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Quasi-continuous model for a crystal with ionic and electronic
polarization(*)

K. REGINSKI (WARSZAWA)

A quast-conTiNUOUS model describing mechanical and electrical properties of crystals made
up of deformable and polarizable ions has been constructed. In the first part of the paper, the
notion of a three-dimensional crystal lattice of shell-model atoms is introduced and the Lagran-
gian of the crystal is expressed in terms of collective cell variables. Next, the equations of motion
of the crystal are derived by means of quasi-continuum formalism. Finally, the interaction
m;ez; the crystal and the external electric field, as well as the free motion of the crystal are

Skonstruowano quasi-continualny model opisujacy mechaniczne i elektryczne wiasnosci kry-
sztatéw zbudowanych z deformowalnych i polaryzowalnych jonéw. W pierwszej czgéci pracy
wprowadzono pojecie trojwymiarowej sieci krystalicznej, zloﬁonej z atomdéw opisywanych

przez model powlokowy. Lagrangian krysztalu wyraZono przez zmienne kolektywne komoérek
elementa.rnych Nastepnie, przy uzyciu formalizmu quasi-continuum, wyprowadzono réwnania
ruchu krysztatu. Na koniec przeanalizowano swobodny ruch krysztatu, jak rowniez jego od-
dzialywanie z zewngtrznym polem elektrycznym.

ITocTpoera KBAaIHKOHTHHYANBHAR MOJSNb, OMHCHIBAIOMIAA MEXAHHYECKHE H IJICKTPHUECKHE
CBOMCTBA KPHCTAJUIOB, IIOCTPOEHHLIX H3 Re(hOPMHPYEMBIX M NOJNAPH3YeMBIX HOHOB. B mep-
BOM vacTt paGoTel BBOOHTCA NOHATHE TPEXMEPHOM KPHCTAIUTHYSCKOH PEIIeTHH, COCTOALIeH
H3 ATOMOB, ONHCHIBAEMBIX C IOMOLIBI0 oBomoyeanoit mogerm. Pyuruma Jlarpamxa KpACTALTA
BBIPAYKAETCA Yepe3 KOJUIEKTHBHBIC IepeMeHHLIE 3/IEMEHTAPHBIX AYeeK. 3aTeM, IPH HCIONb=
3soBaHHH GOpMATH3MA KBAa3AKOHTHHYYMA BBIBOJATCA YPABHEHHA [BIDKCHHA KDHCTaJLIA.
B sarmodeHHe paccMaTpHBaeTCA KAK CBODOJHOE NBIDKEHHE KDHCTALIA, TAK H €ro B3aHMO-
HeicTBHE C BHEIIHHM 3JICKTPHYECKHM IIONEM.

1. Introduction

THE METHOD of quasi-continuum has been applied successfully to investigate the mechani-
cal proparties of crystal lattices [1, 2]. This method can also be employed in the analysis
of the electro-elastic properties of crystals [3, 4].

The authors of the above papers start from the standard theory of crystal lattice, that is,
they assume that the state of crystals is determined by displacements and velocities of
their atoms. It is assumed further that the force acting on an arbitrary atom depends
only upon its own displacement and the displacements of the other ions. From these
assumptions it follows that also the local electric field and polarization are determined by
displacements of the atoms of the crystal.

(*) Paper presented at the EUROMECH 93 Colloquium on Nonlocal Theory of Materials, Poland,
August 28th—September 2nd, 1977:
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In this paper a more adequate model of an ionic crystal is presented. In addition to
the ionic polarization, electronic polarization is taken into account. It is assumed that the
displacement and electronic polarization are the degrees of freedom of the ion. Such an
approach makes possible a correct description of the interaction between the field of
displacements of the atoms and their electronic polarization, as well as the interaction
between the crystal and the electromagnetic field. In particular, the interaction of the dipole
moments with the external electric field and the dispersion of electric susceptibility can be
successfully investigated.

2. Lagrangian of the crystal

We consider a crystal as a system consisting of a set of particles (ions) of a fixed charge ¢;
and a fixed mass m; at a position x(#, /). The index n has three integral components that
name the unit cell and j is an index that labels the type of particle. The position vector
of the j-th ion in the n-th unit cell (in the equilibrium configuration) can be represented
in the form

x(n,j) = x(n)+5(j),
where x(n) determines the location of the mass centre of the cell and E(j)— the location
of ions in that cell with reference to the centre of mass. We shall use the coordinate
system x* (x = 1,2, 3) having translation vectors-of the lattice b, as covariant basic
vectors and 8xp = by by as the covariant metric tensor. The corresponding contravariant
basic vectors will be denoted by b*. With these vectors we can form the contravariant
metric tensor g = b*%b’. The time will be denoted by .

The starting concept of the investigations is a shell medel of an ionic crystal [5, 6].
In the shell model an ion is assumed to consist of an ion core of a mass m; and a charge %,
and of a rigid shell of zero mass, but possessing a charge #;. The centre of the core of the
ion (n, ) can be displaced from its equilibrium position by an amount w(n, j, t). Moreover,
the centre of the shell can be displaced with respect to its core. Let v(n, j, t) be the relative
displacement of the shell and core of the ion (1, j). Then the dipole moment of this ion is

p(ﬂ!js t) = x}‘r(n’j! f)
We regard a crystal as a system described by the generalized ccordinates w and p.
The Lagrangian for this system has the form [7]:

@1 2L =g > i,y )y, fy )= ) Dol o O i1, Wyl o' 1)
" i
+ w,,(n,j,.t){p?“(n—n’,j,j’)pﬁ(n’,j’, f)+p¢(ﬂ,j, ‘)W(n_n’!j,j')gﬁ(n',j’s f)]
1 . , , . .
== Z {g"‘a?lpu(n,}, f)Pp(n,}, t)"'zlpa(n:.}’ r)+e;w,(n,;, I)JEE(H,}, t)}'
nJ
Here % (n—n', j,j"), P¥(n—n',j,j") and P¥(n—n', j, j’) are force constants for core-core,

core~dipole and dipole-dipole interactions, Ef(n, j, ) is the effective electric field acting
on the ion (n, ) , a; is the polarizability of the j-th ion and e; = #; + ;.
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The Lagrangian (2.1) can be expressed in the equivalent form
2L = g% D) [ o(®)Wi(n, &, O)iy(n, &, )dé—
D[ [ waln, & )PP (n—r, B, EIWp(', By 1)+ wi(m, §, )PF (n—1', E, §)

xPﬂ(”’s §, ) +pu(n, §, ;)qsgﬁ(,,_n*, E, E)Pﬁ("'a g, 1)dédé’
— D[ e u(®)pun, & )pp(n, &, 1)dE-2 [ [e(E)paln, &, 1)

+0(Ewa(n, &, DIES(n, &, Dk},  dE = dE'dgde?,

where

1
o(®) = Z m(E—E), x(E = 2 & 98,

o® =D gdE-E), B = dE-E),
J

i

W(ﬂ—n', El ﬁ’) = 2 w("—n"j’j')acg_gf)a(g'mgj')’
LI’

G (n—r', 5, 8) = 3 D (n—n', ),/ )DE-E)E ),
Ly

P (n—n', §,8) = D OP(n=n',j,j)8(E~)(E ~§).
1J

Here §; = (j), 6(E—§) is the Dirac delta function and integration is carried out throughout
the unit cell.
It is assumed that the above form of the Lagrangian is also applicable to the case of
continuous distribution of the mass, of electric charges, and of dipole moments.
Instead of individual displacements of each particle in a cell, it is convenient to intro-
duce collective cell variables following Kunin’s method [8]. Let us first define the tensors.
characterizing the mass distribution in the unit cell.

[ o®)eh ... udE, 5=0,1,....
Here § is the multi-index 2, ..., 4,. Next, we define the matrices
I:-lc g gi\sass', I?;\ = 92! a“ 3

where ¢ is the inverse of o and & is the Kronecker delta. Finally, using Schmidt
orthogonalization procedure we construct the polynomial basic system &(€) and a conju-
gate system of basic functions e2(E), which satisfy the relations

[e®é®e ®as = ¥,
Ja®F@aE = 8.
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It is important to note that for a finite number of particles in a unit cell our basic system
is also finite-dimensional. We can now decompose the functions w,, p,, Ef, 9%, 0¥, o¥
into the following sums:

waln, & 1) = wa(n, DE®,  paln, 5, 1) = piln, E®),
E3(n, 5, 1) = EE(n, 0689, |

T(n— 1, , §) = TP (n—n)e (©)ei(®),

O (n—n', . §) = D (n—n)e; (@) es 8),

WP (-1, 5, ) = Bx¥(n—n)er(Des(®),

where

Wi, 1) = [ waln, &, 0e2(®)dE,  E*(n, 1) = [ Ex(n, &, 1)E (9,
pan, 1) = [ pu(n, &, D)er(9)dE,
G(n—n) = [ BF(n—n', &, §) & (§)(E) dEdE,
B (n—n') = [ BF i, &, §)E (D (&) dEdE,
T () = [ BP (-, &, §)E (D) k.
Substituting the above expansions in the Lagrangian (2.2), we obtain
(23) 2L= 2, Do, ) I (n, £) = pas(n, )T pgy(n, 1)
+2p25(n, 1) PR Ef(n, £)+ 2w (m, 1) R Ef¥(n, 1))
= D) Do, OB (n— m)wi (', 1)+ wisl, )BT (n— iy, 1)
,,: . +pialn, YBF (n—n')piy (', 1),
where the matrices I™#, J”"":.‘ii!}, P; al:i given by
I = googrs,
T = g [ w(8)¢ (9)F(9)de,
P} = [ s(®)F®e(Ddk,
Ry = [ 0(9)& (®ex(®)de.

Thus we have expressed the Lagrangian of the crystal in terms of collective cell variables.

3. Equations of motion

Assuming that wp, and p;, are generalized coordinates of the system, we can write
Lagrange’s equations of motion in the form

@3.0)
=iy (n, )~ RoEf*(n, 1) + )_7 (D75 (n— 'y way(n', ,)+L B (n—n)pip(n', )] = 0,

T3 (n, £)— Ph Efe(n, 1)+ Z[W(n —n)py(n, r)+ BEre(n’ —n)wip(n', 1)) =
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The above equations describe a discrete system. In order to obtain the corresponding
continuum theory we construct, following [8], the model of quasi-continuum.

Let N'(B) be the linear space of scalar or tensor functions u(n), defined on the set of
discrete points n, such that |u(n)| < C|n|’ when [n| = co. The space N’(B) can also be
interpreted as the space of linear functionals on the space N(B) of test functions. The
space N(B) consists of functions @(n) which tend to zero at infinity more rapidly than any
power of n. By definition, the value of the functional #(n) on the test function ¢(n) is

. 9) S0 D umg),

where o is the volume of the unit cell and u(n) denotes the complex conjugate to u(n).

Next, we define the space K'(B) of distributions u(k), k = k,b*, on the space K(B).
The space K(B) consists of infinitely differentiable functions of compact support localized
in the first Brillouin zone B = {—n < k, < n}. Let us denote by X(B) and X"(B) the
Fourier transforms of the spaces K(B) and K’(B). It can be demonstrated that the functions
u(x) € X"(B) are regular distributions represented by entire analytic functions.

We can now introduce isomorphism between the spaces N'(B) «» X"(B) «» K'(B) given
by the following relations:

u(x) = v ) u(n) d5(x—x(n)),

n

(.2)
u(®) = [u(x)edx = vBK) Y u(mexk, dx = dxdxds’,

where B(k) is the characteristic function of B, and 8,(x) is its inverse Fourier transform:

3
1 sinz(x - b?)
R ! (x-b) °’

=

1

(Zn;)’ dk - dkldkgdkgq

Sulx) & f B(k)e-i=kdk =

If @(n) is a sufficiently rapidly detreasing function for |n| — oo, then, in the established
isomorphism, the following relations are valid:

(3.3) v 2 D(n—n)u(n’) < f D(x—x")u(x)dx' « DEK)uk).
n

It is easy to show that u(x) defined by Eq. (3.2), is the interpolating function for u(n),
i.e-u(x) = u(n) for x = x(n). Thus a discrete system described by the functions #(n) can also
be described by the functions of the continuous argument #(x) or (k). Usually the functions
describing a system depend also on time ¢. In this case it is sometimes convenient to use
instead of u(n, ), u(x, t) and u(k, t) their Fourier transforms with respect to time, i.e.
u(n, ), u(x, ) and u(k, w). These Fourier transforms are given by the formula

u@) = [u(t)e*dt.

Equations (3.1) can be interpreted as equations of motion of quasi-continuum in the
(n, t) representation. According to the method presented above, these equations can also
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be formulated in the (k, ) representation. Using the relaticns (3.3) and performing the
Fourier transformation with respect to #, we obtain from Eq. (3.1)

- — 0y (k, )~ Ra B (k, 0) + DD (k) wiy(k, w)% T (k) pyy(k, @) = 0
Fpty(k, @) P EF (K, @)+ B Wpiy(k, @)+ () wy(k, 0) = 0,

where, in accordance with Eq. (3.2),,

(k) = — 2 P (n) xinrk,
FEW) = ;2 G (n)esor,

d}ﬂ"ﬁ(’k) = 2 dimsﬁ(n) eixin) -k

Equations (3.4) are equations of motion of quasi-continuum in the (k, ) representation.

4, Crystal in external electric field

Equations (3.4) can be used for investigating the interaction of the crystal with the
external electric field. We shall now present an approximated description of this interaction.
In the Lagrangian (2.1) Ef(n, j, t) is the local electric field, i.e. the field which acts
on the particle (n,j). We assume that this field is equal to the sum of the external electric
field E&,(n, j, t) and the field E%(n, j, t) due to the dipole moments localized in the crystal.
Thus,
(4°l) Ez(n!js ‘) = E:xt("!js r)+E:r("!ja 1.
In the crystal at every point (n, j) is situated the dipole moment ¢;w,(n, j, t) due to the
displacement of the ion, and the dipole moment p,(n, j, t) due to the electronic polarization
of the ion. So the total dipole moment d, (n, j, t) localized in the point (n, j) is

do(n,J, 1) = eyWa(n, J, 1)+ pa(ns J, 1)

If we confine ourselves to the quasi-static approximation, we can express the Fourier
transform of the electric field arising from this distribution of the dipole moments by the

formula

42) E&(k,j, 0) = = D, F4(j,1', K)lepwy(k, ' @) +py(k, ', ).
“
The function F*# is well-known in the theory of crystal lattices [7]. It has the form

g, ),

PG, = 22
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where

(4.3) Q“”(j.j’,k)=“4;ﬁf[ ( lklz)_l]

_ 4z 2(2nh‘+k¢)(2nhﬂ+kﬁ) xp( |2::1|+lqz

“®&N-8U")
[27h+ k|2 ) i

+2%2 D HA(/F [x(l,))—x(l, ) e stn-xt.,
r

h,—integers and h* = g% hy.

Here we have used the following notation:

H(x) = 72_:‘—%." exp(—s?)ds,

2
Hop(Ix) = —-o=—5- H(x),

H = goghH,.

The parameter P can be chosen so as to make both sums in Eq. (4.3) rapidly convergent.
It should be emphasized that the function 0%(j,j’, k) is independent of P. This problem
has been investigated in detail in the work [7]. For the case j = j’ the function Hz(|x])
must be replaced by

HY(x) = -0 HO(),
HO(x) = _VL;% f exp(—s?)ds.
0

From Egs. (4.1) and (4.2) we obtain finally the Fourier transform of the local electric
field

Efﬂi,_}', ED) — E::t(k’j! W)“ZWU,_]’, k)[ej'wﬁ(k!j’sw)'l'pﬂ(k’j”w)]}

where EZ.(k,j, w) is the Fourier transform of E&,(n,j, ).

Now we pass from the quantities describing the electric field in the discrete points (n, j)
to the collective cell quantities. It can be done as in Sect. 2. After simple calculations we
obtain

EF(k, 0) = E2(k, 0)— F5% (k) [y (k, o) Ra+piy(k, )],

where

Ei(k, 0) = [ E&(k, € 0)&(§)d,
Fb() = [ (g, €, W (®)e (&) dEdE.
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After substitution of Ef"(k, w) in Eqgs. (3.4) we obtain finally the following equations of
motion:
— Iy (k, ) — RA[ES(ky 0)— Fm (k)(Rywip (K, w)+p;,(k )]

(44) +OBWwiy(k, )+ W“"’(k)p.g(k. ) =
Ttpyy(k, )~ PH[ES (k, )~ FaR()(Rswiy(k, ©) + pg(k, w))]
FOFW (K, 0) 4 FF R Wk, @) = 0

This is the system of equations describing the interaction of the ionic crystal with the
external electric field in (k, ) representation. Naturally, we can also pass to other repre-
sentations. For instance, the equations of moticn in the (x, f) representation are

I8ipgy(x, 1) — R’;‘{EE:.(x, x)—f FoomB (x — x")[REwgy (X', 1)+ pipg (X', r)]dx'}
(4.5) + f M(x~x’)w;ﬂ(x’,t)dx'+-%w f P (x—x)pp(x', 1)dx’ = 0,
T8, 1)~ PR B (x, 1) [ Foox—x)REwp ', )+ pag(x, Dl
+ f as?.“‘ﬂ(x-x*)p;,.,(x',:)dxur% f PPr(x' —x)wi(x', )dx’ = 0,

where E,':“(x, 1), F"""*’(x x'), W(x x'), W(x -x') and di'“’*’(x x) are correspon-
ding inverse Fourier transforms of the functions E n(k w), F"""(k), W(k) {D"*'ﬂ(k)
and W(k)

In the case of free motion of the crystal one must set E:‘,'l(x t) = 0 in Egs. (4.4) and

4.9).

5. Final remarks

The method presented in Sect. 4 is based on the assumption that the ions interact with
the unretarded Coulomb forces. It can be shown that the use of the unretarded Coulomb
interactions is equivalent to neglecting the transverse electromagnetic field.

In our opinion, by using Eqgs. (3.4) one can build up a more exact theory. One can start
with the Lorentz equations where distributions of the charges and currents are expressed
in terms of w and p. Thus it is possible to connect the equations of motion (3.4) with micro-
scopic Lorentz equations. Such an approach could make possible a description of the inter-
action between the electromagnetic field and the crystal for a wider range of the parameters
k and w.
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