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Quasi-continuous model for a crystal with ionic and electronic 
polarization(*) 

K. REGINSKI (WARSZAWA) 

A QuASI-coNTINUOUS model describing mechanical and electrical properties of crystals made 
up of deformable and polarizable ions has been constructed. In the first part of the paper, the 
notion of a three-dimensional crystal lattice of shell-model atoms is introduced and the Lagran­
gian of the crystal is expressed in terms of Collective cell variables. Next, the equations of motion 
of the crystal are derived by means of . quasi-continuum formalism. Fiilally, the interaction 
between the crystal and the external electric field, as well as the free motion of the_ crystal are 
analyzed. 

Skonstruowano quasi-continualny model opisuj(!CY mechaniczne i elektryczne wlasno8ci kry­
sztal6w zbudowanych z deformowalnych i polaryzowalnych jon6w. W pierwszej ~i pracy 
wprowadzono poj~ie tr6jwymiarowej sieci krystalicznej, zloi.onej z atom6w opisywanycb 
przez model powlokowy. Lagrangian krysztalu wyrai.ono przez zmienne kolektywne kom6rek 
elementarnych. Nast~pnie, przy uzyciu formalizmu quasi-continuum, wyprowadzono r6wnania 
ruchu krysztalu. Na koniec przeanalizowano swobodny ruch krysztalu, jak r6wniei: jego od­
dzialywanie z zewne(trznym polem elektrycznym. 

IlOCTpoeHa KBa3BKOHTHHYa.JI&HaJl MO~enL, OIIHChiBaiO~IUI MexamNCCKH_e H 3JICKTplAeCKHe 
CBOHCTB& l<pHCTaJIJIOB, IIOCTpOCHBhiX H3 ~ecl>opMBpyeMhiX H IIOJUIPH3YCMhiX HOHOB. B IICp­
BOH llaCTH pa6oTbx BBO.qH'TCfl: nowrrHe TpeXMepHOH ICpHCTaJIJIHtleCKOH peWeTKI{, COCTO~eit 
H3 aTOMOB, OIIHCbiBaeMhiX C IIOMO~IO oOOJIOlJeqHOft MO~eJIH. <t>~ JlarpamKa KpHCTaJIJIB 
BbJplVK&eTCfl: qepe3 KOJIJICKTHBHhiC IIepeMeHHble 3JICMeHTapHbiX j[t{eeK. 3&TeM, !IpH HCIIOJD.- . 
30BaHHH !PopM&JIH3Ma KBaSHKOHTHHyyMa BbiBONITCfl: . yp&BHCHWI ,qBH>I<CHWI ICpHCT&JIJI&. 
B 3&KJIIOqeHHe paCCMaTpHBaeTCJI K&K CBo6o~oe ,qBH>KeHHe ICpHCTaJIJI&, TaK H ero BsaHMO­
~eHCTBHe C BHCIIIHHM 3JICKTpHliCCKHM IIOJieM. 

1. Introduction 

THE METHOD of quasi-continuum has been applied successfully to investigate the mechani­
cal prop~rties of crystal lattices [1, 2]. This method can also be employed in the analysis 
of the electro-elastic properties of crystals [3, 4]. 

The authors of the above papers start from the standard theory of crystal lattice, that is, 
they assume that the state of crystals is determined by displacements and velocities of 
their atoms. It is assumed further that the force acting on an arbitrary atom depends 
only upJn its own displacement and the displacements of the other ions. From these 
assumptions it follows that also the local electric field and polarization are determined by 
displacements of the atoms of the crystal. 

(*) Paper presented at the EUROMECH 93 Colloquium on Nonlocal Theory of Materials, Poland, 
August 28th-September 2nd, 1977: 
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In this paper a more adequate model of an ionic crystal is presented. In addition to 
the ionic polarization, electronic polarization is taken into account. It is assumed that the 
displacement and electronic polarization are the degrees of freedom of the ion. Such an 
approach makes possible a correct description of the interaction between the field of 
displacements of the atoms and their electronic polarization, as well as the interaction 
between the cryst~l and the electromagnetic field. In particular, the interaction of the dipole 
moments with the external electric field and the dispersion of electric susceptibility _can be 
successfully investigated. 

2. Lagrangian of the crystal 

We consider a crystal as a system consisting of a set of particles (ions) of a fixed charge e1 
and a fixed mass m1 at a position x(n,j). The index n has three integral components that 
name the unit cell and j is an index that ·labels the type of particle. The position vector 
of the j-th. ion in the n-th unit cell (in the equilibrium configuration) can be represented 
in the form 

x(n,j) = x(n)+!;Q), 

where x(n) determines the location of the mass centre of the cell and J;(j)- the location 
of ions in that cell with reference to the centre of mass. We shall use the coordinate 
system XZ (cc = 1 , 2, 3) having translation vectors -{)f the lattice bcx as covariant basic 
vectors and gcxfJ = b~ · bp as the covariant metric tensor. The corresponding contra variant 
basic vectors will be denoted by bcx. With these vectors we can form the contravarhmt 
metric tensor g«P = b«·bP. The time will be denoted by t. 

The starting concept of the investigations is a shell model of an ionic crystal [5, 6]. 
In the shell model an ion is assumed to consist of an ion core of a mass m1 and a charge "'J 
and of a rigid shell of zero mass, but possessing a charge "J· The centre of the core of the 
ion (n,j) can be displaced from its equilibrium position by an amount w(n,j, t). Moreover, 
the centre of the shell can be displaced with respect to its core. Let v(n,j, t) be the relative 
displacement of the shell and core of the ion (n ,j). Then the dipole moment of this ion is 

p(n,j, t) = "1v(n,j, t). 
We regard a crys~al as a system described by the generalized ccordinates w and p. 

The Lagrangian for this system has the form [7]: 

(2.1) 2L = g«P 2 m1wcx(n,j, t)wp(n,j, t)- ,2 [wcx(n,j, t)cpxtJ(n-n' ,j,j')wp(n' ,j', t) 
n,j n,n' 

j,j' 

+ wcx(n,j, t)C/P.I(n-n' ,j,j')pp(n' ,j', t) + Pcx(n,j, t)f/Yt(n-n' ,j,j')pp(n' ,j', t)] 

-2 {tt" + p,(n,j, t)pp(n,j, t)-2[p,(n,j, t)+e1w,(n,j, t)]El(n,j, t)}. 
n,J '} 

Here qyxtJ (n-n' ,j,j'), C/Y!I(n-n' ,j,j')and f/Yt(n-n' ,j,j') are forceconstantsforcore-core, 
core-dipole and dipole-dipole interactions, E'f.(n,j, t) is the effective electric field acting 
on the ion (n,j) , a1 is the polarizability of the j-th ion and e1 = "'J + "J· 

http://rcin.org.pl



QuASI-cONTINUOUS MODEL FOR A CRYSTAL WI1H IONIC AND ELECTRONIC POLARIZATION 57 

The Lagrangian (2.1) can be expressed in the equivalent form 

2L = g«P ~ J e(;)win, ;, t)wp(n, ;, t)d~-
n 

-~ J J [wa(n, ;, t)rJPP(n-n', ;, ;')wp(n', ;', t)+w~(n, ;, t)l/Yfl(n-n', ;, ;') 

where 

n,n' 

xpp(n', ;', t)+pin, ;, t)t!P/(n-n', ;, ;')pp(n', ;', t)]d~d~'· 

-~ {J g«Px(;)p~(n, ;, t)pp(n, ;, t)d~-2 J [e(;)p~(n, ;, t) 
n 

e(;) = 2 mi6(;-;1), 
j 

a(;) = ~ e1 6(;- ;1), 
j 

x(;) = 2 _1 6(;- ;J)' 
j (1.1 

e(;) = ~ 6(;-;1), 
j 

tJPP(n-n', ;, ;') = ~ f/PP(n-n' ,j,j')6(;- ;1)6(;' -.;i,), 
).)' 

f/Y!!(n-n', ;, ;') = ~ f/Y!!(n-n' ,j,j')6(;- ;1)6(;'- ;1,), 
).}' 

tP'f(n-n', ;, ;') = ~ ~P(n....:n' ,j,j')6(;- ;1)6(;'- ;1,). 
}.)' 

Here ;1 = ;(j), 6(;- ;1) is the Dirac delta function and integration is carried out throughout 
the unit cell. 

It is assumed that the above form of the Lagrangian is also applicable to the case of 
continuous distribution of the mass, of electric charges, and of dipole moments. 

Instead of individual displacements of each particle in a cell, it is convenient to intro­
duce collective cell variables following Kunin's method [8]. Let us first define the tensors. 
characterizing the mass distribution in the unit cell. 

s = 0, 1, .... 

Here s is the multi-index A1 , ••• , As. Next, we define the matrices 

AA df A df 
] SS' = n2S ~SS'' ~-1 -1 ..Q 

~:: u ~~", = !?2, Uss'' 

where e;"sl is the inverse of e2s and 6SS' is the Kronecker delta. Finally,_, using Schm.idt 
orthogonalization procedure we construct the polynomial basic system e(;) and a conju­
gate system of basic functions e;-(;), which satisfy the relations 

J e(;);(;)l(;)d~ = fss"., 

J e:(;) j-(;) d~ = 6~. 
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It is important to note that for a finite number of particles in a unit cell our basic system 
is also finite-dimensional. We can now decompose the functions Wcc,Pcc, El, IJ>«P, f/Y!I, f/Yf 
into the following sums: 

where 

Wcc(n, 1;, i) = w:cc(n, t)e"A(J;), P~~.(n, 1;, t) = p:CC(n, t)e"A(J;), 

.El(n, 1;, t) = Ef«(n, t)e:(J;), 

tJYlll(n- n', 1;, ~') = ~"'cc:p(n-n')e:(;)e:(J;'), 
A A 

t/1!/(n-n', 1;, 1;') = ~ruP(n-n;)e:(;)e;(J;'), 
qpf(n-n', 1;, 1;') = ~CX:P(n-n')e:(;)e;(J;'), 

w:CC(n, t) = J Wcc(n, 1;, t)e:(;)dE, Ef«(n, t) = J El(n, 1;, t)i(J;)dE, 

P:cc(n, t) = J Pcc(n, 1;, t)e:(J;)dE, 

tiYrJP(n-n') = J f/PP(n-n', 1;, J;');(;)i(J;')dEdE', 

~~(n-n') = J t[Y!/(n'-n', 1;, J;');(;)tt(J;')dEdE', 

~~(n-n') = J qpf(n-n', 1;, l;');(;)I(J;')d~dE'. 
Substituting the above expansions in the Lagrangian (2.2), we obtain 

(2.3) 2L = 2 [w:cc(n, t)J:CC:Pw:p(n, t)-p:CC(n, t)J~~Ptp(n, t) 
n 

where the matrices J:CC:p, .fr4, ~' Pf are given by 

t~ = grzPr;, 

fi~ = g«P f ~(;);(;)t?(;}dE, 
Pf = j e(;};(J;)e;(J;)dE, 

~ = J a(~);(l;)e;(J;)dE. 
Thus we have expressed the Lagrangian of the crystal in terms of collective cell variables. 

3. Equations of motion 

Assuming that Wicc and p~ are generalized coordinates of the system, we can write 
Lagrange's equations of motion in the form 

(3.1) 
AA 00 A A ~ AA J AA 

prallw:,(n, t)-~El'(n, t)+ ~ [~P(n-n')w:p(n', t)+T ~?P(n-n')p:p(n', t)] = 0, 

AA A A ~ AA 1 AA 
]'tU/Jp;p(n, t)-P$-E['(n, t)+ L.J [tfrscx&P(n-n')p;p(n', t)+T fP'/'«(n' -n)w;p(n', t)] = 0. ,., 
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The above equations describe a discrete system. In order to obtain the corresponding 
continuum theory we construct, following [8], the model of quasi-continuum. 

Let N'(B) be the linear space of scalar or tensor functions u(n), defined on the set of 
discrete points n, such that lu(n)l ~ Clnl' when 1nl -+ oo. The space N'(B) can also be 
interpreted as the space of linear functionals on the space N(B) of test functions. The 
space N(B) consists of functions q;(n) which tend' to zero at infinity more rapidly than any 
p~wer of n. By definition, the value of the functional u(n) on the test function q;(n) is 

df ~-
(u, q;) = v LJ u(n)q;(n), 

11 

where v is the volume of the unit cell and u(n) denotes the complex conjugate to u(n). 
Next, we define the space K'(B) of distributions u(k), k = k01b01

, on the space K(B). 
The space K(B) consists of infinitely differentiable functions of compact support localized 
in the first Brillouin zone B = { -n ~ k01 ~ n}. Let us denote by X(B) and X'(B) the 
Fourier transforms of the spaces K(B) and K'(B).It can be demonstrated that the functions 
u(x) E X'(B) are regular distributions represented by entire analytic functions. 

We can now introduce isomorphism between the spaces N'(B) +-+ X'(B) +-+ K'(B) given 
by the following relations: 

u(x) = v ~ u(n)~8(x-x(n)), 
(3.2) 

n 

u(k) = J u(x)eik·xdx = vB(k) ~ u(n)efx(n)·k, dx = dx1dx2dx3
, 

11 

where B(k) is the characteristic function of B, and ~8{x) is its inverse Fourier transform: 

3 

..Q ( ) ~ _1_f B(k) -tx·kd''~ = _1_ n sinn(x. bcx) d''~ dk dk dk 
uB x (~)3 e n- n3v (x. bot) ' n- = 1 2 3. 

cx=l 

If fb(n) is a suffiCiently rapidly detreasing function for 1nl -+ oo, then, in the established 
isomorphism, the following relations are valid: 

(3.3) v ~ fb(n-n')u(n') +-+ J fb(x-x')u(x')dx' ++ fb(k)u(k). 
n' 

It is easy to show that u(x) define4 by Eq. (3.2)1 is the interpolating function for u(n), 
i.e:u(x) = u(n) for x = x(n). Thus a discrete system described by the functions u(n)can also 
be described by the functions of the continuous argument u(x) or u(k). Usually the functions 
describing a system depend also on time t. In this case it is sometimes convenient to use 
instead of u(n, t), u(x, t) and u(k, t) their Fourier transforms with respect to time, i.e. 
u(n, w), u(x, ro) and u(k, w). These Fourier transforms are given by the formula 

u(w) = J u(t)e- 1011dt. 

Equations (3.1) can be interpreted as equations of motion of quasi-continuum in the 
(n, t) representation. According to the method presented above, these equations can also 
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be formulated in the (k, eo) representation. Using the relaticns (3.3) and performing the 
Fourier transformation with respect to t, we obtain from Eq. (3.1) 

(3.4) 

where, in accordance with Eq. (3.2h, 

"" 1 \1 "" (P"cxsp (k) = V .L.J (P"l%8P ( n) eix( n). k , 

n 

"" 12 "" ~cxsP(k) = _ ~a.sP(n)eix(n)·k 
V ' 

n 

Equations (3.4) are equations of motion of quasi-continuum in the (k, eo) representation. 

4. Crystal in external electric field 

Equations (3.4) can be used for investigating the interaction of the crystal with the 
externa] electric field. We shall now present an approximated description of this interaction. 

In the Lagrangian (2.1) Et,(n,j, t) is the local electric field? i.e. the field which acts 
on the particle (n,j). We assume that this field is equal to the sum of the external electric 
field E:X,(n,j, t) and the field E:r(n,j, t) due to the dipole moments localized in the crystal. 
Thus, 

(4.1) Et,(n,j, t) = E:X,(n,j, t)+E:r(n,j, t). 

In the crystal at every point (n,j) is situated the dipole moment e1wa.(n,j, t) due to the 
displacement of the ion, and the dipole moment p«(n,j, t) due to the electronic polarization 
of the ion. So the total dipole moment da. (n,j, t) localized in the point {n,j) is 

t4_(n,j, t) = e1wa.(n,j, t)+ Pa.(n,j, t). 

If we confine ourselves to the quasi-static approximation, we can express the Fourier 
transform of the electric field arising from this distribution of the dipole moments by the 
formula 

(4.2) E:r{k,j, eo)= -2 pJJ(j,j', k)[e1,wp{k,j', eo)+pp(k,j', eo)]. 
)' 

The function pP is well-known in the theory of crystal lattices [7]. It has the form 

FaP(j ., k) 4nfC'kP na.IJU ., k) . ,) ' = --vjkj2-~. ,) , ' 
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where 

4nk«kfJ [ ( lkl
2 

) ] (4.3) Q:IJ(j,j', k) = vlkl2 exp - 4P -1 

_ 4n ~ (2nh"l+k«)(2nhP+kfJ) (- 12nh+k1:!) -'2nb·~/)-~/')) 
v L..J 12nh+kl2 exp 4P e- · 

b!j&O 

+P3J2 2 Hr41(yP lx(l,j)-x(/',j')l)e-lk·(x(l,J)-x(I',J'», 
I' 

ha.- integers and ha. = ga.fJ hp. 

Here we have used the following notation: 

00 

df 2 1 f H(x) = yn x x exp( -s2)ds, 

iP 
Hr41(!xl) = ox«oxP H(lxl), 

Hr41 = g«YgfJdHyd. 

The .parameter P can be chosen so as to make both sums in Eq. (4.3) rapidly convergent. 
It should be emphasized that the function Qafl(j,j', k) is independent of P. This problem 
has been invec;tigated in detail in the work [7]. For the case j = j' the function Hr41(1x!) 
must be replaced by 

X 

H 0 (x) = - 2 _!_ J exp(- s2)ds. yn x o 

From Eqs. (4.1) and (4.2) we obtain finany the Fourier transform of the local electric 
field 

Ef.(k,j~ cu) = E:xt(k,j, w)-}; Fa.fJ(j,j', k)[e1, Wp(k,j', cu)+pp(k,j', cu)], 
j' 

where E:.,.(k,j, cu) is the Fourier transform of E:x1(n,j, t). 
Now we pass from the quantities describing the electric field in the discrete points (n,J) 

to the collective cell quantities. It can be done as in Sect. 2. After" simple calculations we 
obtain 

where 
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Mter substitution of Eft(k, m) in Eqs. (3.4) we obtain finally the following equations of 
motion: 

-m2I;,;pw;p(k, m)-Ji:[E!:t(k~ m)-F;~P(k)(R~Wt'p(k, m)+p~p(k, m))] 
A A 1 A A 

(4.4) +~P(k)w;p(k, m)+yqy:?P(k)p;p(k, m)= 0, 

J:a_;tJp;p(k, m)-P$[El:t(k, m)-F~P(k)(d~wt'p(k, m)+P~p(k, m))] 
A. A 1 A A 

+(/)SasP(k)p;p(k, m)+y~/'11(k)w;p(k, m)= 0. 

This is the system of equations describing the interaction of the ionic crystal with the 
external electric field in (k, m) representation. Naturally, we can also pass to other repre­
sentations. For instance, the equations of motion in the (x, t) representation are 

"" "{ ·" f "" " } 1'(1,8/Jp;p(x, t)-PI- E!:,(x, t)- F.tam11(x-x')[Rlwrp(x', t)+P~p(x', t)]dx' 

f "" . 1 f "" + t1Jr.«•P(x-x')p;p(x', t)dx' +y ~/'«(x'-x)w;p(x', t)dx' = 0, 

" "" "" · "" "" where E::,(x, t), ptim/J(x-x'), tJYIU/l(x~x;), tJY-?P(x~x') and (/)5(1,8/J(x-x') are correspon-
ding inverse Fourier transforms of the functions E'!:,(k, m), F~,;P(k), ~CX:,(k), ~CX:P(k) 
and#f1(k). 

In the case of free motion of the crystal one must set E!:,(x, t) = 0 in Eqs. (4.4) and 
(4.5). 

5. FiDal remarks 

The method presented in Sect. 4 is based on the assumption that the ions interact with 
the unretarded Coulomb forces. It can be shown that the use of the unretarded Coulomb 
interactions is equivalent to neglecting the transverse electromagnetic field. 

In our opinion, by using Eqs. (3.4) one ca11 build up a more exact theory. One can start 
with the Lorentz equations where distributions of the charges and currents are expressed 
in terms of w and p. Thus it is possible to connect the equations of motion (3.4) with micro­
scopic Lorentz equations. Such an approach could make possible a description of the inter-

. action between the electromagnetic field and the crystal for a wider range of the parameters 
k and w. 
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