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The asymptotic motion of the concentrated defect 

A. TRZijSOWSKI (WARSZAWA) 

THE ANALYSIS of asymptotic solutions of equations of a concentrated defect is presented. The 
equation of zero order approximation of the position of the defect and form of the adiabatic 
invariant of its motion are given. 

Przedstawiono asymptotyczne rozwi'lZafiie r6wnait skoncentrowanego defektu. Podano r6w
nania zerowej aproksymacji dla polozenia defektu i postac adiabatycznego niezmiennika jego 
ruchu. 

llpe~CTaaneHo aCHMIITornt~eCJ<oe pemeHHe ypaaHeHHH: cocpe~OTOlleHHoro ~e<t>eJ<Ta. llpHBe
~eHbi ypaBHemm lfYJieaoii annpoi<CKMaUHH JJ.im rronomemm ~e<l>ei<Ta H <t>opMa a~a6am
qeCJ<oro mmapHaHTa ero ~H>I<eHIDI. 

Introduction 

THE AIM of this paper is to investigate the asymptotics of solutions of equations of the 
concentrated defect in an unbounded linear elastic medium. The defect considered is of the 
type of the variable in the time jump of the normal component of the displacement on the 
surface of the sphere. The concentration of the defect indicates that the surface of the 
defect has a radius negligible in relation to the characteristic linear parameters of th~ exter
nal elastic field. The equation of motion of the concentrated defect was obtained in the 
paper [1] and has the form 

(I) ~~-+Q(t, ~, ~, ~) = v"BF(t, ~, ~, v-e ·f; Jl'e), 
where ~ = ~(t) e R3

, t eR- the position of the centre of the surface of the defect (in 
which the defect is "concentrated"). e = Ct 2 ~ t~- the small parameter designated by 
time to needed by the sound signal to go round the sphere bounded by the surface of the 
defect. Q - the vector-(unction, the fonfi of which is determined by the external elastic 
field. F - the vector-function independent of the external field and disappearing if the 
defect is constant in time. ~, ~, · ~, ·~·- the derivatives with respect to time t. 

This is a system of three ordinary differential equations ·of the fourth order with the 
unknown vector-function ~(t). Introducing the auxiliary variables 

x = ~' y = y~ ·~: v = ~' p. = (t, ~' v), T = tf.re, 

X' y' V E R3
' fL E R7

' i E R' 
we can write Eq. (1) in the form 

~: = ~~, ~~ = - ~~ + yeF(x, y, r-t; ye), 
dp. .. r 
(h = y e«p(x, fL), 

(2) 
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where 

n( 1 2 1 Q2 dx 
n = x, y, p.) = T y + 2a(t) , y = lh' y = IIYII, 

Q = Q(x, -1') = IIQ(x, p.)ll, Q(x, p} = a(t)[x-f(p.)]eR3
, 

f(l£) = M(r)-1 (P(p.)-M(t)v] e R3, 

F(x, y, p.; ye)"= - y£[F1(t)v+F2 (t)x]-F3 (t)yeR3, . 

cp(x, p.) = (1, T, x)eR7 ; 

A. ~WSICI 

P(p.) is the force with which the external field reacts on the defect concentrated at the point 
~; F1(t), M(t), a(t) are functions of time independent of the external field but dependent 
on the defect. 

The zero-approximation of Eq. (2) has the Hamiltonian form 

dx an dy an 
(3) d-r = ay ' d-r . = - ax ' 
where the function n is .dependent on the parameter 

p. = const. 

In order to find out when Eq. (3) can be interpreted as describing the motion of a material 
point, let us consider the quantity M(t): 

M(t) = cxU(t)1 +m(t), . 

where a < 0- the constant and (U(t), m(t))- a pair of functions defining the defect: 
U(t)- magnitude of the· defect, m(t)- quantity measuring mass. 

It · has been assumed in the paper that 

m(t) = m = const. 

As sgn n = sgn M, then Eq. (3) is the equation of the motion of the material point 
(pOssessing mass equal 1) if 
(*) 1\ M(t) > 0. 

I 

The condition (*) limits the magnitude of th~ defect: 

(*) iff (\ U(t) < y -m/ex, m > 0. 
I 

We shall consider further Eqs. (1 )-(3) satisfying the condition (*). Equation (3) will be 
considered together with ttie initial condition of the form 

x(O) = Clo #: f(p.), 

y(O) = x(O) = ~o . (3') 

.Analysis of the properties of the solation of FAf. (3) 

The solution of the initial problem (3) and (3') has the form 

(4) 
x(-r) = 2_Jil+P1Q[cosya(-r--r0)M+cosya(-r+-r0)N]+f(p.), a . 

y(T) = - Ja Jll+P2Q[sinVti(.--.-.)M+sin0i(-r+ .-o)N], 
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where for p. = (t, ~' v) = const.: 

a = a(t) = yM(t)U(t)-2 > 0, ye R, 

Q = Q(«o, 1£) = IIQ(«o, P.)ll, 

P = P(«o, ~o, p.) = Q(«o, p.)-1 ya(t)Po, Po = ll~oll, 

1 
M= M(«o, ~o' p.) = 2 [m(«o, p.)+n(l~o)]", 

1 
N = N(«o, ~o, 1£) = 2 [m(«o, p.)-n(,o)]", 

m(«o, p.) = Q(«o, p.)-1Q(«o, p.), n@o) = Po 1 ~o, 

1 ./-1 
To = ya arc cos Jl 1 +P2 , 

This solution describes a periodic motion wit_h the period 

2n 
T(p.) = .. ! . 

Jl a(t) 

and deJ)ends on the multi-dimensional parameter 

Yo = («o, ~o, p.)eR13
• 

771 

Equation (3) has locally the full system of the first integrals, i.e. that there is a neighbour
hood G so that Y 0 e G and the system of the function H: 

H = (H1 , ••• , H 5):' G-+ R5, H1 e C2 (G) 

which are first integrals Eq. (3) on G. 
Let us designate h = H(x, y, p.), r = (11, p.) and let us introduce the mappings 

by the rules 

p: G-+ R12, n: G-+ R6 

p(x, y, p.) = (h, I') for h = H{x, y, p.), 

n(x,y,p.)= (x,y). 

Let us denote by G, = p(G) and· G" = n(G) the images of the set G using the functions p 
and n. On the basis of the paper [2] we can prove the existence of the neighbourhood G 
possesing the additional propeqies as follows: 

A. Each trajectory of Eq. (3) possesses a neighbourhood G. composed of disjoint 
trajectories of this equation, that is: 

G" = U M, M,.nM,2 = q, for r1 =F r2, 
reG, 

where M, is compact and consected one-dimensional manifold so that p-1(r) = M, X {p.} 
for r = (h, p.). 
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B. There is a smooth function 

A = (m, ~): G11 -+ G" 

so that if A(r1), A(r2) e Mr then r1 = r2 = r. 
This is due to the properties A and B that each solution X(r) = (x(-r), y(-r)) of 

Eq. (3) contained in G" has the form 

(5) 

where the functions x0 ahd y0 are determined by the solution ( 4) of Eq. (3) with the initial 
condition of the form 

(m0 , ~0) = (m(h, p.), ~(b, p.)) = A(h, p.). 

The function X0 depends on the parameters band fL in a one-to-one and smooth manner. 

Equations of the asymptotic · quantities 

Let Mr c Gn, r = (h, p.) e G11 be the trajectory of Eq. (3) and X0 - the parametri
zation (5) of Mr. 

Let cp: G -+ R be a continuous function. Let us denote 

T(~&) 

~(r) = T:jL) f cp{X0 (-r; b, p.), p.)d-r. 
0 

The function 

ip: r e G11 -+ fj}(r) e R 

will be called the averaged function. The function (j} is smooth if the function cp is smooth 
([2]). 

Let us denote X= (x, y) e R6
, Y = {X, p.) e R13 and let us consider the equation of 

the motion of the defect in the form (2) with the initial condition 

(2') 

Let 

Y(O) = Yo = (Xo, P.o), 

Xo = (~o,.(~o), fLo = (0, ;o, Vo). 

Y{-r; y~ = (X{-r; ye), p.(-r; yE)), 

X ( 'f; yE) = (X ( 'f j ye) ' y ( 'f; V E)) 

be the solution of the -initial problem (2) and · (2') determined on the interval I = 
= (0, bfy~) so that 
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In accordance with the definition of the parameter h we have the identity h = H(X0{T; h, 

f1.), I')· Let us introduce the mapping h 

h:Ix(O, vea>-+ R 5 

making use of the rule 

and let us designate 

Since 

H(Y) = H(X, I')= H(x, y, f1-)ER5
, cp(Y) = cp(X, p.) = · cp{x, p.)eR7

, 

F{Y; Ye)= F(X, p.;ye} = F(x, y, tJ.; y'e)eR3 , . 

R(Y; .re) = (0, F(Y; ye), cp{Y)) eR13
, R0{Y) = R(Y; 0). 

db 
(ii (T; Ye)= ye(VH · R)(Y(T; ye)), 

~~ (T; Ye) = yecp(Y(T; v't)), 

the equations of the zero-approximation for h and p. have the form of the "averaged 
equations"([2]): 

dii ,;-
([; = r e(VH · Ro)(f), 

{6) 

where- = (ii, ji), rE (0, bfY Eo), V = (a~, ' ... ' a: .. ). We accept 

h(O) = h0 = h(O) = H(Xo, f'o), 
(6') 

ji(O) = P.o = fl-(0) = (0, ;o, V_o) 

as the initial condition for the solution of Eq. (6). It may easily be shown that 

cp(r) = {1, v, f(l')) 

for r = (b, f'), p. = (t, ~' v). Then the second equation in the set (6) is independent of 
the choice of the system of the first integrals H . and it is possible to separate it in the 
form of the equation 

(7) 

d2~ - .!. 

dt 2 = f(t, ;, ;), t E (0, b), 

~(0) = ;o, ~(0) = Vo. 
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Let ~(t) = i"(t; ~eh To) ~ the solution of the initial problem (7) and let ~(t; {e)= ~(t; 
X0 , p.0 , yE) be the solution of the equation of the concentrated defect in the form (1) 
satysfying the initial conditions 

~(0; y'E) = ~o, ~(0; Jt'E} = Vo, 
•• ( I-::\ .. ;-. ''( .. I-::\ ~ 0; } e J = m0 , y e I; 0; y e J = ~0 • 

(l') 

With these notations we have p.(t; JIE) .= (t, ~(t; y'E), ~(t; YE)), ji(t) = (t, ~(t), ~(t)) 
and p.(O; JIE) = fi(O). Using the conclusions of the paper [2] (and on the basis of the for
mula ·(4)), we can formulate the following theorem·about the asymptotics of Eq. (1): 

THEoREM 

(*) limllp.(t; JIE}-"ji(t)ll = 0 
e-+0 

tends uniformly towards t e (0, b) and {X0 , p.0) E G. 
Additionally we have: 
a. The function p.(t; VE} differs from the function jL(t) by the term of the order of the 

small parameter ye, i.e.: 

V 1\ llp.(t;JI'E}-jj:(t)ll = o(y'e). 
ao>00<e<•o 

• b. The function ~(t; ye) is the function oscillating around the points x(t) = l(t, i"(t), 
~(t) ), but on the whole 

Iimll{(t; y'E)- ~(t)ll #= 0 . 
..... o 

c. The function 'i. ( t; Ve) is a function oscillating around the point y = 0, but on the · 
whole, 

limli~'(t; Jle)IJ = oo. 
a-+0 

We see that the solution ~(t) of Eq. (7) and the function ~(t) are the zero-approximation 

of the ,functions ~(t; Ye) and ~(t; ye), but the functions ~(t) and ~·(t)- are not the same 
approxinJation of the functions ~(t; y'E) and ·~·(t; JIE). 

The first equation in (6) cannot be solved on the whole without knowledge of the 
forms of all the first integrals of Eq. (3). If, however, we limit ourselves to the case in 
which 

~o = ·~·(o; JIE) == o, 

then, taking H 1 = H, h1 = hand li = E, we get the equation of the zero-approximation 
of the energy H: 

(8) 
dE - ~ 
dt = ).(t)E+O(t)!lf(t, ~(t), ~(t)ll 2, 

E(O) = H(fl.o, 0, p.0), 

where 

. 1 • 
. .4.(t) = -4( UU-1)(t)+T LPa(t)+ (MM-1)(t), 

O(t) = - (MM-1a)(t), L1 1 - a coJistant ([1]). 
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About the functions E(t) and h(t; ye), we can make an analogous assertion as in the case 
of the functions ji(t) and p.(t; ye). (Theorem: (*) and a). If the defect is constant (i.e. 
m(t) = = const., U(t) = const.) then Eq. (8) is reduced to the formula 

dE 
dt=O. 

This formula means that for a constant defect the function h(t; Ye) = H(~(t; y~, 
y;·~·(t; Ye), p.(t; ye)) is an adiabatic invariant of the motion ~(t; ye) of the defect: 

h(t; yE)= H(a.o, 0, fLo}+O(~. 
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