
Transformations of Arm-Z modular manipulator with

Particle Swarm Optimization

Machi Zawidzki∗ and Jacek Szklarski

Department of Intelligent Systems,
Institute of Fundamental Technological Research,
Polish Academy of Sciences, Warsaw, Poland

Dated: December 2018

Abstract

Arm-Z (AZ) is a concept of innovative hyper-redundant manipulator, which represents
larger class of reconfigurable modular construction systems. AZ belongs to the family of
Extremely Modular Systems, i.e. it is composed of a single basic unit and allows for creating
free-form shapes.

A required level of usefulness and efficiency are among the most challenging design aspects
of such reconfigurable systems to achieve. Here AZ is considered in the context of kinematics
of robotic arms. Due to highly non-linear nature of the system, it may be very difficult to find
transitions between two given states, especially under practical environmental and structural
constraints.

This paper presents an implementation of Particle Swarm Optimization (PSO) for finding
transitions between AZ states in realistic scenarios. Four practical examples are presented
which are variations of two distinct problems: bending of a hexagonal AZ in a narrow slot
(strong environmental constraints), and reaching a given geometrical point by the tip of a
dodecagonal AZ (acting as a robotic arm). The problem of AZ transformation has been
defined as a multi-objective optimization. The methodology is general with no restrictions
to the objective function. Since the problem is strongly non-linear, in order to cover large
space of potential solutions, the algorithm runs for a relatively large number of random initial
swarms. This task was distributed on a cluster. Although the nature of AZ reconfiguration
is discrete, the optimization algorithm is continuous.

Keywords: Extremely Modular System, Arm-Z, Pipe-Z, discrete optimization, dihedral rotation,
reconfiguration, Particle Swarm Optimization, redundant robot, hyper-redundant manipulator.

1 Introduction

The concept of Extremely Modular System (EMS) has been introduced in 2016 [1]. The purpose
of EMS is to create free-form objects with as few types of modules as possible. Chronologically,
the first such system introduced in 2012 was Truss-Z (TZ for short) in [2, 3], with the purpose
of creating free-form self-supporting skeletal ramp structures for pedestrian traffic. A year later,
Pipe-Z (PZ for short) has been introduced in [4] with the purpose of creating more fundamental
(abstract) objects, namely mathematical knots. TZ and PZ use: two and one type of modules,
respectively. Arm-Z (AZ for short) is an extension of PZ introduced in [5]. AZ is a conceptual
manipulator composed of congruent modules each having one degree of freedom (1-DOF) - a

∗Electronic address: zawidzki@mit.edu; Corresponding author

1

http://rcin.org.pl

relative twist. Simple changes of these twists result in emerging behavior of the entire AZ allowing
it to perform complex movements. Figure 1 shows a physical model of two knots.

Figure 1: Two physical models of mathematical knots constructed with just one type of dodecago-
nal module. Trefoil and Cinquefoil are shown on the left and right, respectively. Initial module
and direction are indicated by gray and arrow, respectively. For the ease of assembly the module
has male and female sides, as shown in the inset in the middle.

PZ, the predecessor of AZ has been proposed as a deployable construction system e.g.: for
space habitats and emergency connectors [6]. In that paper the deployment has been based on
synchronous unfolding of each PZ module [see Figure 5]. However, alternatively, a change of
overall shape can also bee considered as a deployment mechanism. In this paper, In order to
demonstrate exceptional capabilities of AZ as a modular reconfigurable system, it has been faced
with selected challenges or robotic manipulators, which are known to be the most stringent among
reconfigurable systems.

The basic module in both systems (AZ & PZ) is a geometrical object analog to a sector of
circular torus described in [7]. It is defined by parameters: r : (0, ∞), d: (0, ∞) and ζ: (0,∞),
which denote: radius, corresponding radius and central angle, respectively; r, d, ζ ∈ R. Each
module is terminated by two faces T and B, corresponding to the top and the bottom of a unit.
Although in principle T and B do not have to be congruent, for practicality, however, it is desirable
that the modules are symmetrical about the plane perpendicular to their axes. Such a condition
implicates that T and B are congruent. Their relative position is controlled by r, d and ζ. The
faces of T and B can have shapes of circles or regular polygons of arbitrary number of k sides.
Moreover, it is convenient to introduce a new parameter s = d

r ; s :(0,∞). Thus r is the ”absolute“
parameter controlling the size of the module in relation to the environment, and s is the ”relative“
parameter defining its ”slenderness“. Figure 2 illustrates these relationships.

The forms shown in Figure 1 resemble biological snakes. The snake mechanism is a redundant
system which, however, makes them supremely adapted for the habitats. Analogously, in irregu-
lar environments, bio-inspired snakelike robots in some cases may perform better than the more
conventional wheeled, tracked and legged forms of robotic mobility. Research on snake robots has
been conducted for several decades. Snake locomotion has been studied empirically already in
1940s [8]. 50 years later, the first mathematical model has been developed and snake-like locomo-
tors and manipulators have been proposed in [9]. Snakelike (or ”trunk-like”) manipulators have
specific movement characteristics which makes them particularly useful in situations where classic
robotic arms can not be used (e.g., in complex, narrow, constrained environments). Additionally,
snakelike manipulators may have relatively large number of degrees of freedom (however, it is not
always the case). This contrasts with the classic robotic arms with low number of DOFs which
are widely used in the industry.

2

http://rcin.org.pl

Figure 2: A visualization of basic hexagonal module which is defined by parameters: r, d, ζ and
k = 6. The axonometric view on the right indicates the placement of the initial module in the
coordinate system.

In the case of AZ manipulator, the number of DOF is obviously equal to the total number
of the joined modules. Apart from the possibility of performing complex actions, large number
of DOF introduces the possibility of high fault tolerance and robustness. It aligns well with the
concept of, so called, hyper-redundant manipulators (HRM, [10]). Figure 3 shows some examples
of HRMs. The advantages of manipulators of this type come at a price of notoriously difficult
control due to the highly nonlinear nature of such systems.

Figure 3: From the left: Festo (12 DOF; http://www.festo.com), and two “snake-arms” by OC
Robotics (http://www.ocrobotics.com).

For example, the inverse kinematics problem for a typical industrial robotic arm can be solved
relatively easy (e.g. [11]) and therefore such arms are easy to control. On the other hand, the
control of a bionic trunk requires sophisticated artificial intelligence methods [12–14]. However, in
return, one can profit from all the important advantages of snakelike HRMs. For further details on
this interesting class of robotic manipulators see [15], regarding details on AZ and other Extremely
Modular Systems see [1].

This paper is an updated and revised version of the conference paper [16], which in the nutshell,
introduced the idea of discrete reconfiguration of a modular structure, formulated the problem as
combinatorial, applied an exhaustive search method and implemented parallelization to speed up
the computation. As an example the preliminary optimization of reconfiguration of a modular
manipulator from a “straight tube” to a half-torus was presented. In this problem, the “wobbling”
of the manipulator to the sides was subjected to minimization. In this case the relative twists of
the modules were discrete, thus the approach was combinatorial in nature. Parallelized brute-force

3

http://rcin.org.pl

search method has been applied for finding the ideal solution for a small manipulator comprised
of eight hexagonal modules. The efficiency of parallelization was shown to be very good. The new
contributions of the current paper can be summarized as follows:

• New representation of transition between the states of AZ by piecewise velocities. Such
representation allows for application of well established heuristic methods.

• Particle Swarm Optimization (PSO) is applied for Arm-Z transitions (AZT, for short).

• The AZTs are formulated as constrained multi-objective optimization.

• The new formulation of the problem allows for efficient and well-scalable parallelization [17],
which is demonstrated with practical examples.

• Four cases are presented:

1. finding the same ideal solution with PSO as the one presented in [16], and therefore
proving that the PSO can converge to the known global optimum in this case;

2. minimization of wobbling of a 16-unit manipulator which bends from a “straight tube”
to a full torus which is a representation of a complex transition in a tight, constrained
environment. The result is compared with previous solution obtained by means of
straightforward greedy methods;

3. transition from a given starting configuration (“straight tube”) to a target configura-
tion in a constrained environment (the final configuration is given), intersection with
obstacles is taken into account;

4. as 3, however, the target configuration is not given explicitly, instead the center point
of the last AZ unit is expected to get as close as possible to a target point. This is the
most complex case which in principle can be used to control the head of AZ in any kind
of environment.

2 The AZT problem

The AZ Modules are based on polygons, which results in non-continuous (“step”) motion. For
discussion on dihedral systems, especially based on regular (Platonic) tessellations see [18]. Such
discrete motion is rather unnatural, since manipulators are usually designed to cover continuous
space within given range and to perform motion as “smoothly” as possible. Nevertheless, it is an
early stage of AZ development and it has been decided for its discrete nature for the following
reasons:

• The AZ configurations can be described as a sequence of dihedral rotations and expressed
by a list of integers.

• It is relatively easy to fabricate an inexpensive mock-up model of AZ which can firmly hold
shape in any configuration without any energy supply (see Figure 4).

• Step-motors are considered to power the relative twists of AZ. They also support step-motion,
which, however, has much higher resolution.

• It is much easier and less expensive to fabricate and fold a module flat ([6]) which has rather
faceted surface than curved, as shown in Figure 5.

Obviously, for an AZ based on a polygon of n sides (n-gon), the number of possible relative
twists for each module is equal to k. Figure 6 shows two examples: dodecagonal and hexagonal.
Thus a “straight pipe” for: square, hexagonal, octagonal, decagonal etc. AZ will be encoded as a
sequence of integers: [2, 2, . . .], [3, 3, . . .], [4, 4, . . .], [5, 5, . . .], respectively. On the other hand, for

4

http://rcin.org.pl

Figure 4: A photograph of a 3D-printed mock-up prototype of a dodecagonal 12-module AZ.

Figure 5: Four stages of origami-inspired unfolding of a physical low-tech paperboard model of a
hexagonal module.

5

http://rcin.org.pl

Figure 6: Two AZ modules of different base at consecutive dihedral twists from 0 to π. On the top
and bottom: dodecagonal and hexagonal AZs are shown, respectively. The numbers in parentheses
indicate the consecutive positions. For simplicity, further in text, this notation will be used. The
first (bottom) module is fixed and indicated in gray. The axis of rotation for the second module
(white partially transparent) is shown in red.

an AZ of any base, a sequence of 0’s will form an arc up to a full torus (compare with Figures 7
and 14).

In principle, the problem of AZT is defined as follows: provide the sequence of relative twists
for each module in AZ which transform given initial configuration Ss to another configuration Se.
Such a transition can be subjected to optimization (e.g., minimization of the number of steps)
and/or constraints (e.g., by obstacles in given environment). The configurations Ss and Se can be
given explicitly (as it is done in cases 1-3, Sec. 4) or by a set of requirements (e.g. Se must be so
that the last module reaches certain area and entire AZ does not violate given obstacles; case 4).

The challenges of AZT were illustrated with the case presented in the original paper [16]. The
problem was defined as follows:

• There are two given configurations (states) of AZ: Start (Ss) and End (Se).

• The objective was to find the AZT between Ss and Se.

• The number of transformation steps was given a priori, namely: 4.

• In one step, each module of a n-gon base AZ can rotate by at most 2π
n dihedral angle. E.g.

each module of a hexagonal AZ at one time-step can rotate by at most π
3 , that is by: {π

3 ,
−π

3 , 0}.

• The summarized wobbling perpendicular to the “bending plane”, i.e. in the y-direction to
be minimal.

Figure 7 illustrates this problem and its ideal solution. The following geometrical parameters
of the basic module were used: n = 6, r = 0.25, ζ = π

8 and s = 0.4. The center of the first element
is placed in the center of Cartesian coordinate system (as shown in Figure 2).

The original approach was based on exhaustive search, which can only work for very small
problems. That is because the growth of the number of all possible AZT sequences from one con-
figuration to another is double exponential. For this particular problem there are two symmetrical
ideal solutions among 262,144 potential solutions. One kernel of a regular PC required already
approximately four hours for this computation. Although finding an ideal solution even for such
simplistic case is beneficial for fine-tuning more sophisticated algorithms, this also shows that this
approach is not suitable for any problems with realistic size.

The main difficulty of AZT is that this problem is highly non-linear and difficult to trace.
This means that small changes in a small number of segments can lead to completely different
overall shapes and for these reasons, e.g., any gradient-based methods would inevitably fail. It

6

http://rcin.org.pl

Figure 7: The ideal 4-step transition of a 7-unit hexagonal AZ from Start (Ss) to End (Se) states,
shown in extreme left and right, respectively. For each state the top and side views and the
sequence of positions of the modules are shown. The first unit in the sequence is fixed and is
shown in gray, it also is omitted in the list of twists. Green and red indicate the twists in the next
time-step to: the right and left, respectively. Blue stripes restrict the allowable slot.

is therefore rational to apply a heuristic method which can quickly sample as large part of the
parameter space as possible.

Heuristic methods, in particular based on evolutionary algorithms have been successfully ap-
plied to EMS optimization. E.g. the layouts of single- and multi-branch TZ structures have been
optimized with genetic algorithms in [19] and [20], respectively. Graph-theoretic approach has
also been applied for finding ideal solutions of a single-branch TZ layout in a highly constrained
environment as presented in [21]. In this paper, however, another classic heuristic method is used
for AZT optimization, namely Particle Swarm Optimization (PSO).

Since its introduction in 1995, PSO [22] has been successfully used in various areas, e.g.: trans-
portation [23], engineering [24], medicine [25], planning [26] and many others [27–29]. Moreover,
PSO has been proved to be efficient at solving highly nonlinear control problems [30, 31] and
therefore has been chosen for AZT. Using PSO for each transition problem, a relatively large
number of initial conditions (swarms) can be considered, and since the computing threads are in-
dependent, the calculations can be easily parallelized, including massive parallelization with GPU
[32, 33]. As a result, as showed the experience, for realistic problems acceptable solutions can be
found in a matter of minutes/hours, depending on their complexity. Note that by appropriate
optimization of the implementation, there is a significant potential for improvement and decrease
the computational time substantially making the control possible in real-time.

3 Particle Swarm Optimization

PSO is a meta-heuristic optimization method which iteratively tries to improve a candidate solu-
tion. As typical methods of this sort, it does not guarantee that the optimum is found, however, a
very large space can be searched and there are no requirements regarding the objective function.
Therefore PSO can be used for irregular, noisy, coarse problems, or multi-objective optimization.

3.1 The encoding of AZT

Before applying PSO, it is necessary to define an AZ transition in a form suitable for use with
this optimization method. Transition is the process of changing an initial state Ss into the final
state Se. Se can be given explicitly as a vector describing states of each module, or as a criterion
which the final AZ must meet (e.g., position the last module as close as possible to a given point

7

http://rcin.org.pl

in space). AZT may be subjected to additional constraints, i.e., prohibition of self-intersections
or collisions with existing obstacles in the environment.

Let n be the number of sides of the AZ module base, and l be the total number of modules.
Without loosing generality, let us consider a single rotating module. Its state can be represented
by an integer s, s ∈ [0, . . . , n − 1], s ∈ I. However, for the purpose of encoding solution for
reconfiguration, a corresponding continuous counterpart s̃ is introduced, s̃ ∈ R. The discrete
value representing the real integer state is the nearest-integer, s = ⌊s̃⌉ (here ⌊⌉ denote the nearest-
integer operator, e.g., ⌊4.6⌉ = 5, ⌊2.5⌉ = 2)

In order to allow for a change of the shape of AZ, each element i is assigned an angular velocity
ωi(t) which maybe time-dependent (thus acceleration and deceleration are possible). The time
runs from ts to te where ts and te correspond to the initial and end states, respectively. Therefore
the discrete states of the i−th element during the transition are given as:

si(t) = ⌊s̃(t)⌉ =

⌊∫ t

t0

ωi(t)dt + ssi

⌉
where ssi is the initial state at time ts.

Consequently, the total transition is controlled by the velocity functions ωi(t). It is assumed
that the transition time is divided into k equal parts (“number of intervals”), δt = (te − ts)/k
during which the velocity is kept constant, k being a parameter. Therefore the resulting real-
valued function si(t) is piecewise linear, and ωi is simply defined by a real valued vector with k
elements. For the given k (which is the same for all the segments), the transition for the entire
system is then defined by a matrix Ω of k × l real values for the given time span te − ts. Note
that the assumption that the k parts are equal is arbitrary. In principle the transition time could
be divined into parts of any length. However, this would introduce additional variables into the
optimization process making it more difficult due to the “curse of dimensionality”.

As a result, for k = 1 each elements will linearly changes its state in one direction (depending
of course on the sign of ω). Increasing k to 2, will make it possible that, e.g., rotation will stop
after δt, it also can change direction, allowing for more complex transition. The drawback is that
in this case, the search space for ω will be increased by a factor of 2. Figure 8 shows an example
of s(t), s̃(t) and ω(t) for a single segment transition, ts = 0, te = 3 with k = 3, resulting in the
sequence [3,4,3,2].

The purpose of the optimization is to find the values of the matrix Ω. The discrete solution
will be a matrix of the form S = [Ss,S1,S2, ...,Se], where Sj are vectors of integers denoting the
discrete states of all the AZ unit. It is assumed that consecutive states Sj and Sj+1 will differ by
at least one element and each element’s state will differ by at most 1. These assumptions together
with Ω and given ts and te will determine the total discrete transition S.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1

0

1

2

3

4

A
n
g
u
la
r
v
el
o
ci
ty

S
eg
m
en
t
st
at
e

s

s

Figure 8: A sample plot showing s(t), s̃(t), and ω(t) for k = 3, ωi = [1, 0,−2] and ssi = 3.

8

http://rcin.org.pl

3.2 Implementation of PSO for ATZ

In the presented approach, the classical version of PSO is used to find the values of the matrix
Ω. The process of relating transition to a particle in PSO is referred to as “coding” (Subsec. 3.1).
Since the transition is entirely defined by the matrix Ω, the particle will simply correspond to the
consecutive elements of Ω. The limit on the velocities is imposed by requiring that each component
of the vector to be in range −1,≤ xj ≤ 1. This sets a scale for the problem: for example, a module
with k = 6 sides with ω = −1, ts = 0, te = 2.1, and the initial state s = 0 will end up in the state
se = 4.

With each particle xi, there is associated a vector called its velocity vi (do not confuse with the
transition angular velocities), whose elements lie in the range [−2, 2]. Additionally, each particle i
keeps track of its best position in the history of optimization pi, that is a position for which f(pi)
is extreme (minimal or maximal, depending on the desired optimization objective).

Let N be the set (the swarm) of N particles representing N solutions (Ω’s). The PSO algorithm
iteratively moves all the particles xi through the search space according to theirs velocities vi.
Each particle is attracted to its all-time best position pi and to the swarm all-time best solution
b (updated at each step). The degree of this attractiveness, along with the particle “intention” to
follow its velocity, are defined by the parameters ϕp, ϕb and ωg respectively. The PSO algorithm
for finding optimal, in the sense of minimizing some utility function f(x) is presented in Tab. 1.

The definition of the minimized objective function f(x) obviously depends on the desired
optimization objective. Typical variables used to define the goal may include:

• D – is the Cartesian norm between the final state encoded by a particle Sx and the given
Se if the desired end-state Se is given beforehand,

• d – is simply the geometric distance between the tip-point pe of the last segment and the
given target point pt,

• wi – is the total maximal distance between a centroid of the i−th segment for two consec-
utive transitions, (i.e., two columns of S). Minimizing w will prevent undesired, potentially
mechanically harmful jumps between states,

• o – denotes number of centroids being outside an operational volume during the transition.
This prevents the AZ from hitting obstacles or crossing itself. In principle, the operational
volume may change during AZT, however, here only static cases are considered.

One of the issues of fundamental importance when using PSO is the proper selection of the
control parameters ωg, ϕp, ϕb and the population size N . Since PSO is intrinsically flexible and
indeterministic, it is impossible to give a formal prescription for values of these parameters which
would give the best results in a general case. Although, there exist some research concerning
procedures how to adjust these values [34], possibly during the optimization process [35], often
they are selected by means of a trial-and-error method. In such procedure, ωg, ϕp, ϕb, N are chosen
arbitrary in a way which reflects the nature of the underlying objective function. One should keep
in mind that, generally speaking, ωg controls the tendency to explore the entire search space,
ϕp the tendency to explore in the vicinity of local extrema, and ϕb the convergence rate to the
best solution found so far. N is responsible for the diversity of potential solutions (which is also
associated with the demand for computational resources).

It is clear that the PSO control parameters can be very different for various problems and it
may be difficult to find satisfactory balance between exploration and convergence. In order to
select values for our model, convergence rates and the ability to find the globally optimal solution
for various, random initial conditions has been explored by means of a trial and error method.
Eventually, the following values were used to calculate all the presented results: ωg = 1, ϕp =
1.0, ϕb = 2.0 and N = 200. Moreover, for each considered case PSO has been run for 5 × 103

various initial swarms, each evaluated for 200 generations, in order to further explore the search
space.

9

http://rcin.org.pl

1 For each particle i:
2 initialize xi with random values, µmin ≤ xi, j ≤ µmax

3 let the particle’s best position pi will be equal to its initial one: pi ← xi

4 initialize vi with random values, ηmin ≤ xi, j ≤ ηmax

5 calculate the objective function for particle i: fi(pi)
6 update the swarm best solution: if fi ≤ f(b) then b← xi

7 For each particle i:
8 pick random numbers rp, rb from the range [0, . . . , 1]
9 for each component j:
10 vi,j ← ωgvi,j + ϕprp(pi,j − xi,j) + ϕbrb(bj − xi,j)
11 xi ← xi + vi

11 if f(xi) < f(pi) then the particle’s best pi ← xi

12 update the swarm best solution: if fi ≤ f(b) then b← xi

13 If a given termination criterion is not met, go to 7

Table 1: The Particle Swarm Optimization algorithm. Each particle represents the transition
velocities Ω, i.e., l × k real numbers in a given range [−1, 1]. Note that these transition angular
velocities should not be confused with the particle’s velocities in the PSO algorithm. µmin =
−1, µmax = 1, ηmin = −2, ηmax = 2. Uniform distribution is used for drawing the random numbers.

4 Four examples of PSO applied to AZT

This section presents four examples of PSO applied to AZT, from a relatively simple case of
bending of a short AZ in a narrow slot where both start and end configurations are given, to a
realistic task of AZ tip reaching a given point in an environment where final AZ configuration
is unknown, elements of the environment must not be violated and the wobbling of AZT to be
minimal.

4.1 7-unit AZ bending in a slot in 4 steps

The conditions in this example are the same as described in Section 2. The brute-force search
produced two symmetrical and equivalent ideal solutions within a few hours. The challenge here
is to reproduce this result much more quickly. The following initial conditions are assumed:
ts = 0, te = 5, k = 4. The velocities are rounded to ω′ as follows:

ω′ =

−1 if ω < −0.5

0 if −0.5 ≤ ω ≤ 0.5

+1 if ω > 0.5

The initial conditions along with the above rounding has been chosen in order to verify if
the original 4-step solution found by means of brute-force can be reproduced. The search here is
simply equivalent to minimization of the sum of the buckling error, so the objective function to
be minimized is f =

∑
i=1,...,6 |δy(i) + D, where δy(i) denotes the absolute difference between the

y-coordinate of the centroid of the initial module and the i−th module (since the center of the
first module lies at the coordinate center, δy measures deviation from the y-plane). It has been
shown by means that for the parameters stated above, ideally fopt = 0.50308, see [16], and D is
of course 0 (D is used to “guide” the swarm towards the desired final state).

The optimal matrix found by PSO is:

Ω′ =

1 0 −1 0 −1 1
1 −1 −1 −1 0 1
0 −1 0 −1 −1 0
1 −1 −1 −1 −1 1

10

http://rcin.org.pl

It gives the following transition: [[3, 3, 3, 3, 3, 3], [4, 3, 2, 3, 2, 4], [5, 2, 1, 2, 2, 5], [5, 1, 1, 1, 1, 5],
[0, 0, 0, 0, 0, 0]], and was found in about 5% of random initial swarms, where each swarm was
evaluated for 200 generations with the PSO parameters stated as above. An example of conver-
gence to the optimal value is depicted in Figure 9. Figure 10 shows the angular discrete velocities
of each module.

20 40 60 80 100 120 140 160 180 200

1

2

3

Fitness

Generation

Figure 9: PSO of 7-unit AZ bending in a slot. The black dots and line indicate: swarm average
and the best fitness function values, respectively. The optimum fopt = 0.50308 is reached after
≈ 50 steps.

Figure 10: The angular velocities of each module of the 7-unit AZ in transition from Ss to Se. The
horizontal and vertical axes correspond to: the subsequent states (configurations) and indices of
the modules, respectively. Green and red indicate the relative twists in: right and left, respectively.
The first module is fixed, and thus is omitted.

4.2 16-unit bending in a slot

This is an extension of the previous example. Here AZ is comprised of 9 units more, i.e. 16 in
total. Considering also only 4 time-steps, there are 35,184,372,088,832 possible AZTs. This shows
the complexity of the problem as well as the futility of the brute-force methods for this case.
Moreover, there is no reason to the number of time-steps set beforehand, which makes the space
of potential solutions in combinatorial approach simply unimaginable.

The conditions for this multi-objective PSO have been defined as follows:

• Minimize max δy (only in y-plane) and D so the objective function to be minimized is
f = 5 max δy + D, where D is the distance to the final state (of course D must be 0 for a
correct solution finishing with Se.

11

http://rcin.org.pl

• The number of steps is not pre-set and it is one of the results of the process.

The factor of 5 used above has been set arbitrarily in order to give more importance of the
y wobbling during the swarm evolution described in Sec. 4.2.2. The minimization of δy is done
for all the segments and for all the transition steps (this follows from the assumption that the
maximal deviation from y should be minimal at any time during the transition).

4.2.1 The “greedy” approach

The first solution for this problem has been presented in [5]. It is based on a quite intuitive
strategy which formally is a greedy algorithm:

• There is a parametrized guide-line (GL) of length equal to the length of a 16-unit AZ (L16,
for short).

• L16 is constant, however, the curvature of GL can change from Ss, that is a straight line
segment (i.e. an arc with an infinite radius) to Se, that is a full circle of radius L16

2π . For the
corresponding illustration with an interactive demonstration see [36].

• AZ is continuously aligned to GL, and the curvature of GL is gradually changed from Ss

to Se. The alignment is done from the bottom to the top of GL, each unit being added
with such a state which minimizes δy (hence “greedy”). For the details of this alignment
procedure see [4].

• The AZ configurations are collected at given time-steps and the unique sequences are recorded.

Figure 11 illustrates the idea of controlling the shape of AZ by the curvature of GL.

Figure 11: Four selected states of the continuous alignment of AZ to the given GL (shown as a
thick black line). The radii of arcs are shown for each case and the corresponding centers are
indicated in red. Here for simplicity L16 = 2π.

Figure 12 shows the AZT based on this intuitive approach. Figure 13 shows further analysis
of this AZT. As they both indicate, the strategy of collecting local optima step-by-step is rather
successful. AZ bends relatively smoothly only slightly violating the slot restriction. It is interest-
ing, however, whether such transformation can be done at fewer steps and/or with smaller error.
The following subsection describes the implementation of PSO to this problem.

4.2.2 The solution by PSO

Three different values of k were considered: 1,2, and 3; the corresponding best values of δy
are: 0.172, 0.288, and 0.480. This is somehow surprising since, clearly, the possibility of non-
zero acceleration (i.e., k > 1) not only does not improve the solution but it makes it significantly
worse. It is attributed to the increase of number of searched variables and the associated increased
difficulty of finding good solution. This would also explain why only small amount of swarms evolve

12

http://rcin.org.pl

Figure 12: The AZT found by the “greedy” approach requires 33 time-steps. The color convention
as in Figure 7. Red frames indicate the states where the AZT fits perfectly the given slot, in other
words the error is 0. This situation is cyclical and occurs at every third time-step. That is because
at this period all AZ modules are either in position 0 or 3.

13

http://rcin.org.pl

Figure 13: The values of angular parameters and errors for each module in AZ during entire
“greedy” transition. The history runs from the top, i.e. the top and bottom rows represent: Ss

and Se, respectively. On the left: angle values expressed as dihedral positions; magenta, navy,
blue and cyan indicate positions: 3, 2, 1, and 0, respectively. In the middle: the relative twists
in the next time-step; Green and red indicate the twists to the right and left, respectively. On
the right: the errors; white indicates perfect alignment, whereas red indicates the largest error
max δy = 0.254.

14

http://rcin.org.pl

Figure 14: The best result found for the 16-unit hexagonal AZ from “straight pipe” (Ss) to the
full torus (Se). The color convention as in Figure 13.

Figure 15: The values of angular parameters and errors for each module in AZ during the entire
transition produced by PSO. The color convention as in Figure 7. The maximal error is max δy =
0.172.

15

http://rcin.org.pl

into the fully optimal solution in the previous case where k = 4. Figures 14 and 15 show: the best
result found, and its analysis, respectively (ts = 0, te = 10 here and in all the examples below).

As Figures 14 and 15 indicate, the solution found by PSO is much shorter. In other words, it
reaches the final configuration in much fewer time-steps. Moreover, this solution results in smaller
maximal errors than the greedy algorithm, which is clearly visible in the comparison plot shown
in Figure 16.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

0.05

0.10

0.15

0.20

0.25

Time-step

Maximal Error

Figure 16: The comparison between the greedy algorithm (black dashed line) and PSO (black
solid line). The number of steps and maximal error are substantially smaller in the AZT produced
by PSO.

As the figure clearly indicates, the “greedy” approach although intuitive, produces much worse
result than PSO. It is also interesting to compare the middle parts of Figures 13 and 15. The
modules in the “greedy” solution make a lot of changes, e.g. the last (15th) module makes almost
continuously 21 “clicks” to the left, which results in 3.5 turns, which effectively gives rotation of
half a turn. The 5th module first twists to the right, then to the left and again to the right. On the
contrary, the PSO solution is very “economical”, i.e. each module changes position the minimal
number of times (3) in one direction only.

16

http://rcin.org.pl

4.3 Manipulating under environmental constraints

This example reflects a real-life problem of controlling a manipulator by finding a transition
which would bring the tip of the manipulator into a desired position, assuring that environmental
constraints are not violated at any time during the transition. The geometrical conditions of the
experiment correspond to a physical experiment described in details in [37], and can be summarized
as follows:

• There is a 12-unit dodecagonal manipulative in a box.

• The manipulative is fastened vertically to the bottom of the box.

• There is a circular opening in one vertical side of the box.

The challenge presented in [37] was to manually find the angular positions of the modules of the
manipulative within the confines of the box so that the tip of the manipulative gets through the
circular opening, as illustrated in Figure 17. Figure 18 shows selected time-steps of the manual
manipulation of the physical model described in [37].

Figure 17: The manual experiment with a 12-unit dodecagonal manipulative. Sub-figures 1 and 2
show: the top and axonometric views of the experimental setup in state Ss, respectively. 3. The
axonometric view of Se which has been found by the manual manipulation.

After approximately 30 minutes of practicing manipulations of this physical AZ and a few
minutes of rehearsal for this particular task, the completion was relatively quick - 2’30”. This is
in line with [38] which states that adding human kinesthetic sense reduces the errors [39] and the
time for completion of the task [40]. The result of this experiment is used as the end configuration
Se in the next section.

4.3.1 Transition to the given Se

The problem to be solved by PSO is defined as follows:

• The number of facets of AZ module n = 12

• The initial and final states are: Ss = [6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6] and Se = [6, 0, 0, 9, 2, 11, 7, 2,
7, 7, 1]. As stated above, Se is taken from the manual experiment.

• Simultaneously minimize D,w, o.

• The objective function is f = o+0.1 maxw+D which foremost assures that all the points lie
in the desired operational volume (o = 0) and that the destination state is reached (D = 0).

17

http://rcin.org.pl

Figure 18: A series of 30 photographs taken at 5 second intervals showing the completion of
the task. The modules are 80 mm in diameter and allow for continuous twist rotation, which is
advantageous. On the other hand it is very difficult or impossible to manually twist more than
one module at the time.

18

http://rcin.org.pl

• Additionally, minimize the maximal deviation w of the corresponding positions of the cen-
troids of each module among the consecutive steps. In other words, the motion of AZ to be
relatively smooth, which is equivalent to the reduction of wobbling.

The best found values of the objective function are 0.389, 0.275, and 0.302 for k = 1, 2, 3 re-
spectively. Unlike in the previous case, this time introducing accelerations k > 1 gave significantly
better results then for constant angular velocity transformation. Still, the burden associated with
more variables for k = 3 leads to a worse solution when compared to the simpler case k = 2.
Figure 19 visualizes the best AZT found by PSO.

Figure 19: The transition found by PSO requires only 17 time-steps. Green and red indicate the
relative twists in: right and left, respectively

4.3.2 Transition to a given point in 3D space

This subsection concerns itself with even more realistic task for a manipulator, since the final
state Se is assumed to be unknown. The environment is the same as described above, however,
the challenge here is to bring the center of last unit, pe, as close as possible to the desired target
point pt. At the same time the wobbling should be minimized as well. The objective function
becomes f = 3o+ 0.1 maxw+d (the factor 3 was used in order to give relatively more importance
to the environmental constraints; o = 0 at the end of optimization process), d = |pe − pt|.
pt = (−23.8,−23.5, 10.9) which is the position of the final configuration described in the previous
section, and in accordance with the geometrical properties stated in Section 2.

Similarly like in the previous case, PSO as a result gives a number of near-optimal solutions
with similar final values of the objective function. One of the best is depicted in 20. It brings
the center of the last unit to the point pe = (−24.0,−23.5, 10.8) giving d = 0.24. Optimization
defined in this way will always give multiple, similar transformations which will reflect the process
of finding the balance between minimizing d and the wobbling w. One can easily give more
importance to one or another by introducing desired multiplication factor.

19

http://rcin.org.pl

Figure 20: The transition found by PSO requires only 17 time-steps. The color convention as in
Figure 19.

5 Conclusions and future work

Arm-Z (AZ) is an Extremely Modular System (EMS), which in principle is very simple, as it is
composed of congruent modules. The two major advantages of this approach are: economization
(since the identical modules can be mass-produced), and robustness of the system. The latter is
due to its hyper-redundant nature: modules which failed can be easily replaced, also if some fail,
the manipulator may still perform some desired tasks. However, the disadvantage of all EMSs is
that their control is non-intuitive, or simply put - difficult. The approach to AZ control presented
here is discrete and highly nonlinear. Therefore the use of combinatorial techniques at a first glance
may seem as a potential solution. Unfortunately, due to the “combinatorial explosion” they fail
quickly even at relatively small cases. Other intuitive strategies (e.g. presented here greedy
algorithm) can produce relatively good solutions, however, they will most likely not be globally
optimal. This work demonstrates a successful implementation of a meta-heuristic method, namely
Particle Swarm Optimization (PSO) to preliminary control of an AZ manipulator. It has been
shown that it can efficiently find transformations, also for quite complex tasks.

Regarding potential applications, it is important to note that due to the nature of AZ, the head
unit seems not to have the ability of reaching the entire continuous R3 space. Detailed discussion
regarding this subject is beyond scope of this paper. Nevertheless, clearly the concept can be
applied for tasks where great accuracy in finding any point in 3D space (obviously within a given
range) is not required (e.g. as in the case of cleaning heads).

Future research will be focused on the efficiency of PSO for faster computations, including
massive parallelization with GPUs. This is a necessary improvement in order to allow for a
real-time control. Due to the nature of this problem it is a quite straightforward task. Also,
handling self-crossing prohibition (here the AZ was too short for the problem to occur) will be
implemented, as well as various kinds of constraints, related to: driving motors, theirs speed, other
characteristics, fault recovery etc. Reflecting the physical properties of driving motors, continuous
twists rather than discrete will be analyzed for improved efficiency and practicality of AZ.

20

http://rcin.org.pl

Acknowledgments

This work was completed as part of the project titled: “Innovative Extremely Modular Systems for
temporary and permanent deployable structures and habitats: development, modeling, evaluation &
optimization”. It was funded by “Polonez 2” research grant no. 2016/21/P/ST8/03856 supported
by the National Science Centre, Poland. This project has received funding from the European
Unions Horizon 2020 research and innovation programme under the Marie Sk lodowska–Curie grant
agreement No 665778, .

References

[1] Machi Zawidzki. Discrete Optimization in Architecture: Extremely Modular Systems.
SpringerBriefs in Architectural Design and Technology. Springer, 2016.

[2] Machi Zawidzki. Creating Organic Three-dimensional Structures For Pedestrian Traffic with
Reconfigurable Modular “Truss-Z” System. International Journal of Design & Nature and
Ecodynamics, 8(1):61–87, 2013.

[3] Machi Zawidzki and Katsuhiro Nishinari. Modular Truss-Z system for self-supporting skeletal
free-form pedestrian networks. Advances in Engineering Software, 47(1):147–159, 2012.

[4] Machi Zawidzki and Katsuhiro Nishinari. Modular Pipe-Z system for three-dimensional knots.
Journal for Geometry and Graphics, 17(1):81–87, 2013.

[5] M. Zawidzki and T. Nagakura. Arm-Z: a modular virtual manipulative. In H-P. Schröcker
and M. Husty, editors, Proceedings of the Sixteenth International Conference on Geometry
and Graphics, Conference Series, pages 75–80, Innsbruck, Austria, 2014. Innsbruck University
Press. ISBN 978-3-902936-46-2.

[6] Machi Zawidzki. Deployable Pipe-Z. Acta Astronautica, 127:20–30, 2016.

[7] Wilhelm Fuhs and Hellmuth Stachel. Circular pipe-connections. Computers & Graphics, 12
(1):53–57, 1988.

[8] James Gray. The mechanism of locomotion in snakes. Journal of experimental biology, 23(2):
101–120, 1946.

[9] S Hirose. Biologically inspired robots: Snake-like locomotors and manipulators,(1993).

[10] K. Ning and F. Wrgtter. A novel concept for building a hyper-redundant chain robot. IEEE
Transactions on Robotics, 25(6):1237–1248, Dec 2009. ISSN 1552-3098.

[11] Richard M Murray, Zexiang Li, S Shankar Sastry, and S Shankara Sastry. A mathematical
introduction to robotic manipulation. CRC press, 1994.

[12] M. Rolf and J. J. Steil. Efficient exploratory learning of inverse kinematics on a bionic elephant
trunk. IEEE Transactions on Neural Networks and Learning Systems, 25(6):1147–1160, June
2014. ISSN 2162-237X.

[13] A. Melingui, C. Escande, N. Benoudjit, R. Merzouki, and J.B. Mbede. Qualitative approach
for forward kinematic modeling of a compact bionic handling assistant trunk. IFAC Proceed-
ings Volumes, 47(3):9353 – 9358, 2014. ISSN 1474-6670. 19th IFAC World Congress.

[14] V. Falkenhahn, A. Hildebrandt, R. Neumann, and O. Sawodny. Dynamic control of the bionic
handling assistant. IEEE/ASME Transactions on Mechatronics, 22(1):6–17, Feb 2017. ISSN
1083-4435.

[15] Gregory S Chirikjian and Joel W Burdick. A hyper-redundant manipulator. IEEE Robotics
& Automation Magazine, 1(4):22–29, 1994.

21

http://rcin.org.pl

[16] M. Zawidzki and J. Szklarski. Preliminary optimization of Pipe-Z reconfiguration. In
G. Várady P. Iványi, B.H.V. Topping, editor, Proceedings of the Fifth International Confer-
ence on Parallel, Distributed, Grid and Cloud Computing for Engineering, 1759-3433, pages
1–12, Stirlingshire, UK, 2017. Civil-Comp Press.

[17] Yue-Jiao Gong, Wei-Neng Chen, Zhi-Hui Zhan, Jun Zhang, Yun Li, Qingfu Zhang, and
Jing-Jing Li. Distributed evolutionary algorithms and their models: A survey of the state-of-
the-art. Applied Soft Computing, 34:286 – 300, 2015. ISSN 1568-4946.

[18] Machi Zawidzki. Dynamic shading of a building envelope based on rotating polarized film
system controlled by one-dimensional cellular automata in regular tessellations (triangular,
square and hexagonal). Advanced Engineering Informatics, 29(1):87–100, 2015.

[19] Machi Zawidzki and Katsuhiro Nishinari. Application of evolutionary algorithms for optimum
layout of Truss-Z linkage in an environment with obstacles. Advances in Engineering Software,
65:43–59, 2013.

[20] Machi Zawidzki. Optimization of multi-branch Truss-Z based on evolution strategy. Advances
in Engineering Software, 100:113–125, 2016.

[21] Machi Zawidzki. Retrofitting of pedestrian overpass by Truss-Z modular systems using graph-
theory approach. Advances in Engineering Software, 81:41–49, 2015.

[22] James Kennedy and Russell Eberhart. Particle swarm optimization. volume 4, pages 1942–
1948, 1995. cited By 28006.

[23] D. K. Lobiyal Pawan Kumar Tiwari Abdul Hanan Abdullah Omprakash Kaiwartya,
Sushil Kumar and Ahmed Nazar Hassan. Multiobjective dynamic vehicle routing problem
and time seed based solution using particle swarm optimization. Journal of Sensors, 2015
(Article ID 189832), 2015.

[24] Jacek Szklarski and Marcin Wik lo. Designing of elastoplastic adaptive truss structures with
the use of particle swarm optimization. Mathematical Problems in Engineering, 2015 (Article
ID 652824), 2015.

[25] Yudong Zhang, Shuihua Wang, Genlin Ji, and Zhengchao Dong. An MR brain images classifier
system via particle swarm optimization and kernel support vector machine. The Scientific
World Journal, 2013, 2013.

[26] Houxian Zhang and Zhaolan Yang. Large-scale network plan optimization using improved
particle swarm optimization algorithm. Mathematical Problems in Engineering, 2017, 2017.

[27] Yudong Zhang, Shuihua Wang, and Genlin Ji. A comprehensive survey on particle swarm
optimization algorithm and its applications. Mathematical Problems in Engineering, 2015,
2015.

[28] M. Clerc. Particle Swarm Optimization. ISTE. Wiley, 2010. ISBN 9780470394434.

[29] Mohammad Reza Bonyadi and Zbigniew Michalewicz. Particle swarm optimization for single
objective continuous space problems: A review. Evolutionary Computation, 25(1):1–54, 2017.

[30] Alireza Alfi and Hamidreza Modares. System identification and control using adaptive particle
swarm optimization. Applied Mathematical Modelling, 35(3):1210 – 1221, 2011. ISSN 0307-
904X.

[31] Wei-Der Chang and Shun-Peng Shih. PID controller design of nonlinear systems using an
improved particle swarm optimization approach. Communications in Nonlinear Science and
Numerical Simulation, 15(11):3632 – 3639, 2010. ISSN 1007-5704.

22

http://rcin.org.pl

[32] Vijay Kalivarapu and Eliot Winer. A study of graphics hardware accelerated particle swarm
optimization with digital pheromones. Structural and Multidisciplinary Optimization, 51(6):
1281–1304, Jun 2015. ISSN 1615-1488.

[33] Jitendra Kumar, Lotika Singh, and Sandeep Paul. GPU based parallel cooperative particle
swarm optimization using C-CUDA: a case study. In Fuzzy Systems (FUZZ), 2013 IEEE
International Conference on, pages 1–8. IEEE, 2013.

[34] Yuhui Shi and RussellC. Eberhart. Parameter selection in particle swarm optimization. In
V. W. Porto, N. Saravanan, D. Waagen, and A. E. Eiben, editors, Evolutionary Programming
VII, volume 1447, chapter Lecture Notes in Computer Science, pages 591–600. Springer Berlin
Heidelberg, 1998. ISBN 978-3-540-64891-8.

[35] Wang Jin. Particle swarm optimization with adaptive parameter control and opposition.
Journal of Computational Information Systems, 7(12):4463–4470, 2011.

[36] Machi Zawidzki. Arm-Z Manipulations, 2014. URL
http://demonstrations.wolfram.com/ArmManipulations/. An interactive demonstration.

[37] Machi Zawidzki. Pipe-Z virtual and physical manipulatives. Virtual Reality, 2017. (under
review).

[38] M Osama Alhalabi and Susumu Horiguchi. Haptic cooperative virtual workspace: Architec-
ture and evaluation. Virtual Reality, 5(3):160–168, 2000.

[39] Ian Oakley, Marilyn Rose McGee, Stephen Brewster, and Philip Gray. Putting the feel inlook
and feel . In Proceedings of the SIGCHI conference on Human Factors in Computing Systems,
pages 415–422. ACM, 2000.

[40] Miyasato Noma and Tsutomu Miyasato. Cooperative object manipulation in virtual space
using virtual physics. Proceeding of Dynamic System and Control ASME, 61:101–106, 1997.

23

View publication statsView publication stats

http://rcin.org.pl

https://www.researchgate.net/publication/326014286

