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Geometrically nonlinear analysis of plastic toroidal shells 
with an open profile(*) 

J. SKRZYPEK and B. SKOCZEN (KRAKOW) 

A THIN-WALLED, plastic toroidal shell with an open meridional cross-section, subject to simulta
neous in-plane bending and external pressure, is considered. The theory of large deflections and 
rotations but small strains is applied to describe a rotationally -symmetric deformation of the 
whole shell (allowing for a change of the toroidal angle, k = d{}fdB-l) and axially-symmetric 
deflection of the flexible profile. Depending on prescribed meridional boundary conditions 
(free edges, elastic support, pin-joined support), the effects of geometric softening or /and harden
ing of the structure during postcritical deformation of the shell, as well as various collapse 
mechanisms, were observed. 

Rozwa.i:ono cienkoscienn'l, plastyczn'l powlok~ toroidaln'l z otwartym przekrojem poludni 
kowym, poddan'l jednoczesnemu dzialaniu zginania w plaszczyinie i cisnienia zewn((trznego. 
Zastosowano teori~ dui:ych ugi¢ i obrot6w lecz malych odksztalcen do opisu obrotowo-sy
metrycznych deformacji powloki (z dopuszczeniem zmiany k<lta r6wnolei:nikowego, k = 
= d{}fdB-1) oraz osiowo-symetrycznego ugi~ia podatnego profilu. Zalei:nie od przyj((tych 
warunk6w brzegowych dla poludnika (swobodny brzeg, spr((i:yste podparcie, nieprzesuwne 
przegubowe podparcie), obserwowano efekty geometrycznego oslabienia b<!di umocnienia 
konstrukcji w trakcie pokrytycznej deformacji powloki, jak r6wniei: zbadano r6i:nc mechanizmy 
wyczerpania nosnosci. 

PaCCMOTpeHa TOHKOCTeHHa.R:, llJiaCTI{tieCKa.R: TOpOI-l~aJibHa.R: o6onoqi<a, C OTKpbiTbiM MepU,lU{O
HaJibHbiM ceqeHUeM, llO~BeprHYTa.R: O~HOBpeMeHHOMY ~eHCTBJ{IO lf3rH6a B llJIOCKOCTH 1-1 BReW
Hero ~aaneHU.R:. IlpUMeHeHa Teopl-l.R: 6oJihiiiRX nporH6oa u apa~eHH.H, Ho MaJibiX ~e¢op
Ma~u.H ~JI.R: mmcaHU.R: apa~aTeJihHo-cUMMeTpH:~hiX ~e¢opMa~u.H o6oJIOql{lf ( c ~onyci<oM 
U3MeHeHU.R: yrna napaJinenH: k = d{}jdB-l), a TaKllie ocecHMMeTpH:~oro rrporn6a rro~aTJIH
aoro rrpo¢l{JI.R:. B 3aBH:CUMOCTI-l OT nplfH.R:ThiX rpaHU~hiX ycnoaH:.H ~JI.R: Mepn~uaHa (cao6o~
Ha.R: rpaHH:I.la, yrrpyroe onupaHue, Henepe~BUlliHoe rnapHI-lpHoe onH:paHH:e) Ha6mo~aJIH:Cb 
3¢¢eKTbi reoMeTpnqecKoro ocna6neHU.R: H:JIU yrrpoqHeHU.R: KOHCTpyr<~HI-1 a rrpo~ecce ~oKpH:TU
qeci<o.H ~e¢opMa~H:U o6oJIOql{lf, KaK Tollie uccne~oBaHbi pa3Hbie MexaHH:3Mhi lfcqepnaHU.R: 
Hecy~e.H cnoco6HoCTH. 

1. Introduction 

GEOMETRIC effects in the thin-walled toroidal shells with a closed meridional profile (curved 
tubes), subject to bending or surface loadings, have been examined by many authors. 
The geometrically nonlinear theory of elastic curved tubes has been formulated by E. REIS
SNER and R. A. CLARK [1-4] and developed by J. T. BOYLE, J. SPENCE [5], M. HAMADA, 
T. NAKATANI [6] and E. REISSNER [7, 8, 9]. On the other hand, toroidal shells subject 
to external loads, additionally require the analysis of both symmetric and nonsymmetric 
deformations of a profile. 

A general theory of both geometrically and physically nonlinear toroidal shells with 

(*) The paper was supported by the Grant C.P.B.P. 02.01-3.5 from Polish Academy of Sciences. 
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844 J. SKRZYPEK AND B. SKOCZEN 

a closed meridional cross-section was developed by: J. SKRZYPEK and P. G. HoDGE [lO] 
J. SKRZYPEK and M. ZYCZKOWSKI [11-14] (Hencky-Ilyushin or Nadai-Davis equations; 
finite deflections- small or large strains theory), A. Muc and J. SKRZYPEK [15, 16], 
J. BIELSKI and J. SKRZYPEK [17] (Prandti-Reuss equations; finite deflections - small 
strains theory). 

In the case of toroidal shells with an open meridional cross-section, the geometrically 
nonlinear analysis of the flexibility of the profile is even more important than for shells with 
a closed one. The main applications of such shells are connected with the design and 
analysis of deformations of elastic expansion bellows of various shape (U, S, .Q) loaded 
with axial force and/or internal pressure, e.g.: N.C. DAHL [18], Y. I. BERLINER and 
Y. L. VIKHMAN [19], C. R. CALLADINE [20], G. E. FINDLEY, J. SPENCE (21], M. HAMADA, 
S. TAKEZONO [22-23]. Reissner's .,small finite deflection" theory [7] was applied to the 
numerical analysis of corrugated diaphragms and U-shaped bellows by M. HAMADA, Y. 
SEGUCHI [24]. A general survey of theories used to analyse bellows was done by J. F. WILSON 
[25]. Other questions arise when toroidal shells with open profiles are used as elements 
of mine gallery linings. Shell arches with flexible profiles applied there are usually loaded 
with external pressure and in-plane bending moment. The result is a change of both: 
a unit toroidal angle and a shape of profile. 

In the present paper we apply the general theory and the method of solution developed 
in [10-14] to the problem of symmetric deformation of a plastic shell-arch with an open 
profile. The influence of both geometric effects - of the whole shell-arch as well as of the 
flexible profile- on the limit states and collapse modes of the shell is examined. Various 
boundary conditions prescribed along circumferential edges of the shell are considered. 

2. Statement of the problem 

2.1. Assumptions 

An incomplete, thin-walled toroidal shell of an originally semicircular meridional 
cross-section is analysed. The concept of substitutive sandwich section is applied as an 
approximation of uniform section of the wall. A core is assumed as perfectly rigid in 
normal direction and perfectly flexible for bending (Fig. 1 ). A theory of finite displacements 
and rotations but small strains is used. Deformation of the element of the shell is governed 
by the classical Love-Kirchhoff hypothesis of straight and inextensible normals. The 
deformation of an overall meridional (radial) cross-section obeys the Bernoulli hypothesis: 
radial cross-sections of the shell remain plane and normal to the deformed axis of the torus. 
Moreover, only rotationally symmetric deformation of the whole shell, as well as only 
axially symmetric deformation of the meridional cross-section with respect to the initial 
plane of symmetry of the shel1, are a11owed for. In other words, this means that the deforma
tion of each radial cross-section of the shell is identical although the unit toroidal angle 
changes. Nonsymmetric deformation modes, which may appear as a result of violence 
of either rotational or axial symmetry, are not considered in this paper. 

The shell is loaded with the uniform symmetric external surface loading and in-plane 
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GEOMETRICALLY NONLINEAR ANALYSIS OF PLASTIC TOROIDAL SHELLS 845 

FIG. 1. 

bending moment. Working layers of the wall are assumed as rigid/perfectly plastic; the 
Hencky-IIyushin deformation theory and the Huber-Mises-Hencky yield condition 
are applied for the plane stress state in outer ( +) and inner (-) layers. 

2.2. Notation 

l/>, cp initial and current slope with respect to the symmetry plane, 
e, {} initial and current angular circumferential coordinates, 

k = d{}fdB-1 change of unit toroidal angle, 
kt, kz coefficients of elastic constraints, 

4 specific deflection of meridional cross-section, 
2If thickness of the substitutive sandwich section, 

T thickness of the working layers, 
Rp, R.o = (Rtp, R&)/ fr radii of curvature in original configuration, 

Rc = Rc I fr radius of the center of the undeformed semicircular profile, 
R = R&cosl/> distance betwen a middle surface point and the axis of the shell, 

U,, U= = ( U,, cf:) I H radial and axial components of displacement of the middle surface point, 
e: , el meridional and circumferential strains of the working layers points, 
e(/J, et'J elongations of the middle surface, 

"~~'' X& = (~&, ~(/J)Jf increments of the middle surface curvatures, 
a0 tensile yield-point stress of the working layers, 

ai =a: lao= 
= (2/y'3)sin(w± +nl3) meridional stress in the working layers, 

ai = ';;J lao= 
= (2/y3)sin(w±) circumferential stress in the working layers, 

N0 = 2;o T maximal value of the direct stress per unit length, 
M0 = 2~ HT maximal value of uniaxial bending moment per unit length, 

S = Sf.No resultant shearing force, 
Pn.P(/J = (pn,Pq;)HIN0 true, normal and tangential components of pressure applied to the shell 

surface. 
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846 J. SKRZYPEK AND B. SKOCZEN 

crp = crpH/Mo couple applied to the shell surface, 
Nrp, No = (Nrp, No)/ No 

Mrp, M{} = (Mrp, Mo)/Mo generalized stresses referred to the undeformed element of the shell. 

3. Fundamental equations 

The basic system of equations governing the deformation of the rigid perfectly /plastic 
toroidal shell, with an arbitrary sufficiently smooth and convex generating curve was 
derived in [11, 14]. We adopt these formulae for the case of small 1 I R1 terms (thin shells) 
and small principal elongations e1 (small strains), when compared to 1. Thus we write 
the basic equations in the dimensionless form: 

geometric relations 

(3.1) 

sin 1>- u;jRrp 
cp = arctg n.. U'/R , 

COS'P+ z q; 

c~ = erp ± urp, c$ = e{} ± u{}, 

erp = - (U;/Rrp)sincp+ (U;/Rrp)coscp+cos(cp-1>)- I, 

eo = (Ur/R)(I +k)+k, 

(1 + k)coscp- cos1J 
R 

equations of equilibrium 

(3.2) 

(RNq;)' + (1 + k) Rq;N{} sin cp + cp' RS = - RRq;prp , 

(RS)'- (1 +k)RrpN0 coscp-cp'RNrp = -RRrppn, 

(RMq;)' +(1 +k)RrpM{)sincp+RRrpS = -RRrp crp, 

physical equations for plane stress state 

(3.3) 

(3.4) 

c~ = 1p±(2a~- a$), 

c$ = VJ±(2a$-ai), 

( ai)2
- a~ a$ + ( a$)2 = 1, 

where the dimensionless generalized stresses, N1 and M1 , and the functions which paramet
rize the HMH yield condition (3.4) are defined as: 

(3.5) 
Nrp = (a~+ a;p)/2, N{} = (at+ ai)/2, 

Mrp = (-a~+a;p)/2, M{} = (-at+ai)/2, 

(3.6) a& = (2/V3)sin(w± +n/3), a$= (2jy3)sin(w±). 

Considering three kinematic quantities, cp, Ur, Uz, and three static ones, w +, w-, S, as 
the basic unknown functions, the following system of six coupled nonlinear ordinary 
differential equations was derived in [1 I]: 

(3.7) 
u; = J4{sin1>-sincp)+(J4/R)(F+ +F-)sincp, 

cp' = 1- (R./R)(F+ -F-), 
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GEOMETRICALLY NONLINEAR ANALYSIS OF PLASTIC TOROIDAL SHELLS 847 

(3.7) U~ = Rcp{cosq;-cosC/>)- (RfP/R)(F+ +F-)cosq;; 
(cont.] 

w+' = - [1/cos(w+ +.n/3)] {(R' /R)sin(w+ +.n/3) 

+ (RfP/R)(I +k)sinq;sinw+ + (y3j2)[(q;' -RfP)S+Rcp(pfP-cfP)] }, 

(3.8) w-' = - [1/cos(w- +.n/3)]{(R' /R)sin(w- +.n/3) 

where 

+ (~/R)(I +k)sinq;sinw- + (J/ 3j2)[(q;' +RfP)S+RfP(pfP+cfP)] }, 

S' = (q;' !J13)[sin(w+ +.n/3)+sin(w- +.n/3)] 

- (1/R)[R' S- (Ripcosq;fJ./3)(1 +k)(sinw+ +sinw-)]- RfPp,, 

(3.9) F± = {Ur(I +k) + Rk ±[(I +k)cosq;-cosct>] }[cosw± j(cosw±- y3sinw±)]. 

For the sake of generality, all types of surface loadings- normal and tangential compo
nents of pressure p,, pfP as well as couple cfP - are retained here. 

4. Boundary value problem 

Although the basic equations (3.7) and (3.8) are generally nonlinear, they are, however, 
linear with respect to first derivatives of unknowns. To solve them, we need six boundary 
conditions. In the considered case of axially symmetric deformation of the meridional 
cross-section with respect to the symmetry plane of the shell, the numerical integration 
of Eqs. (3. 7) and (3.8) can be performed throughout the domain 0 ~ C/> ~ (.n/2). Thus 
the necessary condition of symmetry, at the end ct> = 0, takes the form 

(4.1) q;(O) = S(O) = Uz(O) = 0. 

Three other boundary conditions have to be prescribed at the end ct> = .n/2, depending 
on the problem considered. In the present paper we shall discuss three variants of the shell 
corresponding to various boundary conditions (Fig. 2), that is 

a b 

. i . 
""- - ·~ ./ 
~ ·l / 

·- · -··~ · -·-· 

c 

I 
. I / "' . ·""- . . . / 

· ---~·- · 
FIG. 2. 
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848 J. SKRZYPEK AND B. SKOCZEN 

a) shell with free edges (no constraints imposed); 
b) shell elastically supported (elastic constraints imposed upon axial displacement 

Uz(n/2) and angle of slope q;(n/2)); 
c) pin-joined shell (no displacements Uz(n/2), U,(n/2) allowed for at the edges). 
So the appropriate boundary conditions at the end (/> = n/2 must hold: 

(4.2h 

Nq;(n/2) = Mq;(n/2) = S(n/2) = 0; 

Nq;(n/2) = k 1 Uz(n/2)cos[q;(n/2)], 

S(n/2) = k1 Uz(n/2)sin[q;(n/2)], 

Mq;{n/2) = k2 [q;(n/2)-n/2]; 

U,(n/2) = Uz(n/2) = Mq;(n/2) = 0. 

The semt-mverse shooting method enables us to change the two-point boundary
value problem to an initial-value one. Three missing initial conditions, for example at the 
end (/> = 0, that is U,(O), N(/)(0), Mq;(O) (and finally w+(O), w-(O)), can be determined by 
using the standard iterative technique, provided that the corresponding conditions ( 4.2) 
are satisfied. In a general case, if asymmetric deformation of the initially symmetric toroidal 
shell is allowed for, the conditions of symmetry at (/> = 0, the condition (4.1), must be 
replaced by the appropriate conditions at the end(/> = -n/2 (analogous to the conditions 
(4.2)). The Runge-Kutta IV method of numerical integration is used. The Newton pro
cedure for functions of many variables provides the exact solution. 

5. Surface of limit states 

Equations (3.7) and (3.8) define six unknown functions q;, U, Uz, w+, w-, Sin terms 
of surface loading components, Pn({/>), pq;({/>), c(/1({/>) and curvature parameter k. In the 
present paper we limit a number of independent loading parameters to two by assuming: 

pq;((/>) = cq;((/>) = 0, 0 ~ (/> ~ n/2, 

{pn 
, 0 ~ (/> ~ n/4, 

Pn({/>) = 0, o 
n/4 ~ (/> ~ n/2. 

(5.1) 

Thus, in the simplest case, if Pno and k are considered as independent control parameters, 
Eqs. (3.7) and (3.8) with Eqs. (3.5)-(3.6) and (4.1)-(4.2) taken into account, determine the 
unknown functions: q; = q;((/>, Pno, k), U, = U,((/>, Pno, k), Uz = Uz((/>, Pno, k), Nq; = 

= Nq;((/>, Pno, k), MfP = MfP((/>, Pno, k), S = S((/>, Pno, k). Two other generalized stresses 
N0 , M{} can be computed from Eqs. (3.5) and (3.6). The "deformation process", understood 
here as a sequence of independent solutions obtained on the basis of the Hencky-Ilyushin 
deformation theory for quasi-statically changing loading parameters, becomes definite 
after a trajectory f(Pno, k) = 0 has been prescribed. More general cases of the control 
of the deformation process are discussed in [16]. 

For the purpose of this paper, it will be convenient to use two geometric parameters 
which describe: deformation of the whole shell, k, and change of the profile shape, L1 = 
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= Ur(O)- Ur(n/2). In the extended three-dimensional space, a surface of limit states 
L = L(Pno, k, Ll) can be built as a point pattern corresponding to all possible solutions 
of state equations (3.7) and (3.8) with the appropriate boundary conditions (4.1) and 
(4.2). To this end we choose Pno and k as control variables, whereas L1 is to be considered 
as a functional depending on the state functions in the current configuration: 

(5.2) L1 = F[<p(<J>), Ur(<J>) , Uz(<J>), w+(<J>), w-(<J>), S(<J>);Pno' k). 

Next, we determine, for instance, sections of the surface L, g1 = gj (Pno , Ll ) at constant 
curvature parameters (k1 = const). It is inconvenient, however, to use Pno as a direct 
control variable (time parameter). A time parameter should change monotonously, whereas 
Pno does not. Thus we can choose as a time parameter either one of the unknown components 
of the vector of initial values, for example Ur(O) or <p(n/2), or, if none behaves monot
onously, we can change control variables during the process. It is also possible to perform 
integration for increments of both control variables at the tangent direction to the 
analyzed section of the surface g1 . 

6. Discontinuities. Decohesive carrying capacity 

The problem of admissible and inadmissible discontinuities for rigid/plastic toroidal 
sheJJs has been discussed in details in [14]. The assumption of the rotational symmetry 
implies the continuity of all quantities in the circumferential direction. However, certain 
discontinuities may be expected in the meridional direction. 

Following the Bernoulli hypothesis, the circumferential displacement U{} must be 
conti nuous. Discontinuity of the meridional displacement Uq; and slope <p may, in principle, 
be only considered. We should remember, however, that this kind of discontinuities is 
regarded as inadmissible and their formation terminates the process ( decohesive carrying 
capacity). A classification of inadmissible kinematic discontinuities, regarded as termina
tions of the deformation process of rigid-plastic toroidal shells, was proposed by J. 
SKRZYPEK and M. ZYCZKOWSKI [14). 

On the other hand, from the point of view of a continuous rigid/plastic medium, some 
discontinuities in static quantities are admissible. The generalized stresses Nq; , Mq; and shear 
force Shave to be continuous but N{}, M{) may suffer from discontinuity. As a consequence 
the circumferential stresses (]J as well as the parameters w± may be discontinuous. One 
can expect discontinuity either in one sheet only or in both sheets (we call them partial or 
complete discontinuities, respectively). It follows from Eqs. (3.1) that at the point of a 
static discontinuity the following relations must hold: 

(w+)1+ (w+)11 = n/3 

(w-)1+(w-)f1 = n/3 , 
(6.1) and/or 

where the superscripts I and II denote left or right-hand side values of these quantities. 
One can easily prove that at this point, in one or both sheets, e{} and eq; must equal 0. 

Similar classification may be introduced with respect to the discontinuities of kinematic 
quantities, regarded as inadmissible [1 0]. Partial kinematic discontinuity is characterized 
by the infinite increase of the proper meridional strain e~ or e;. It follows from kinematic 
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considerations that at the point of partial discontinuity the jumps of ·displacement U~~'] 

and slope tp] must occur, with U91] = tp] or U~~'] = - tp], respectively. However, due to the 
similarity of deviators, one of the following formulae must hold: 

± 
± - (2 ±- ±) 8(j --+ siP - alP an 2 ± ± oo. 

an-a~~' 
(6.2) 

The above can happen only at these points of the stress ellipse, where w± = n/6 or w± = 
= - 5nf6 and where, simultaneously, the denominator in Eq. (6.2) vanishes but si =1- 0. 
If there exists a complete (double) kinematic discontinuity, then the jumps U~~'] and tp] may 
be prescribed independently, whereas both w+ and w- have to be continuous. 

7. Results 

We discuss the open toroidal shell with initially semicircular meridional cross-section 
and the following geometric characteristics 

R 91 =50, Rc = 1000. 

The uniformly distributed pressure is applied throughout the interval: 

0 ~ l/J ~ n/4. 

Two surfaces of limit states for two types of boundary conditions (4.2)1 and (4.2h have 
been built. For the shell with elastically supported edges, the coefficients of elastic con
straints equal 

(7.1) kl = 0.5, k2 = 0.9. 

The values of both ki belong to the interval (0.1). 

FIG. 3. 
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The surfaces of limit states are plotted in Figs. 3 and 4. The deformation of the mer
idional profile with the corresponding strain distributions for chosen points along the lines 
of k = -0.01 for both surfaces are presented in Figs. 5 and 6. 

FIG. 4. 

In the case of a shell with free edges (4.2) 1 , a strong effect of geometrical softening ts 

can be noticed. The smaller value of k, the clearer phenomenon of softening, which is due 
to the unconstrained flattening of the meridian (Table 1). For large values of L1, when 
advanced deformation of the profile takes place, a slight effect of hardening t 11 occurs as 
a result of concavity of the deformed meridian around the point (/) = 0. 

Table 1. 

kj p(LI) Pmax-Pmin p(LJ)-Pmin 
Pmax Pmln Es = eh = 

Ll = 60 Pmax Pmax 

0.01 0.0018 0.00142 0.0015 21.4% 4,7% 

0.4 0.00103 0.001 0.00103 2.9% 3.4% 

In the case of a shell with elastically supported edges ( 4.2h, another collapse mechanism 
takes place. The concavity of the central, loaded part of the meridian is significant. After 
initial geometrical softening, one can observe an essential geometrical hardening, due to 
the response of the elastic constrajnts (Table 2). We notice a significant increase of the 
meridional strain t rp in the most curved parts of the meridian, Fig. 6. According to the 
previous considerations (Sect. 6) one could even expect the onset of decohesive carrying 
capacity. In fact, tracing the strain redistribution for more advanced deformation of the 
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0.01 
(/) 

0 
TI/2 

( ., 
0.01 

-0.01 

-0.01 5 

FIG. 5. 

Table 2. 

kj p(L1) Pmax-Pmin 
Pmax Pmin es = 

L1 = 60 Pmu. Pmax 

0.01 0.00212 0.00189 0.0023 11.1% 19.6% 

0.4 0.00128 0.00116 0.00159 9.4% 33.6% 

meridional cross-section, we observe a progressive decrease of local maximum of ccp. 
Thus, finally the decohesive carrying capacity is avoided. This effect may be connected 
with the Hencky-Ilyushin deformation theory used in the present analysis. The accumula
tion of strains, which is of great importance for local effects, here is not taken into account. 
The application of an incremental theory of plasticity would probably lead to the 
phenomenon of termination of the continuous process by the decohesion [14, 17]. 
A rapid movement of the neutral layer towards the edges of the sheJl can be observed 
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£; 

0.1 

0.05 

0 ¢ 

-0.05 

-0.1 

-QOS 

FIG. 6. 

in both cases discussed above. It leads to circumferential compression ( urJ < 0) through 
the whole meridional cross-section. 

The third case of boundary-.conditions (4.2h has to be discussed separately. The shell 
with a pin-joined boundary represents an over-rigid structure. For k = 0.001, the process 
of plastic deformation of the cross-section can't be developed because of onset of the 
local, inadmissible kinematic discontinuity. The formation of three plastic hinges, aimost 
simultaneously in the interior or exterior sheets (depending on the positive or negative 
meridional curvature) around the point <P = 0 and in the neighbourhood of <P = n/3 
and <P = - n/3 terminates the process, Fig. 7. This effect of an inadmissible kinematic 
discontinuity can be identified as a plastic decohesion d. c. c. P, according to the classifica
tion proposed in [16]. Taking into account elastic strains (which are not considered in this 
paper) one can expect also other types of d.c.c. On the other hand, the analysis of non
symmetric deformation modes may essentially change these results, particularly in the case 
of a shell elastically supported or pin-joined. 
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-ooornl 
Pn = 0.00434 ; C. - oo 

lT/4 lf/2 

-0.0001 

FIG. 7. 

8. Conclusions 

l. Applying the geometrically nonlinear theory of a rotationally-symmetric plastic 
toroidal shell, one can build a surface of limit states for any type of meridional boundary 
conditions. 

2. The relaxing of elastic meridional constraints (lower values of k 1 , k 2 ) results in 
lowering of the whole surface of limit states (lower values of the normal pressure) as well 
as in the vanishing of the effect of geometrical hardening. 

3. On the contrary, in the case of an over-rigid shell the effect of plastic decohesion 
(due to inadmissible kinemati(discontinuity) terminates the process of deformation of the 
whole structure. The corresponding value of pressure is about two times higher than the 
maximal pressure for both cases (4.2) 1 and (4.2h. 

4. In order to increase the maximal value of pressure Pmax as well as to increase the 
effect of geometric hardening ch, one can apply hard springs as a model of elastic support 
(higher values of k 1 , k2 ), keeping in mind, however, that the phenomenon of decohesion 
will terminate the process of deformation. 
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