
Abstract

Pipe-Z (PZ) is a parametric design system which comprised of a congruent mod-

ules (PZM) allows the creation of complex three-dimensional, single-branch struc-

tures which can be represented by mathematical knots. Once the geometrical param-

eters are set for the PZM, the shape of PZ is controlled solely by relative twists of the

PZMs in a sequence. Therefore each PZM has one degree of freedom (1DOF). This

paper presents the preliminary optimization of PZ reconfiguration from a “straight

tube” to a half-torus. Here the displacement of PZMs transverse to the “bending di-

rection” is to be minimized. In other words, it resembles “truing” of a wheel. In the

considered case, the PZ is comprised of eight hexagonal PZMs. Thus every PZM can

have six possible positions relative to the previous module. The initial (PZI) and target

(PZT) configurations are given. Since the time-steps and relative twists are discrete,

it is a discrete optimization and has combinatorial nature. The number of possible

configurations grows astronomically with the assumed number of time-steps from one

position to another and the number of PZMs. However, the optimization algorithm

can be naturally parallelized. At first the concept of PZ is outlined, followed by the

experiment. The results are illustrated and discussed.

Keywords: Extremely Modular System, Pipe-Z, Arm-Z, discrete optimization, dihe-

dral rotation, “snakebot”, reconfiguration.

1 Introduction

The idea of Extremely Modular System (EMS) has been introduced in 2016 [1] by the

author. The purpose of EMS is to create free-form objects in a given environment (E)

without obstacle-, and self-collisions. The concepts of two EMSs: Truss-Z (TZ) and

Pipe-Z (PZ) have been presented by the author in Ref. [3], and Ref. [2], respectively.
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EMS jointly meets the following three criteria:

1. EMS allows for creation of structurally sound free-form structure.

2. The number of module types in EMS is minimal.

3. EMS is not constrained by a regular tessellation of space.

Chronologically, TZ has been developed first. It is a skeletal system for creat-

ing free-form pedestrian ramps and ramp networks among any number of terminals

in space. TZ structures are composed of four variations of a single basic module

(TZM) subjected to affine transformations (mirror reflection, rotation and combina-

tion of both).

PZ is more “fundamental” and forms spatial single-branch knot-like structures by

assembly of one type of module, called PZM. PZ has been proposed as deployable

and temporary system, potentially suitable for extreme and outer-space environments

[4]. In particular, PZ has been suggested for emergency connectors and habitats in so-

called, “banana-split” configuration (orientation). In principle PZs can be composed

of modules whose based on circles or regular polygons of arbitrary number of n sides,

as shown in Fig.1.

Figure 1: Various PZ knots assembled with different basic units. From the left: Figure-

eight (41) @ the number of PZM sides: n = 3, Cinquefoil (51) @ n = 36, and Trefoil
(31) @ n = 4.

Arm-Z (AZ) is a concept of a kinematic system derived from PZ presented in

Ref.[6]. It is closely related to the idea of modular robots, in particular, so-called

“snakebots”, that is biomorphic hyper-redundant robots that resemble biological snakes.

AZ is composed of congruent and rigid modules and it is capable of free movements

(translation, extension and flexure), as demonstrated in [6]. Both in PZ and AZ, each

module has only one degree of freedom (1DOF), which makes them extremely simple
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and robust, but also rather unintuitive to work with. In principle, the problem of PZ

reconfiguration is broader than AZ manipulation, as it also allows for folding of PZMs

(studied in Ref.[4]). However, in this paper the PZMs are also rigid, therefore this PZ

reconfiguration is geometrically equivalent to the AZ manipulation.

2 Pipe-Z

Although PZ can be composed of modules based on circle or any regular polygon, in

this paper the considered PZM is hexagonal, as shown in Fig.2.

2.1 The Pipe-Z module (PZM)

Pipe-Z module (PZM) is a geometrical object analog to a sector of circular torus de-

scribed in [5]. It is defined by parameters: r: (0, ∞), d: (0, ∞) and ζ : (0,∞), which

denote: radius, corresponding radius and central angle, respectively; r, d, ζ ∈ R.

PZMs are terminated by two faces T and B, corresponding to the top and the bottom

of a unit. Although in principle they do not have to be congruent, for practicality,

however, it is desirable that PZM is symmetrical about the plane perpendicular to its

axis, as shown on the left in Fig. 2.

Figure 2: On the left: a visualization of PZM which is defined by parameters: r, d,

ζ and n. Since n = 6, the top (T) and bottom (B) faces are hexagons. On the right:

variety of PZs constructed with the same sequence of six units with relative twists

k1 = k2 = ... = k5 = 0 at increasing values of s and ζ along columns from the left and

rows from the top, respectively. The value of parameter r = 1, however, the images

are zoomed-to-fit.

Such a condition implicates that T and B are congruent. Their relative position is

controlled by r, d and ζ . The faces of T and B can have shapes of circles or regular

polygons of arbitrary number of n sides. Polygonal faces seem easier to fabricate and

assemble than circular ones. In such a case the number of sides n: n ∈ N becomes

an additional parameter, here set to 6. Moreover, it is convenient to introduce a new

parameter s = d
r ; s :(0,∞). Thus r is the ”absolute“ parameter controlling the size of
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PZM in relation to the environment E, and s is the ”relative“ parameter defining the

”slenderness“ of PZMs.

PZ structures are assembled by a sequence of PZMs, so that top face (T ) of the

previous unit becomes the base (B) for the next unit. The successive PZM i is rotated

by the relative twist angle κi, which can have real or discrete values. In the latter

case such rotations are denoted by ki. In the following examples PZMs are based

on hexagon (6-gon), thus any subsequent unit can be added at six dihedral (rational)

angles, so the facets of adjacent units are aligned.

Entire PZs are encoded as: PZ = {{n,r,s,ζ},Vs,L}, where n, r, s, and ζ are the

PZM parameters, Vs is the initial vector which positions the first unit in space, and L
is the sequence of dihedral twists ki, where i is the index of the ith unit. Fig. 2 on the

right shows six PZMs assembled at constant ki = 0 and r = 1, and various values of s
and ζ .

3 The reconfiguration of Pipe-Z

Ref.[6] demonstrates that a modular system based on PZ, whose units have only one

degree of freedom (1DOF) is capable of practically any 3D motion. The fundamental

movements of: extension, translation, and flexure have been executed rather satisfac-

torily. Flexure is used in this paper as an example of reconfiguration from a “straight

tube” to a (half or full) torus. Fig.3 shows a possible solution presented in [6], which

has not been subjected to optimization. This paper introduces a minimization crite-

rion, and the new problem is formulated as follows:

1. The change of relative position of an ith PZM is constrained to maximum of one

dihedral rotation (ki) of 2π
6 = π

3 at a time-step, i.e.: ki ∈ {−π
3 ,0,

π
3}.

2. The deviation in transverse direction is to be minimal.

Fig.3 shows axonometric views of PZ at each of 34 time-steps presented in [6], to-

gether with projections on horizontal and vertical-transverse planes. These projections

indicate that at certain time-steps the deviation of PZ from the vertical-longitudinal

plane is quite visible. Since the intention here, is to keep all PZMs in the same XZ

plane, this deviation is called here the buckling error (εY ), and is expressed as follows:

εY =
U

∑
1

|δY (i)| (1)

where δY (i) is the difference between the Y-coordinate of the centroid of the initial

module (PZM0) and the Y-coordinate of the ith module (PZMi);

U is the number of PZMs.

Since the position and orientation of the initial module (PZM0) are given, it is

excluded from the computation.
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Figure 3: A possible transition from a “straight tube” to a full torus in 34 time-steps.

The projections of PZ on horizontal and vertical-transverse planes are shown in red

and green, respectively. The number of PZMs U = 16. The initial module (PZM0) is

shown as transparent.
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4 Exhaustive search

The problem described here is discrete due to: modularity of the PZ system and di-

hedral relative twists of the modules. Therefore the optimization has combinatorial

nature. In order to find the ideal solution(s) exhaustive search is performed. In the

considered example, the conditions are given as follows:

• The position and orientation of the initial module (PZM0) are set arbitrarily.

• Since each PZ module is based on hexagon (n= 6), every PZMi for i : [1,2, . . . ,U ]
can be placed at six twist angles kn relative to the previous PZM, that is:

kn ∈ {0, π
3 ,

2π
3 ,π, 4π

3 , 5π
3 }.

• The initial and target configurations are given by corresponding lists of relative

twists: PZI and PZT. Their length (L) is equal to the number of modules (U).

PZI = {π1,π2, . . . ,πU}; PZT = {01,02, . . . ,0U} (2)

L[PZI] = L[PZT] =U (3)

• At each time-step the position of each PZM can be altered by maximum one

dihedral twist of π
3 , that is: {−π

3 ,0,+
π
3}.

4.1 The straightforward transition (S-T) from PZI to PZT

There are two alternative simplest transitions from PZI to PZT which meet all the

aforementioned conditions. These are the straightforward (S-T). The completion re-

quires only three time-steps (t = 3), and each PZM twists in either order: {π → 2π
3 →

π
3 → 0}, or {π → 4π

3 → 5π
3 → 2π(= 0)}. Fig.4 illustrates the former sequence.

Figure 4: S-T: Every module changes its relative position as follows: {π → 2π
3 →

π
3 → 0}. Additionally, three intermediate time-steps at fractional twists are shown.
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As Fig.4 indicates, in S-T, buckling at positions {2π
3 ,0} is noticeable, but at π

3 is

severe. It becomes even more dramatic at the three intermediate time-steps, which

are not considered in the optimization, but are shown here for illustrative purpose

only.

4.2 Perfect ternary trees

As shown in Fig.4, S-T is very quick, but the buckling is very strong which is un-

acceptable. In this subsection the application of exhaustive search for finding the

transition with minimal buckling is described. As mentioned above, each but ini-

tial PZM can be rotated relative to the subsequent module by the following angles:

{0, π
3 ,

2π
3 ,π, 4π

3 , 5π
3 }. For simplicity, further in text, these six angles will be repre-

sented by the following corresponding six positions: {0,1,2,3,4,5}. Fig.5 visualizes

the entire search space for three time-steps in S-T for each module (except the initial

one).

Figure 5: Perfect ternary tree for each PZM in S-T: there are two alternative paths

from position 3 to 0; t = 3.

As Fig.5 indicates, in the three-time-step procedure there are two “symmetrical”

paths, namely:{3,4,5,0}, and {3,2,1,0}. This means that in such a case, a PZ struc-

ture comprised of U-number of units can be reconfigured in 2U unique sequences.

The formula for the total number of sequences for transition from PZI to PZT can be

generalized as follows:

3 t (4)

where 3 corresponds to the number of possible relative twists at each time-step {−π
3 ,0,+

π
3},

and t is the number of time-steps.

The calculation of the number of all possible paths for a given number of time-

steps (t) is straightforward, which is not the case for calculation of all potential paths,

PP for short. In this paper the number of PPs are calculated by depth-first algorithm.

Fig.6 shows the log-plot for the number of: all paths, and PPs as a function of the

number of time-steps (t). As Fig.6 indicates the rate of the exponential growth is ap-

proximately the same for both numbers.

7

http://rcin.org.pl



Figure 6: The log-plot showing the exponential growth of the numbers of: all possible

paths and all PPs from PZI (3) to PZT (0) for a given number of time-steps (t).

Since the quickest transition is burden by strong buckling, it is natural to increase

the number of time-steps. As a consequence, the number of possible paths also in-

creases, as illustrated in Fig.7.

Figure 7: The ternary trees for each PZM at increased number of time-steps (t). On

the top: at t = 4, there are 8 PPs. On the bottom: at t = 5, the number of PPs is 30.

Therefore, the number of all possible transition sequences from PZI to PZT for a

PZ comprised of U-number of units can be expressed as follows:

pU (5)

where p is the number of potential paths (PP) that is paths in the ternary tree connect-

ing the initial position with the target position for each module; U is the number of

modules of the PZ.
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Therefore, the growth of the number of all possible transition sequences from PZI

to PZT is double exponential, as visualized in Fig.8.

Figure 8: The visualization of the double exponential growth of the number of all

possible transition sequences from PZI = 3 to PZT = 0. Linear and logarithmic scales

are shown on the left and right, respectively.

5 The experiment: exhaustive search

As mentioned above, the number of possible solutions and therefore the search space

grow astronomically with the numbers of: time-steps and PZMs. In such cases, for

problems of practical size, proposed solutions are usually produced by meta-heuristic

methods and the quality of solutions is not ideal, but “just good”. Nevertheless, for de-

velopment of a proper meta-heuristic algorithm, it is desirable to know certain “bench-

mark solutions”. A relatively small-size experiment has been performed in serial and

in parallel, as described in the following subsections.

5.1 7 PZMs @ 4 time-steps

As shown on the top of Fig.7, there are eight potential paths (PPs) from positions 3 to

0. Since the initial PZM is fixed, the remaining 6 are being optimized. Therefore the

total number of possible solutions is: 86 = 262144.

In order to make the iteration process as simple and as little resource-consuming as

possible, and also easily “parallelizable”, each allowable solution has been indexed,

as follows:

• There are six PZMs considered and eight potential paths:

PP8 = {{3,2,1,0,0}, {3,2,1,1,0}, {3,2,2,1,0}, {3,3,2,1,0}, {3,3,4,5,0}, {3,4,4,5,0},

{3,4,5,5,0}, {3,4,5,0,0}}.
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• Therefore 6-element tuples of 8-element sets are to be considered. There are

86 = 262144 such tuples.

• An octal (base-8) number system is used to index every ith tuple. E.g. 0000778

represents a decimal 64th tuple, i.e. a list of six PPs: {PP(0+1)th
8 , PP(0+1)th

8 ,

PP(0+1)th
8 , PP(0+1)th

8 , PP(7+1)th
8 , PP(7+1)th

8 }, that is: {{3,2,1,0,0}, {3,2,1,0,0} ,

{3,2,1,0,0} ,{3,2,1,0,0}, {3,4,5,0,0} ,{3,4,5,0,0}}. In other words the first four

PZMs will change position as follows: {3 → 2 → 1 → 0 → 0}, and the last two

PZMs wil change the position as follows: {3 → 4 → 5 → 0 → 0}.

Due to symmetry of the search tree, there are two equivalent ideal solutions found at

the 52521th, and 209624th iterations, respectively:

⎡
⎢⎢⎢⎢⎢⎢⎣

3 2 1 1 0

3 3 4 5 0

3 4 5 5 0

3 3 4 5 0

3 4 4 5 0

3 2 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

3 4 5 5 0

3 3 2 1 0

3 2 1 1 0

3 3 2 1 0

3 2 2 1 0

3 4 5 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(6)

The rows in the above matrices contain the sequences of relative positions of the indi-

vidual PZMs. The first row from the top corresponds to PZ1, the second one to PZ2,

and so forth. The solution shown on the left is illustrated in Fig.9 below.

Figure 9: One of two ideal solutions for transition of a 7-unit hexagonal PZM from

“straight tube” to (an almost) half-torus. The buckling error (εY ) at each time-step is

shown on the top. Total error for this transition is 0.50308. The values of δY are shown

for individual PZMs on red background.

5.2 Serial vs. parallel computation on 2 & 4 kernels

The experiment has been performed in serial (on a single kernel), and parallelized on

two and four kernels available on an Intel R© Core
TM

i7-4790 CPU @ 3.60 GHz with 4

cores and 8 GB RAM.
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Since the indexes of all 262144 potential solutions are explicitly known, they have

been split in equal parts among two and four kernels. In the first experiment all 262144

PZM configurations were examined, in the second experiment kernels: #1 and #2
performed searches for indexes: i = {1, . . . ,131072} and i = {131073, . . . ,262144},

respectively. In the last experiment kernels: #1, #2, #3, and #4 performed searches for

indexes: i = {1, . . . ,65536}, i = {65537, . . . ,131072}, i = {131073, . . . ,196608}, and

i = {196609, . . . ,262144}, respectively. All setups returned the same ideal solutions.

Strong scaling of this parallelization is illustrated in Fig.10.

Figure 10: The speedup (S) and efficiency (η) for the experiment ran in parallel.

As Fig.10 indicates, the efficiency of parallelization is practically ideal.

6 Conclusion

In the considered optimization problem of Pipe-Z (PZ) reconfiguration, the growth

of search space is double exponential. Therefore finding the ideal transitions by ex-

haustive search is extremely time-consuming or, in fact, the cases of larger PZMs –

simply unrealistic. Nevertheless, by the indexing method described in Subsection 5.1,

the domain can be directly split among any number of kernels, which makes it partic-

ularly suitable for parallel computation. In general, due to enormous size of solution

space, population-based meta-heuristic methods seem the most suitable. However,

smaller-size examples are well-suited for grid computation as the parallelization in

straightforward and the scaling is strong.
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