behavior is visible. As it could be expected, the two tensile curves in .E11 and L'22 directions 
are still very similar but their level is lower than in the case of spherical inclusions. 1:33 , 

as the function of Ef3 curve, is in turn much higher. For example, the difference between 
the flow stresses at £P ~ 10% in 1:33 and .E11 directions is about 40% with respect to the 
L'11 value. Figures 3 and 4 illustrate the anisotropy of the overall behavior of the polycrystal 

80 

70 

30 

20 

0 2 4 6 
£f3[%] 

8 

• a~b =5c 

o a=b=2c 

-r a=b=c 

x 5a=5b=c 

t:r 10a=10b=c 

10 

FIG. 3. Tensile curves E 33 =/(EK3) for various grain aspect ratios afc = b/c = 5, 2, 1, 0.2, 0.1. 

for five various inclusion aspect ratios. The circu1ar shape of grain has been assumed in 
1-2 plane and the third principal axis has been changed from afc = 5 to afc = 0.1. Figure 3 
shows the corresponding tensile curves in the 3-direction. The presented results illustrate 
the importance of the grain shape on the constitutive relation. Figure 4 indicates the aniso
tropy in the 1-( or 2)-direction. The effect of the grain shape is less important but sti11 
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+ A=B=C 

X 5A=AB=C 
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Fro. 4. Tensile curves 1:11 = /(Ef1 ) for various grain aspect ratios afc = bfc = 5, 2, 1, 0.2, 0.1. 

remains of the first order. It should be emphasized that the curve sequences in these two 
figures are inverted. 

It is straightforward to conclude the influence of the morphology of the grain on 
initial (and subsequent) yield surfaces. This aspect of the morphological texture was 
discussed by the authors in [20]. 

4.2. Induced crystallographic texture 

Crystallographic texture development is characterized by a nonuniform evolution 
of the lattice spin field w*, which can be calculated as the elastic part of the total spin, 
which in tum is obtained from the relation ( 4.1) by the antisymmetrization operation. 

(4.3) we• = ~ [B1:G-(B1:G)T]-wP., 

where wP
1 

is given by the expression (3.4). Knowing the concentqttion tensor B~ and plastic 
slip amplitudes y" of all active systems for the given grain I, it is possible to determine 

Usually, the crystallographic orientation of grains is determined by three Euler angles, 
say rp1 , (/), rp2 , measured with respect to some fixed coordinate system. The rate of change 
of the Euler angles may be related with the elastic spin we• as follows [21]: 
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In this study we follow the orientation of all grains as a function of the Eulerian plastic 
strain and illustrate the texture evolution by the inverse pole figures. The tensile and 
compression test simulations are presented in this paper. Figure 5a exhibits the initial 
texture of the polycrystal which may be supposed to be isotropic. Figures 5b and 5c illustrate 
the induced textures for 31% and 102% of plastic strain during the tensile test. The double 

b 

d 

' ) 
) 

• 1 

. ) . 

. 
0 G 

a 

5 . 

111 

111 

~ ~,, · . 
:; ::; s :r. :fi:. I s :; 5 t' • "' s 
:-... .. ) 

111 

• 5 

111 

t11 

c 

11t 

e 

H1 

FIG. 5. Induced crystallographic texture and internal stresses; a) initial texture, b) and c) tensile test, 
d) and e) compression test. 
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texture of < 1 1 1) and < 1 0 0) fiber axes is obtained with good agreement with experimental 
results for FCC polycrystals. 

In the case of the compression test simulation, the same initial texture of Fig. Sa 
has been used. Figures Sd and 5e present the development of the (1 1 0) texture for 31% 
and 71 % of the plastic strain. Once again the obtained results conform with the experimental 
observations [22]. The numbers used to refer the orientation of the tensile axis with respect 
to the crystal axes (1 1 1), (1 0 0) and (11 0) indicate also the level of the 0'33-component 
of the internal (residual) stress tensor for each family of grains, the third axis being the 
tensile or compression direction. The levels of internal stresses are given by the Table 1. 

Table 1. 

Stress 
level 

0 

2 

3 

4 

5 

6 

7 

8 

9 

Lower 

-50 

-40 

-30 

-20 

-10 

0 

10 

20 

30 

40 

Stress limits 

Upper 

-40 

-30 

-20 

-10 

0 

10 

20 

30 

40 

50 

These indications are discussed in details in the following s~ction concerning the evolu
tion of second-order internal stresses for elastoplastic polycrystals. 

4.3. Second order internal stresses 

The relative misorientation of the grains of the polycrystal and the plastic anisotropy 
of the single crystal generate, during plastic straining of the material, internal stresses 
of second order, i.e. the stresses at the grain level. These stresses play an important role 
in the hardening phenomenon which is well manifested during complex path loadings. 
On the other hand they contribute to an increase of the stored energy of the material 
[23]. 

The model presented in this study enables us to calculate the residual stresses inside 
each grain and to follow their evolution in the function of the plastic strain. 

17 Arch . Mech. Stos . 5-6 /88 
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FIG. 6. Internal stress evolution for six different grains of various crystallographic orientations shown 
in Figure a. Figures b, c and d illustrate the evolutions of 1:33 , 1:11 , and 1:22 components, respectively. 

Figure 6 depicts the evolution of the internal stresses for six particular grains denoted 
by A, B, C, D, E and F whose initial orientations are shown in Fig. 6a. The components 
a 33 , a 11 , and a22 are plotted in Figs. 6b, 6c and 6d, respectively, as a function of the £ 33 

component of the plastic strain tensor. 
The internal stresses become negative or positive according to the orientation of grains. 

Their evolution is fast during the first stage of deformation and next the stabilization 
tendency is visible referring to Fig. 6. The level of the internal stresses is far from being 
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FIG. 7. Evolution of the stored energy fraction f = We/ Wa versus plastic strain. 
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negligible. For instance, for the plastic strain of about 5% the contribution of internal 
stresses is about IO% to 30% of the applied stresses as it can be concluded from Figs. I and 6. 
They contribute in a significant manner to the stored energy of the material. Figure 7 shows 
the evolution of the fraction of the stored energy WefWa as a function of the plastic strain 
imposed on the polycrystal. We is the stored energy associated with the second-order 
internal stresses and Wa is the anelastic energy furnished during the deformation process 
whose part Q is dissipated in the form of heat and another part is stored in the material. 

The influence of the crystallographic orientation of grains on the second order internal 
stresses is depicted in Fig. 5. Figures 5b and 5c (tensile test) show that the grains whose 
final orientation tends to approach the (I I I) axis are characterized by a positive residual 
stress a 33 and the grains which tends towards the (100) final orientation are in compression. 
By definition the system of internal stresses is self-equilibrated, this means 

J au(x)dV = 0, 
v, 

which is of course verified in this case. 
The difference between the grains of (I I I) and (I 0 0) types results from a different 

hardening. It is well documented [24] that a single crystal of (I I I) orientation exhibits 
more important hardening than that from a vicinity of the (I 0 0) orientation. This different 
behavior explains the sign of the residual stresses presented in Figs. 5b and 5c. 

The results concerning the simulation of a compression test are more difficult to analyze 
because the stable orientation in this case is unique and close to (IIO); nevertheless one 
can conclude from Fig. 5e that the system of the internal stresses is self-equilibrated in 
such a manner that grains in compression are localized on the (IIO)-(II2) lines and sur
rounded by grains in tension. 

Conclusions 

A very complete model for elastoplastic behavior of the polycrystal is proposed in 
this study which is based on the physical fields describing the internal structure of the 
material. These microparameters are generally accessible by experiment. This self-consistent 
model constitutes a particular approximation of the exact integral equation derived for the 
finite elastoplastic strains. The model has been used in order to simulate the influence 
of the initial morphological texture, induced crystallographic texture, and internal stress 
development on the macroscopic behavior of the polycrystal. All numerical results obtained 
by these simulations coincide very well with the experimental data. The fundamental 
phenomenon concerning the stored energy evolution with the plastic strain has been 
demonstrated. It must be emphasized that all phenomenological approaches predict the 
continuously increasing function of the fraction of the stored energy during the deforma
tion process. It is in contradiction with the experimental results [25, 26]. 
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