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Exact stability analysis of uniform cantilevered pipes conveying
fluid or gas

M. BECKER (WUPPERTAL), W. HAUGER (HAMBURG)
and W WINZEN (PFORZHEIM)

A COMPLETE exact stability analysis of uniform cantilevered pipes conveying fluid or gas is given
which does not require the assumption of sufficiently small velocity-dependent forces. The
critical loads, the critical frequencies and the corresponding mode shapes are determined and the
results are verified experimentally. The investigation includes cantilevered pipes resting on
several types of elastic foundations. The influence of the various system parameters, including
internal as well as external damping forces, is established.

Podano pelng $cisla analizg statecznosci rur wysiegnikowych o stalym przekroju przenoszacych
ciecz lub gaz, bez wprowadzania zalozenia o wystarczajaco malych sitach zaleinych od pred-
kosci. Okreélono obciazenia krytyczne, krytyczne czestosci i odpowiadajace im postacie drgan,
a wyniki sprawdzono doswiadczalnie. W badaniach rozwazano rury wysi¢gnikowe lezace na
kilku typach podioza sprezystego. Wykazano wplyw réznych parametréw ukladu z wewngtrz-
nymi i zewnetrznymi sitami thumiania wiacznie.

IIpiBenen nonHLIM TOYHLIH aHANMS YCTOWYHBOCTH PaBHOMEDHBIX CTPEJOYHBIX TPYO mepeHo-
CALIMX YKHIIKOCTE H/IM Ia3 Gea BBO/IA MPEINOJIOMEHNAA O JOCTATOYHO MAIBIX CHJIAX 3aBHCHIIX
OT CKOPOCTH. OnpefeNieHb! KPUTHIECKHE HAIPYSKI, KPUTHUECKHE YACTOTHI ¥ OTBEYAIONTHE MM
THIBI KosieGaHMii, a pesyJbTaThl IPOBEPEHB] SKCTIEPHMEHTANEHO. B Hec/eioBaHHAX paccmoTpe-
HbI CTPENOYHEIE rpyﬁu » HAXOMAIIAECA HA HECKOJBKHX THIIAX ympyroro ocoBaumd. IToxasano
BJIHAHNE PAasHLIX NAapaMeTPOB CHCTEMEI C BHYTPCHHMMH M BHEIUHHMH CWIAMHM 3aTYXaHHS
BRTIIOYHTELHO.

List of notafions

b; damping coefficient of the Winkler foundation,
b, damping coefficient of the rotatory foundation,
b; viscous modulus,
C; constants of integration,
¢; modulus of the Winkler foundation,
c; modulus of the rotatory foundation,
E Young's modulus,
I moment of inertia,
i imaginary unit,
! length of the pipe,
P conservative end load,
P, critical value of P,
P, experimental value of P,
r real part of the eigenvalue £2,
s imaginary part of-the eigenvalue £2,
t time,
v constant velocity of the fluid,
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L] ==

w transverse deflection of the pipe,

x coordinate along the axis of the pipe,

y function of the mode shape,

o flexural rigidity,
B: dimensionless damping coefficient of the Winkler foundation,
B dimensionless damping coefficient of the rotatory foundation,
ps dimensionless viscous modulus,
%, dimensionless modulus of the Winkler foundation,

%, dimensionless modulus of the rotatory foundation,

A; roots of the characteristic equation,

p ratio of critical loads,

& dimensionless coordinate along the axis of the pipe,

@ mass of the fluid and pipe per unit length,

gr mass of the fluid per unit length,
er mass of the pipe per unit length,

¢ dimensionless load parameter,
#. critical value of ¢,
é.p experimental value of ¢,
o frequency of the vibration,
2 dimensionless frequency of the vibration.

1. Introduction

THE DYNAMIC behaviour of pipes containing flowing fluid or gas is of interest for numerous
practical applications and thus has been the subject of investigations for many years (see,
for example [1-3]). In particular, ROTH [4] and NEMAT-NASSER, PRASAD and HERRMANN
[5] determined at about the same time flutter loads of fluid conveying cantilevered pipes,
using approximate methods.

In the present paper, a complete exact analysis of the stability of uniform cantilevered
pipes conveying fluid or gas, respectively, is given. In contrast to the method in [5], the
analysis does not require the assumption of sufficiently small velocity-dependent forces.
In addition to the critical loads, the critical frequencies as well as the corresponding mode
shapes are determined. The dynamic behaviour of the pipes for load parameters below or
above the critical values can also be described. Moreover, the theoretical results are verified
by experiments.

The investigation includes cantilevered pipes resting on an elastic foundation. Three
distinct types of foundation are considered, namely, a Winkler-type foundation, a rotatory
foundation which causes restoring moments proportional to the slope of the pipe, and a
generalized foundation. External damping of the foundation as well as internal damping
of the pipe are also taken into account.

2. Eigenvalue problem and stability analysis

We consider a slender cantilevered pipe of the length /, constant moment of inertia /
and constant mass density g,, Fig. 1. The material of the pipe is supposed to be visco-
elastic of the Kelvin-Voigt type. Let E be Young’s modulus, b, the viscous modulus and
a = EI the flexural rigidity of the undamped pipe. The pipe contains an incompressible
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fluid or an ideal gas, respectively, which is flowing at a constant velocity ». The mass per
unit length of the flowing fluid or gas is denoted by gp. The flow is assumed to be uniaxial,
frictionless and isothermal. The pipe is resting either on an elastic Winkler-type foundation
with the constant modulus ¢, and damping coefficient &, , on a rotatory foundation with the
constant modulus ¢, and damping coefficient b,, or on a generalized foundation, where the
restoring forces and ‘the restoting moments are acting simultaneously. It can' be shown

o
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[6] that this generalized foundation corresponds to a Pasternak-type foundation if the
modulus ¢, is taken to be equal to the shear modulus G of the foundation material.
The equation of motion for small transverse vibrations is found to be

@D bt ais‘:z 2 3:: =By 3?;, +(epv=—cz)%;-‘;’-
+29F°% +(99+9r)?7‘:+bl -%; +ew=0,
and the boundary conditions are
w(0, 1) = —a-%i) =0,

It should be noted that the boundary conditions contain the foundation coefficient ¢,
as well as the damping coefficients b, and b, [7] which is an intuitively unexpected feature.
Upon stipulation of

(23) w(x, r)=e‘“y(x), l='/ —l,
one obtains the non-self-adjoint eigenvalue problem
Q4 (L+i2B))" +(b~x2—i9p)y" + 2R $V 0eloy + (%, + 1928, — 2%y = 0,

y(©0) = y'(0) = y"(1) =0,

2.5
&3 (1+198)y"" (1) (3 +19B2) ' (1) = 0,
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where
¢ = osv*la, Q=Y owl*lya,
(2.6 # = cltfa, %= e l?a,
' p.=b, lz.'fl/;é, B2 = bzfl/a_: Bs= b;ff(l':l/ﬂ_é)s
@ = gp+0Or,

and the primes indicate derivatives with respect to the dimensionless coordinate & = x/I.
The quantity gg/p satisfies the condition

2.7 0 <pple <1.
A solution of the differential equation (2.4) is given by

4

@8) y® = D e,
j=1

where 4;,j = 1,2, 3, 4 are the four roots of the characteristic equation
29)  (14iQ5)A*— (@ — %, —iQB) 2 =20V $V 0rlor+ (1 +iQB, —2%) = 0
and the C; are constants of integration. Unfortunately, the characteristic equation (2.9)
is not a biquadratic equation as in [7] or in the case of Beck’s columa [8). Accordingly,
the analysis is far more complicated than it was there. Upon introduction of Eq. (2.8)

and the appropriate derivatives into the boundary conditions (2.5), one obtains-the system

of linear homogeneous equations for the constants C;
4

D¢ =0

e I
2
O
[
iy

(2.10) )
D iec =0,

4
D 1= iR (1 +uiBs) —iny Ay + QB )eM Cy = 0.
j=1
A necessary and sufficient condition for the existence of a non-trivial solution is- that the
determinant of the coefficients vanishes which leads, after some calculation, to a complicat-
ed eigenvalue equation of the form

(2.11) D(%;, %5, 2, B3, Q) = 0.

The eigenvalue equation (2.11) yields in general complex eigenvalues
(2.12) Q = r+is.

Equations (2.3), (2.6) and

(2.13) et = oVal?Y i g~Vall?y st

show that the dynamic behaviour of the pipe is governed by the imaginary parts of the
eigenvalues 2. For s > 0 one has a damped vibration, s = 0 corresponds to a steady state
motion, and s < 0 leads to an exponentially growing unbounded solution of the differential
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equation (2.1). Thus the critical value of the dimensionless load parameter ¢ is given by the
condition s = 0.

It is quite cumbersome to determine numerically the complex eigenvalues 2 which
depend, for given values of the other quantities, on the parameter ¢ . However, the complex
analysis has the advantage thatit supplies, in addition to the critical value ¢, information
about the dynamic behaviour of the pipe for load parameters ¢ below or above the criti-
cal value.

3. Examples
3.1. Undamped pipe without foundation
As a first example, we consider an undamped pipe without foundation, i.e. %; = 2,

= f; = B, = B3 = 0. For Beck’s column [8], the eigenvalue curve “load vs. frequency”
can be illustrated in the real frequency-load-plane. As a consequence of the complex eigen-

FIG. 2. Spatial eigenvalue curves.

values 2 for the fluid or gas conveying pipe, we need a spatial representation as shown
in Figs. 2a and 2b, where the eigenvalue curves ¢ = ¢(Q2) for the first four eigenvalues
2,, ..., 2, are given. The ratio of the mass densities appearing in Eq. (2.7) is taken as

erfo = 1072,
A slight variation of this value does not change the eigenvalue curves qualitatively, and thus
does not alter the conclusions drawn below.

Figures 2a and 2b give a very clear description of the character of the eigenvalue curves.
One can easily see that for small values of ¢ all four curves are in the half-space s > 0
which corresponds to a damped vibration of the pipe and hence to stability. For increasing
velocity of the flowing medium, that is for increasing values of ¢, the imaginary parts
of the first and the third curve increase, too, whereas the second and the fourth curve
intersect the r, ¢-plane and continue into the unstable half-space s < 0. Hence the stability
is not lost, as one might expect, on the first branch of the eigenvalue curves (which cor-
responds to the first eigenvalue), but it is lost on the second branch. The critical value of the
load parameter and the corresponding value of the frequency are
(3.1) ¢c =176, = 146,
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according to Fig, 2a. It is noted that for pe/p = 10~2 the curves are similar and
3.2) ¢c = 17.96.

This value will be needed later.
In the following, two projections of the spatial eigenvalue curves into the r, ¢-plane
and into the s, ¢-plane will be used for simplicity. The projections of the first two branches

a ® jo b
f/ | /\

F1a. 3. Projections of the eigenvalue curves.

are given in Figs. 3a and 3b. They show very clearly the critical load on the second branch,
and the imaginary parts s allow to draw immediate conclusions on the dynamic behaviour
of the pipe for arbitrary values of the load ¢.

Since the critical load is found to be on the second branch, the unstable motion of the
pipe for ¢ > ¢¢ has to correspond to the second mode shape of the pipe instead of the

a b

10 -

s(&) ¥1E) Fi1G. 4. Mode shapes.

first one. The first two mode shapes were determined numerically and are displayed in
Figs. 4a and 4b for ¢ = 0 and ¢ = ¢, respectively. One can see that the nodal point
of the second mode shape is shifted from & = 0.78 for ¢ = 0 to & = 0.63 for ¢ = ¢c.
The unstable vibration which is initiated at ¢ = ¢¢ has to occur in the latter form. This is
verified by the experiments described below.
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3.2. Experimental investigation

It is one of the objectives of this study to design an experimental setup as simiple as
possible in order to verify the theoretical results obtained above. First of all, it appears
to be much simpler to use air instead of water as the flowing medium. This choice, however,
leads to the requirement of a relatively small flexural rigidity of the pipe in order to have
instability at an obtainable velocity of the flow. After several preliminary tests with various
pipes, it turned out that plastic drinking straws are very well suited for the experiments.

The pipes used in the tests are between 10 cm and 26 cm long, the internal diameter
is approximately 0.31 cm and the external diameter 0.33 cm. In order to avoid the difficul-
ties which are involved in a sufficiently accurate determination of the flexural rigidity of the
pipe, an indirect way to obtain the critical load is used. This method compares the critical
load of the present problem with the critical load of a well-known conservative problem
and it has the advantage that the unknown flexural rigidity is eliminated.

In a first experiment, the pipe is pinned at both ends and loaded only with a conser-
vative end load P. According to Euler, the (theoretical) critical value of the load is

(3.3) Pc = n?al.

The pipe is connected to weighing scales which allow to measure the reaction force and hence
the critical load as well to an accuracy of 0.2- 10~% N. The critical load thus obtained
experimentally is denoted by P.,,.

In a second experiment, the pipe is clamped at the base and free at the other end.
The base is again fixed to weighing scales and the pipe is connected to a central supply
of pressurized air with a maximum available pressure of 60 N/cm?2. The pressure of the air
(and thus the velocity of the flow) is gradually increased until the stability boundary is
reached. The scales then give a load corresponding to the critical value ¢.,,.

Let
3.4 Hc = ¢C/(Pclzf'a)s HMexp = ¢un.‘1(Pe:nI=/a)
be the ratios of the theoretical or experimental values, respectively, of the critical loads
of the non-conservative problem (pipe) and the conservative problem (Euler). The ratio

of the mass densities in the experiments is gp/p ~ 10~2. Thus from Egs. (3.2) and (3.3)
we obtain the following theoretical value:

(3.5) pe = 1.82.

Performing the experiments described above with various pipes one then has
(3.6) laxp = 2.01.

By comparison, one obtains

@7 exo = Pcpterslic = 19.8.

This value is about 10% larger than the theoretical value, Eq. (3.2). However, considering
on one hand the simplicity of the experimental setup (which does not require any sophisti-
cated equipment at all), and on the other hand the simplicity of the theory (where important
effects such as damping are neglected), this is quite a good agreement. It might be men-
tioned that the critical velocity of the flow is of the order of 150 m/sec.
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With the aid of a stroboscope one can measure the frequency of the vibration at the
stability boundary. In addition, photographs of the unstable oscillation confirm the the-
oretical prediction that instability has to occur in the second mode. The mode shape

‘4

Fic. 5. Comparison of experimental and theoretical mode shapes.

taken from a photograph and the theoretical mode shape according to Fig. 4b are compared
in Figs. 5a and 5b and they show excellent agreement.

It was found in Sect. 3.1 that for increasing velocity of the flowing medium the imaginary
part s of the first branch of the eigenvalue curve increases, see Fig. 3a. Thus the damping
of the first mode increases with increasing velocity. This fact can easily be observed experi-
mentally if free vibrations of the loaded pipe in the first mode are considered.

3.3. Pipe on a Winkler foundation

We consider now a pipe resting on a Winkler foundation, i.e. #, = 8, = 0. The results
of the numerical analysis for pr/o0 = 10~2 are displayed for several values of the founda-
tion modulus #, , the damping coefficient 8, of the foundation and the coefficient 8, of the
internal damping in Figs. 6a and 6b. In Fig. 6a, only those curves which intersect the
¢-axis are given.

In comparison with Figs. 3a and 3b one can see that the foundation changes the eigen-
value curves considerably. One can easily show from Eq. (2.9) that for §3 = 0and ¢ = 0
the eigenvalues 2 are given by

% 2
(3.8) 9=9,,]/1+A§‘3——-%+%:‘,51,
where 2, are the eigenfrequencies of a free, unloaded cantilever.

Thus, if no damping is present (8, = 0), the eigenvalues £ have no imaginary parts
for ¢ = 0 and the points of the eigenvalue curve are only shifted along the r-axis with an
increasing foundation modulus. For example, the initial point of the first branch is shifted
from Q = Q, = 3.516 for x, = 0, see Fig. 3b, to 2 = 4.73 for x, = 10 or to 2 = 7.90
for %, = 50, see Fig. 6b. In the undamped case, the numerical analysis does not give imag-
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inary parts of £2 for ¢ # O either, and the critical load is given by the point with a hori-
zontal tangent of the curve ¢ = ¢(r). Figure 6b indicates that

(39)  ¢c=1936 for %, =10 and ¢c=1932 for x, = 50.

Hence, by comparison with Eq. (3.1), it is noticed that the Winkler foundation has a sta-
bilizing effect on the pipe. This contrasts with the non-existing effect of a Wirkler founda-
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F1G. 6. Bigenvalue curves for a pipe on a Winkler foundation.

tion on the stability of Beck’s column [9]. An increasing foundation modulus may surpris-
ingly decrease the stability again, see Eq. (3.9), however, this effect does not appear to
be very strong.

If one includes damping of the-foundation, the eigenvalues {2 have the imaginary part

s= % B, for $ =0 according to Eq. (3.8). Figure 6a shows that this vatue remains practi-

cally unchanged up to loads ¢ just below the critical vatue. The influence of the damping
on the flutter load (slightly destabilizing) is praptically not noticeable and ¢ is again
given by Eq. (3.9). The damping, however, causes a slight increase of the corresponding
critical value r¢ and the critical point (r¢, @) is thusshifted to the.right of the maximum
of the curve ¢ = ¢(r). This implies that the stability is lost again on the second branch
of the eigenvalue curves.

Finally, we also include internal damping of the pipe. Figure 6a shows that for 5 # 0
the critical load is considerably reduced. For example, one abtains ¢¢ = 10.69 for », = 10
and 85 = 10~2 as compared to ¢c = 19.36.for »;, = 10 and B; = 0, It is remarkable that

6 Arch. Mech. Stos. nr &/78
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the stability is lost now on the first branch of the eigenvalue curves. An increasing founda-
tion modulus again has a destabilizing influence which, however, is more pronounced
than in the undamped case. Damping of the foundation now has a noticeable stabilizing
effect in contrast to the result found above. This is easily explained by the fact that viscous
damping of the foundation causes an increase of the critical frequency which, on the first
branch of the eigenvalue curves, results in an increase of the critical load.

3.4. Pipe on a rotatory foundation
Consider now a pipe resting on a rotatory foundation. Then %, = #, = 0. The results

of the numerical analysis are shown for gp/o = 10~ in Figs. 7a and 7b. The critical load
in the completely undamped case is again given by the maximum of the curve ¢ = ¢(r).

b Bxp,001807,800

a ByaBy=10”i e, e

>

Fi1G. 7. Eigenvalue curves for a pipe on a rotatory foundation.

One can see that the foundation has a strong stabilizing effect which increases with the
increasing foundation modulus x,. This is in contrast fo the result obtained for a Winkler
foundation. Also in contrast to the results feund above, the damping of the foundation
now has a considerable destabilizing influence, whereas the inclusion of internal damping
of the pipe increases the stability. In addition, viscous damping of the rotatory foundation
decreases the critical frequency and thus the stability of the pipe even in the presence of
internal damping.

A further remark should be made. Consider the two curves for x, = 10, f; = 10~3,
and B, = 0 or B, = 103, respectively, in Fig. 7a. It is observed that these two curves
intersect at the critical value @¢ of the system with the parameters », = 10, g, = 10~
and §; =0 (which can be interpreted as the point of intersection of the two curves for
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%, = 10, f; = 0,and f, = 0 or f, = 103, respectively). The same result is also obtained
for other values of the system parameters as indicated by the dashed lines in Fig. 7a.
A similar feature has already been noticed in the case of Beck’s column .on a rotatory
foundation [7]. No physical significance could be associated with this phenomenon.

3.5. Pipe on a generalized foundation

Finally, we study the stability of a pipe resting on a generalized foundation where the
restoring forces and the restoring moments are acting simultaneously. The parameters
used are pg/o = 1073, x; = 50 and %, = 5. Figures 8a and 8b show that the stability
behaviour is essentially like that of a pipe on a rotatory foundation.

In the completely undamped case, the critical load is given as before by the maximum
of the curve ¢ = ¢(r). One obtains ¢c = 27.81 as compared to ¢c = 27.89 for the pipe

a ° o b

e Pufya00 8 =81 Py
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0 2 r

Fi16. 8. Eigenvalue curves for a pipe on a generalized foundation

on a rotatory foundation with the same value of the modulus x»,. Hence the restoring
forces, i.e. the Winkler part of the foundation, unexpectedly reduce the stability of the pipe.
Small damping of the foundation has a strong destabilizing effect, whereas internal damping
of the pipe increases the stability again. However, the critical value of the load is still less
than the one for the completely undamped system. As for the pipe on a rotatory foundation,
all the crictical points are found on the first branch of the eigenvalue curves.
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