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Plane shear waves in · viscoelastic ·.fluids as motioos 
with proportiooal stretch history 

S. ZAHORSKI (WARSZAWA) 

IT IS SHOWN that so-called circular and elliptic shcariDg flows of incompressible simple fluids 
can be treated as a subd• of motioDs with proportional stretch history [7]. In the case of 
circular sheariDp some · of Carroll's results for c:ircularly polarized p1aDe waves [6] are redilcov
erecl in a different way. In tbc aasc of elliptic sheariDp some new solutioos for low fi'equeDcy 
elliptically or liDearly polarized plue waves are also ctiscussed. 

IloJca3aso, 11'10 T. BU. KP)TOBWC H 3JJJD1111'1111ea<IIC '1'C1IaQIII ~. BeOI<IDI8eMiaiX ~ 
H<lf.QI<OC'ICtl MO>ICIIO 'rpU(TO&an. IW< no.QKJJaCC ~JDKelllil ·c rlpouopQKOIIaJIWioA Hci'opllel 
,qecl»opMaq~Q~ [7]. B c:nrae JCpyrOaoro ~ara DOJI)"Wihl ,qpynot o6puoM BeKO!OpWe pesym.
ft'l'W Kappoma ~ KPJI"'O'' DOJIJIPII30BaiiiiWX UJIOCKIIX BOJIH [ 6]. B c:nyqlle 3JIJIIIII'I'II'ecKIOl'O 
c,qaara· ~ lleiCOropwe :BDBWe pemtRBR AJU1 3JIJotmi'H'kQQI IIJIII JIBBeiRo DOJJSPB-
30BUIIIWX IIJJOCKIIX somr c IIIISKIIMII 'laC'I'O'I'aMII. 

1. Introdactioa 

IN CONTLU'f . to various . proble~s con~~ •. with ~ite awp,litude elastic .... waves 
solved and discussed in many previous · papers, similar wave problems for viscoelas~c 
or dissipative media attracted much less •ttention., Some papers were devoted to a general 
theory of waves as propagating surfaces of discontinuity [1], while others presented certain 
types of solutions for oscillatirig viscoelastic and eiastic bOdies or ftuids of various complex
ity [2, 3, 4, 5, 6]. 

In one of the recent papers CARR.OLL [6] derived conditions under which a 'Class of motion 
called plane circular shearings led to ~e case ()f finite amplitude plane progressive or stand
ing waves in ftuids and solids. 

In this work we try to treat plane circular shearings and more general elliptic shearing& 
as motions with proportional stretch history diScussed :in out paper [7). To this end the 
motions considered should be expressed in: the form of complex variable 'fUnctions. In the 
case of circular shearings some of Carroll's ~results f~r cilYJllarly pplarized plane waves 
are rediscQvered in a dijferent way, wltile in the case of ·ellipic shearings certain new resUlts 
are established. It is shown, among others,' that for sufficiently low frequencies enabling 
essential simplifications in the constitutive equations, the form ot governing equations for 
elliptically polarized plane shear waves is )identical to that for circularly pOlarized waves. 
The only differences •ppear in the corresponding relations for normal ·streS~ . components. 
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792 S. ZAilollSKI 

We want to emphasize, moreover, that the class of flows considered may be treated as 
a particular case of more general unsteady homothermal motions discussed by CAR.R.OLL 

[8]. These latter motions are, in general, equivalent to a simple superposition of two motions 
with proportional stretch history [7). 

2. Plaae clrealar shearings of simple fluids 

Let us consider a class of motions called the plane circular shearings, the equations 
of which are the following (cf. [6]); 

(2.1) 

x =X +cp(Z)coswT+'J'(Z}sinro-r, 

y = Y +cp(Z)sinro-r-'J'(Z}cosro-r·, 

z = Z, 

where x; y ,.z denote the. Cartesian cpordinates .9f a particle at arbitrary times -r, X, Y, Z
the Cartesiaft coordinates · of the same ·particle in a reference configuration at time -r R, 

w.~ den()tes .const:ant angular_ frequency, and cp, 1P are certain functions of Z only. The 
corresponditig. velocity as weU·as acceleration fields can easily be calculated from Eqs. 
(2.1). 

Intr.oducing the auXiliacy notations; 

(2.2) cp' = ~cos(J, tp' = ~sin8, 

where primes denote derivatives . witb respect to z, we . obtain the relations 

(2.3) (cp'2 +tp'2)i ~ ~, 8 = arctg1p' /cp', 

where His the amount of shear. In the class of motions considered the planes z = const 

are material surfaces, and the paths of particles correspond to circles of radii ( cp2 + 1p2)i. 
The deformation gradient at time -r with respect to the reference configui'atien can be 

written either as· 

(2.4) 
[

1 0 xcos(co-r-6)] 
[F(-r)] == 0 1 xsin(co-r- 6) , 

0 0 1 
or alternatively in the complex form 

[ 

0 0 I ] 
(2.5) F(-r) = Re{exp[Me'(cOr-'>1}, (M] = . ~ 0 -i ~, 

0 0 0 -
where i = -v:t1 and only~ f~~ pan ofF(-r):is meaningfuL 

On writi,Qg ,Eq .. (.2.~)1 ill the abbreviated fow 

· (2.6) F(-r) ~ ;Re{eiP(Mk(-r)-,}, k(r) ~ expi(w>T...;.fJ), 

it can be proved that. Plane circtilar sheariitgs belong to the class of motions with proportion
·. al. stretch history (MPSH) di8cussed elsewhere [7](1 }. 

. (1) In [7] llfsH were d.efiQed using the defomw.tion $(8dient with respect to t~ reference co~u-
ration at tipre 0, i.e. F0('r)~ . The function k('r) was such that k(O) = 0. These differences are insignificant 
since u8irig tlie rd'erence corifiguration at time T11 , we assume k(ra) = 0. 
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PLANB · S.HEAJl WAVES IN VISCOBLASTIC FLUIDS 793 

· . Introducing the relative .deformation gradient. with respe~t to . the_ reference. coqfigura
tion chosen at present time t(-r ~ t): 

(2.7) F,('r) = F(t')F-1(t) = exp[M(k('r)-k(t))], f.,(t) = 1, 

and the corresponding history (cf. e.g. [9]): 

(2.8) F(s) = F,(t-s)= expfg(s)M], g(s) = k(t-s)-k(t), 

where s e [0, oo), we .arrive at the history of the right relative Cauchy-Green deformation 
tensor in the form 

(2.9) C(s) = Fr(s)F(s) = exp(g(s)Mr)eKtJ>(g(s)M) = l+g(s.)(MT +.M). 

In the above relation 

(2.10) g(s) = eft(e-ims_l), C = wt-8 

and, moreover, we have used 

(2.11) 

Bearing in .mind definitions of the spatial velocity gradient .L1 and the rotated para
metric tensor L (cf. [7, 9]) 

(2.12) Lt(l) ·= F(t)F-1(t) = Q(t)QT(t)+Q(t)Mk(t)QT(t), 

(2.13) L(t) = Q(t)~(t)QT(t), 

where Q(t) is a~ orthogonal tensor characterizing the rotation of a particle from the refer
ence configuration to the "configuration at 'time t, we arrive at 

(2.14) C(s) = exp ( ~(s) Lr) exp(· ~(s) L) == 1 + ~(s) (LT +L), 
k~) k~) k~) 

since in our case Q = 1, and 

(2.15) L1 (t) == -L(t) = ~(t). 

Equations (2.9) and (2.14) are equival,ent_ definitions of a subclas~ of MPSH, if tensors 
M and L do not depend on s (they may depend on t) and g(s) is of the form (2.10). 

For MPSH, the constitutive equation of an incompressible simple fluid (cf. [9D, 
00 

(2.16) S(t) = §' (C(s) ), detC(s) = 1, •-0 
where S is the ex.tra-stresa tenso~ (or deviatoric part of the stress. tensor) at timet, and F 
denotes an isotropic constitutive functional, takes the following form: 

(2.17) S(t) = ; (g(s); L), •-0 
where f§ is a functional of the-scalar function g(s), and an isotropic function of the tensor 
L. According to the representation theorem proved in [7], the tensor L may be determined 
at most by the first three Rivlin-Ericksen kinematic tensors defined as follows (cf. (9]); 

(2.18) A .. (t) = ( -1)" d"~~s) I , n = 1, 2, 3, .... 
s •-o 
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794 S. ZA8ouKI 

In the · preSent consideration we apply a slightly different approach but the final results 
are quite equivalent 

On • basis of Eqs. (2.9) and (2.18) we have, in particular, 

(2.19) At == icueiC(MT +M), A2 = -w2~C(Mr +M), 

what implies that A2 = icuAt. Taking into account Eqs. (2.9), (2.10) and (2.19), we obtain 
the following relation: 

(2.20) C(s) = 1- _!_At sinws + _..;. A2(1- cosws). 
(t) (t) 

Substituting the above · relation into· Eq. (2.16), we arrive · at 

(2.21) S(t) =:; (-_1 
sinws,__;. (1-cosws); A1(t), A2(t)) = f(w 2

; A1 (t),A2(t)), •·0 W W 

where f is a tensor function even in w, and isotropic with respect to At and A1.e) 
Taking into account the well-known Rivlin-Ericksen representation of an isotropic 

tensor function of two arguments (cf. · [9]), 

(2.22) S = /(w1
; A~t A2) = txtAt +tx1A2+tx3Af+tx4Ai+txs(AtA2+A:zAt) 

. + tx6(A~A2 +A2 Ai)+ tx,(AtAl +A~ At)+ txa(A~A~+A~Af), 
as well as the properties (2.11 ); and the fact that A2 = iwAt, we obtain 

(2.23) S = (txt +icotx2)A1 +(tx3-cu~tx4+2icu«s)Al, 

where tx,{i = 1 , ... 5) ..-e functions of w2 and all ~variants of the 1ensor A1 • 

Since tensor At is complex, i~;invariants should be ~mposed o(ReAt and lmA1 

or, equivalently, of A1 and At, where At denotes the Hermitian-conjugate of At . In the case 
considered these invariants are · as followse): 

trAt == trAt = 0, 

trAl = trAf2 = 0, trAtAf = 4co2x1
, 

(2.24) 1rAfAt = trAf2 At = trA~ = ttAf 3 = 0, 

trAlAf 2 = 4co4x4 = ! (trAtAf)2
• 

The above· results imply that the coefficients 

(2.25) tx1 = a,(w2 , w2x2), i = 1, 2, ... 5 

are real fuoctions of the real arguments w2, x1• Thus, we can rewrite Eq. (2.23) in the form 

(2.26) ReS= tx1 ReA1 -rotx1 1mA1 +(«3 --w2 ~)ReA~--2wtx5ImAf. 

On using Eq. (2.19)t we arrive at the following real shear stress components: 

ReS13 = -txtwxsinE-tx2w2xcosC, 
(2.27) ReS23 = lit wxcosC- «2ro2xsblC, 

ReS12 = - ( tx3 -w2«4)w2x2sin2C- 2tx5w3x2cos2C, 

(2) Althouah A2 may formally be replace4 by lwA1 , it is more _useful for the time being to treat f 
as a function of two tensor arguments. · 

{
1

) Only the products A1At = Ar At and ·Ar~Af = AfAf2 are Hcrmitian (or sdf-conjupte), i.e. 
(A! At)* = At At and (A!2 A f)• == A!2 Ai. Diaaonal eleiDents of Hcrmitian matrices are alwa)"S real. 
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where C = wt-8. In a similar way the normal extra-stress components are expressed as 

ReS11 = - («3 -w2«4)w2x2cos2C +2«5w3x2sin2C, 

(2.28) ReS22 = («3 -w2 tx..,)w2x2cos2C -2«5 w3x2sin2C, 

ReS33 = 0. 

It is seen that the real parts of S13, snare odd functions of x, while S12, S11 and S22 are 
even. On the other hand, only_S23 and S12 are odd functions of wand the remaining com
ponents are even. 

The dynamical equations of equilibrium can be written in the form 

(2.29) div(S+pl)-egradfJ = e'i, 

where p is hydrostatic pressure, x - the acceleration vector, e - density of a ftuid, and '1 
denotes a potential of conservative body forces~ Since all the stress components depend 
on the variable z only (through the function x(z) ), it is reasonable to assume that also 
1J = fJ(Z). Taking into account Eqs. (2.29), (2.27), (2.28) and (2.2), we arrive at the follow
ing system of linear differential equations: 

(2.30) 

( «1 q/ + «2 W1p')'-" (!W1p = 0, 

( «1 tp'- «1 wq:>')' + l!C09' = 0, 

{p+f])' = 0, 

where primes denote derivatives with respect to z. The first two equations in the set (2.30) 
may be solved for appropriate boundary conditions, at least in a numerical way, if a depen
dence ~f «1 and «2 on w2 and x2 is known from other· considerations or experiments. 
The third equation in the set (2.30) gives the function of hydrostatic pressure p. 

The system of equations (2.30) is fully equivalent to that derived in a different way by 
CAiutoLL (6]. To prove this, we may putinto Eqs. (2.30) the followiilg relations: 

1 
«1 = ""' «2 = - 002 )'5' (2.31) 

where y4 , y5 are the functions used by Carron. On the other hand, the material functions 
«1 and «2 are easily interpreted on the basis ofEqs. (2.22); «1 is an 4tpparent yiscosity depen
ding on w2 and x2, «2 - a function responsible for the elastic properties of a fluid (the ratio 
T = 1«2/«11 gives the characteristic time of a fluid). 

3. Circularly pol8rized plue sbear wa'fes 

If sQlutions q:>(z) and tp(z) of Eqs. (2.30) are periodic or, in particular, sinusoidal, the 
motion described by Eqs. (2.1) corresponds to the case of circularly polarized plane progres
ive or standing waves. It may be shown, in a way similar to [6], that if «1 are independent 
of z (or x(z) ), Eqs. (2.30) take -the simplified form 

(3.1) 
«t9'" +«2w'P" -eW'I' = o, 
«t 'P"- «2 wq>" + ewq> = 0. 
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The ,eneral.solution of tb~$C eq~~tions. is : 

(3.2) 
cp(z) = Ae-4Scos(/Jz+A)+Btt=cos(flz+p), 

1p(z) = Ae-4Ssin(/Jz+A)-Btt=sin(/Jz+p), 

where A, B, A and p, are integration constants consistent with appropriate boundary con
ditions, and 

(3.3) 

The constant IX characte~s an exponential decay or growth of the wave. amplitude, while 
the constant pis simply related to the wave length~ For Newtonian fluids (1X2 = 0)~ we have 
for example 

' (!(JJ 
(X2 = p2 = --. 

21Xl 
(3.4) 

The simplest bounclary conditions for Eqs. (3.2) were discussed by CAIUlOLL [~. We pres
ent only some of his results. 

For a semi-infinite fluid bounded by a rigid plate at z = 0, oscillating with the velocity 
components; x = V cosmt, y = V sin rut, z = 0, the boundary conditions satisfied by cp 
and 1p are as follows: 

(3.5) cp(O) = cp(oo) = 1p(00) = 0, 
V 

tp{O) = -. 
(JJ 

We have the case of a circularly polarized plane progressive wave if 

(3.6) 

For a fluid contained betweeJl, two pla~s, one fixed at z = 0 and the other oscillating 
with the same velocity components at the distance z = I, the boundary conditions are · as 
follows: 

{3.7) cp(O)·= cp(l) = 1p{O) = 0, 
V 

1p(l) = -. 
(JJ 

We have the case of a circularly polarized plane standing wave if 

{3.8) A= -,B = ;: [sh2..a./cos2{Jl+ch2 a./sin2{Jl]l, 

p = -A= arctg[th~Xlctg{J/]. 

Let us briefly discuss the conditions under which the Jinaterial functions ' a.1. ·and' a.2 
do not depend on the amount of shear " {or equivalently on z). Bearing in mind Eqs. (2.22) 
and the fact that only the shear· stress components S 13 and S 23 are involved in the corre
sponding equations ofequilibrium {2.29}, die following cases may be distinguished; 

I. The case of Newtonian or purely viscous fluids for which only a.1 ::F 0. ·This quantity 
may or not depend on the angular frequency ru.; 

2. The case of fluids with linear shear response or second-order fluids for which IX 1 

as well as a.2 do not depend on the amount of shear ". 
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PLANE SHEAR WA YES IN VISCOELASTIC FLUIDS 797 

3. The case of sufficiently slow oscillations, i.e. flows with moderately low angular 
frequencies w as compared with the inverse of a fluid characteristic time T. Then rx1 and rx2 

can be treated as material constants. This point will be clarified in the next section. 

4. Plane elliptic sheariogs and elliptically polarized shear waves 

Let us consider a class of motions which may be called the plane elliptic shearings; 

x = X +aqJ(Z)coswr+mp(Z)sinwr, 

(4.1) y = Y +hqJ(Z)sinwr-lnp(Z)coswr, 

Z= Z, 
where capital letters denote the Cartesian coordinates in a reference configuration at time 
r R, lP and tp are certain functions of Z only, and 0 ~ a ~ 1 , 0 ~ b ~ 1 are dimensionless 
constant parameters describing ellipticity of a motion. 

On using the notations determined by Eqs. (2.2) and (2.3), we define the amount of 
shear x and the angle 0. In the class of motions considered the planes z = const are material 

x2 y2 
surfaces, and the paths of particles are the ellipses q;2 + tp2 = - 2 + -b2 , where a and b . a 
are proportional to the corresponding axes. 

The deformation gradient at time r with respect to the reference configuration can be 
written in the form 

(4.2) 

or, alternatively, 

[

1 0 axcos(wr-0)1 
[F(r)] = 0 1 bxsin(wr-0) , 

0 0 1 

(4.3) F(r) = Re{exp[Mei<an·-8>]}, [M] = [~ ~ _;b] x, 
0 0 0 

where again the real part ofF( r) is meaningful. 
It can be proved that plane elliptic shearings belong to the class of motions with pro

portional stretch history (MPSH) discussed elsewhere [7]. Considerations similar to those 
presented in Sect. 2 lead to the result 

(4.4) C(s) = FT(s)F(s) = exp(g(s)MT)exp(g(s)M) = 1 +g(s)(MT +M)+g2(s)MTM~ 

where the function g(s) is defined by Eq. (2.10), and the following relations are used: 

(4.5) M 2 = MT2 = 0, [MTM] = [~ ~ ~ ] x2 :F 0. 
0 0 a2 -b2 

All the equations presented from (2.12) to (2.18) remain valid if the matrix [M] resulting 
from Eq. (4.3)2 is used instead of Eq. (2.5)2 • 

For plane elliptic shearings the first two Rivlin-Ericksen kinematic tensors defined 
by Eq. (2.18) take the ·form 

(4.6) A1 = iwe''(MT +M), A2 = -w2et'(MT +M)-2w2e2iCMTM, 

8 Arch. M'ech. Stos. nr 6n8 
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798 S. ZAlroR.SKI 

what means that there is no simple' relation between At and A 2 • Equation ( 4.4), after 
taking into account Eqs. (2.10) and (4.6), leads to 

(4.7) C(s) = 1- ~ (r1m'-I)A1 + ~ (r'm'-1)2 (A,-! A2). 

Substituting the above relation into the constitutive equation (2.16), we arrive at 

(4.8) . S(t) = ; (_l (e-iws_1),_!_ (e-iws_1)2; A1(t), A2(t)) = h(w; A1(t), A2(t)), 
•=0 w (J) 

where h is a tensor function of w, isotropic with respect to At and A2. The function h 
is not even in w since two scalar arguments appearing in Eq. (4.8)t are neither even nor odd. 

Because of no simple relation between At and A2, the full representation (2.22) for two 
tensor arguments must be applied. The resulting constitutive equations are too complex 
for any effective solution of the problem. For example, 
the fact that 

(4.9) A2 = iwAt- 2w2e21'MTM, 
where MrM is determined by Eq. (4.5)3 , does not lead to essential simplifications. To achieve 
more progr~ss in the flow considered, we shall try to aply an expansion procedure, 
similar to that proposed by NIILER and PIPKIN [2] for shear waves in some non-Newtonian 
fluids. 

Starting from Eqs. (2.22), we shall seek approximate constitutive equ~tions which 
approach Newtonian equations at very low angular frequencies. The angular frequency w 
will enter into the constitutive equation through a dimensionless parameter e defined as 
follows: 

·(4.10) e2 = wT, 

where T is the characteristic time of a fluid. The finite amplitude of a Newtonian solution 
A is expressed by the dimensionless parameter Q; 

(4.11) 

Moreover, we introduce the following dimensionless quantities: 

(4 12) -s 8 A- - ~ 2 . = Akwrx
1 

' n - Akwn ' n = 1' ' ... ' 

where k = (ew/rx1)!. The first material coefficients rxi occurring in Eq. (2.22) can be written 
as follows; 

(4.13) rxl = fto, rx2 = P2ftoT, rx3 = PJftoT, etc., 

where fto denotes the apparent viscosity at zero shear rate, and P2 , p3, ... are dimensionless 
material coefficients. 

Assuming that the product e2 = wTis sufficiently small as compared with unity, and Q 
is constant, the constitutive equations may be expanded into a dimensionless form: 

(4.14) s = A1 +e2P2A2 +e3P3 QA~+O(e4). 
If all terms of order greater than e3 may be disregarded, the dimensionless .material coeffi
cients P2, P3 are constants independent of w (cf. (4.8h). 
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PLANE SHEAR WAVES IN VISCOELASTIC FLUIDS 799 

The above procedure shows that for moderately low angular frequencies w or; strictly 
speaking, for sufficiently small e2 = wT, wh~re T is the characteristic time of a fluid, the 
approximate constitutive equations of a second-order incompressible fluid may be applied. 
These are in the form (cf. [91) 

(4.15) S = oc1 A1 +oc2 A2 +oc3 AL trA1 = 0, 

where oc 1 , oc2 , oc 3 denote material constants. 
Thus, taking into account Eqs. (4.5)3 , (4.6) and (4.15), we obtain the following real 

parts of shear stress components; 

ReS13 = -oc1 wausinC-oc2 w2aucosC, 

(4.16) ReS33 = oc 1 wbucosC- oc2 w2businC, 

ReS12 = -oc3 w2abu2 sin2C, 

and the normal extra-stress components: 

ReS11 = - oc3 w2a2 u2cos2C, 

(4.17) ReS22 = oc3 w2b2u2cos2C, 

ReS33 = - (2oc2 + oc3)w2 (~2 -b2)u2cos2C, 

where C = wt- (}. We may easily observe that S13
, S 2 3 are odd in u, while the remaining 

stresses are even. The shear stresses S 13
, S23 oscillate with the angular frequency w while 

the remaining components with 2w. 
Since all the stress components depend on the variable z only (through the function 

u(z) ), the dynamical equations of equilibrium (2.24) lead to the following system of linear 
differential equations: 

OCt(/J"+oc2wtp"-ew'P = 0, 

(4.18) 0C 1 'f/J
11 

- ~2W(/J11 + (!W(/J = 0, 

(p+ 1})' +w2 (2oc2 + oc 3)(a2
- b2 )[(qJ'2

- 1p'2 )cos2wt+ 2qJ''P'sin2wt]' = 0, 

where primes denote derivatives with respect to z, and 'YJ = 1J(z) is a potential of conser
vative body forces. The first two equations in ~he set (4.18) are identical to Eqs. (3.1), the 
solution of which can be expressed by Eqs. (3.2) and· (3.3). The third equation in the set 
(4.18) determines the hydrostatic pressure p if qJ and 'Pare known. 

In full analogy to our previous considerations in Sect. 3, we claim that under the assum
ed order of approximation the motion described by Eqs. (4,1) with periodic qJ and 'P 
determined by Eqs. (3.2) corresponds to the case of elliptically polarized plane progressive 
or standing waves. The examples briefly discussed in Sect. 3 can easily be solved with-slightly. 
modified boundary conditions, i.e. for plates oscillating with the following velocity compo
nents: .X= aVcoswt, y = bVsinwt, z = 0. 

It is worthwhile to note that the governing equations for low frequency elliptically 
polarized shear waves do not differ at all from those for low frequency circularly polarized 
shear waves. Certain essential differences exist in the form of the hydrostatic pressure func
tion as well as in the normal extra-stress components. These observations may be of impor
tance in such cases in which circularly polarized plane progressive waves are refracted 

8* 
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800 S. ZAHORSKI 

on an interface between two non-mixing fluids. If the direction of propagatioa of. a primary 
circularly polarized wave is not perpendicular to the interface, a resulting refracted wave 
will be elliptically polarized with the parameters a and b depending on the corresponding 
angles of incidence and refraction. 

5. Linearly polarized plane shear waves 

It is easy to see that the results obtained for low frequency elliptically _polarized plane 
shear waves are, in particular, valid for low frequency linearly polarized waves. If waves 
are linearly polarized in the plane xz, we take in Eqs. (4.1) a= 1 and b = 0, if in the plane 
yz, then a = 0, b = 1 . 

For example, if a = 1, b = 0, the only non-vanishing extra stress components are as 
follows; 

ReS13 = -a1 wxsinC-a2 w2 xcosC, 

(5.1) ReS11 = - a3 w2x2cos2C, 

ReS33 = - (2a2 + a3)w2x2cos2C, 

where C = wt-0. The differential equations describing linearly polarized shear waves 
are again int the form of the set (4.18), and all further remarks remain valid. 
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