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Global solution of the initial value problem 
for the discrete Boltzmann equation 

H. CABANNES (PARIS) 

IN THE discrete kinetic theory the initial value problem has a local solution. When the local so
lution is bounded by a number which depends only on the initial values, the solution exists glob
ally. The first global existence theorem of this type has been obtained by Nishida and Mimura 
for a Broadwell gas (three-dimensional model with six velocities) when four of the six densities 
are equal. In the following work a similar theorem is proved for a more complex model: three
dimensional model with 14 velocities, obtained by joining the center of a cube first to the center 
of each face, then to each vertex. The theorem is proved first when the initial densities are small, 
then, following a method by Crandall and Tartar, when the initial densities are bounded. As 
a starting point certain properties of the local solution are shown to be satisfied. 

W dyskretnej teorii kinetycznej problem pQCZCltkowy ma rozwi~e lokalne. Gdy rozwi~e 
lokalne jest ograniczone przez licz~, kt6ra zalezy tylko od wartoSci pQCZCltkowych, istnieje 
rozwi~nie globalne. Pierwsze tego typu twierdzenie o istnieniu otrzymali Nishida i Mimura 
dla gazu Broadwella (tr6jwymiarowy model z szeScioma pr~oSciain.i) w przypadku, gdy cztery 
z sze8ciu ~toSci ~ sobie r6wne. W niniejszej pracy zostalo udowodnione podobne twierdzenie 
dla bardziej zlo:ionego modelu - modelu tr6jwymiarowego z czternastoma pr~oSciami, 
otrzymanego z I>Oblczenia srodka szeScianu najpierw ze srodkiem Wdej Sciatlld a nast~pnie 
z ka.Zdym wierzcholkiem. Twierdzenie udowodniono najpierw dla przypadku malych g~toSci 
poc74tkowych, a nast~pnie posluguj~c si~ meto~ Crandalla i Tartara - dla ograniczonych 
pr~ko5ci poc~tkowych. Jako punkt wyjScia pokazano, 2:e niekt6re wlasnoSci rozwi~a lo
kalnego s~ spelnione. 

B .AHCRpem:oH: JOOienAecKoH: TeopHK HallaJILH.aH sa,Qalla HMeeT noKam.uoe pemeHH:e. Kor~ 
JIOKaJILHOe peiiieHHe OI'paml11eHO liHCJIOM, KOTOpoe 3aBHCHT TOJibKO OT Ha11am.HbiX 3Ha11emdi 
TOr~a ~eCTByeT rJI008JibHoe peiiieiDle. nepByro 3TOrO THIIa TeOpeMy ~ecTBOBaHWI UOJIY
'IHJIH H~a H MHMYPa .ICIH ra3a Epoy~eJIJia (TpeXMepiWI Mo~em. c IIIeCT'biO CKOpoCTHMH) 
B CJIY11ae, KOr~a qen.Ipe H3 IIIeCTH IDIOTHOCTeH paBHbi ~yr ,tq)yry. B HaCTO~eH: pa60Te 
~OK33alla aHaJIOmtmaJI TeopeMa ,ICIH OOJiee CJIO>I<HOii: MO~eJIH - TpexMepHOH MO~eJIH C 11e
TbipH~3TI>IO CKOpOCTJIMH, nonyqeHHbiMH H3 coe~eHWI ~ellTpa Ky6a CHallaJia C ~eHTpOM 
~oH: cremat:, a 33TeM c ~oit sepunmoit. TeopeMa ~OK333Ha cuallaJia .ICIH CJIYliWI M8JibiX 

HallaJILHbiX IDIOTHOCTeH:, a 33TeM, nocny>KUBaHCL MeTO~OM Kp~a H TapTapa, .ICIH orpa
mAeHHbiX H811am.HbiX CKOpOCTeit. Kai< HCXO~ TO~ fi0Ka33HO, 11TO HeKOTOpbie CBOitCTBa 
noKam.uoro pemeHWI y~osneTBopeHbi. 

1. Introduction 

THE DISCRETIZATION of the velocity space in the kinetic theory of gases allows the replace
ment of the Boltzmann equation, an integro-differential equation, by a system of semi
linear partial differential equations [1]. For those equations, called kinetic equations, 
the initial value problem has a local solution when the initial values are bounded and 
differentiable; the local solution possesses the main properties listed in Sect. 2. Among 
the models with discrete repartition of velocities~ one of the simplest is the Broadwell 
model [2] for which the velocities are obtained by joining the center of a cube at the 
origin of the velocity- space to the centers of the faces. Using this model, and assum-
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ing a one-dimensional motion parallel to one of the velocities and equality of the densi
ties of the four velocities orthogonal to that direction, NISHIDA and MIMURA [3] have prov
ed the global existence of the solution of the initial value problem, provided the initial 
values are small in a certain sense. For a similar model TARTAR and CRANDALL [4] have 
proved the global existence of the solution when the initial values are no longer small, 
but periodic. The method of Nishida and Mimura, a proof of the global existence, consists 
in proving that the local solution is bounded by a constant which depends only on the 
initial values. The bound is obtained by the integration of conservation equations over 
triangles, each having an edge which corresponds to the axis t = 0, the other edges being 
characteristics of the system of kinetic equations. The purpose of the present work is to 
extend the proof and conclusions first of NISHIDA and MIMURA, then ofT ARTAR and CRAN
DALL, to more complex model. The model considered is a three-dimensional model with 
14 velocities obtained by joining the center of a cube at the origin of the velocity space to 
the centers of the faces and to the vertices [5]. For this model the generalization is possible, 
because the components of the velocities in the direction of motion are smaller in number 
than the number of conservation equations. Section 2 is devoted to a summary of the prop
erties of the local solution. The subsequent sections are concerned with the global exist
ence theorem when the initial densities given for xe R are successively "small", periodic 
and bounded. 

2. Properties of the local solution 

The general evolution equations of a gas with a discrete repartition of velocities appear 
in the form 

(2.1) (i=1,2, ... ,p). 

The unknown functions N1(x, t) denote the densities of different velocities u, represented 
by p constant vectors u1 , u2 , ••• ~ Up. The coefficients AfJ, the transition probabilities, 
are positive constants (or zero). xis the position vector, with components x, y, z in a Car
tesian rectangular system Oxyz; t is the time. The Cauchy problem consists in finding a so
lution of a system of Eq. (2.1) which, at the iftitial time, is equal to given values 

(2.2) N1(x, 0) = N01(x) (i = 1, 2, ... , p). 

THEoREM 1. If the functions N01 (x) are continuous and differentiable, there exists a po
sitive number <50 such that, in the interval 0 < t ~ <50 , the problem (2.1), (2.2) has' only 
one solution. 

This theorem, classical in analysis, assures the existence and uniqueness of a local so
lution, the properties of which can be studied by a method of successive approximations. 
We can, for example, put 

(2.3) 

(2.4) 

aNf+ 
1 + VNn"+ 1 ~ ATn+ 1 ~ ATrl 1 ~ Akl(ATn ATn Nn ATn) -a-- U; • i + Al'lf = NYj + -2 L.J l} l'lkl'IJ- fl'lj ' 

t . }kl 

N'/+ 1(x, 0) = Noi(x); 

Nl(x, t) = N(x). 
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We deduce from Eqs. (2.3) 

(2.5) 

t 

Nf+ 1 (x, t) = e-AtNot(X-Utt)+ J hi(x-uis, t-s)e-Asds, 
0 

where M is the right-hand side .of Eq. (2.3). Considering in the four-dimensional space 
the point A(x..t, tA) and the points B1(xA -u1t..t, 0), we denote by fJ A the smallest convex 
domain of the hyperplane t = 0 containing all the points B1• From the formula (2.5) we 
deduce 

THEOREM 2. The values of the functions N 1(x, t) at the point A depend only ·on the fnitial 
valuesN01(x) in the domain fJA. 

THEOREM 3. If the initial densities satisfy the inequalities 0 ~ N 01 (x) -~ K0 , the solution 
oft he problem (2.1), (2.2) satisfy the inequalities N,(x, t) ~ 0 for all x e R 3 and 0 < t ~ t5 0 • 

THEOREM 4. If the initial densities are independent of one of the space variables, 

~ N10(x) = 0, the solution of the problem (2.1), (2.2) satisfies the relations 

:y Ni(x, t) = o· ... for all X E R3 and 0 < t ~ t5o. 

THEOREM 5. If the initial densities N01(x) are periodit functions with the period n, the 
solution N 1(x, t) of the problem (2.1), (2.2) is, for x e R3

, 0 < t ~ t50 , periodic in x with 
the period n. 

The proofs of Theorem 2, 4 and 5 are trivial. Theorem 3 is proved by choosing for A. 
in Eq. (2.3) a large enough positive constant. The solution of the problem (2.1), (2.2) can 
be majorized by the solution M 1 of the associated problem: 

aMi +u· · VM, = _!_ "\1 A~!MkMt 
at ' 2 L.J '1 ' 

)kl 

(2.1 ') 

(2.2') M 1(x, 0) = K0 

and the solution of this new problem is again majorized by the solution L1(t) of the problem 

(2 ,, dL, ( )2 A P
2 

Ak' .1) ""(ft= A L 1 +L2 + ... + Lp , =--ysup u; · 

(2.2") 

We have therefore 

(2.6) 

Lt(O) = Ko. 

Ko 
N 1(x, t) ~ Li(t) = 1-AKot. 

THEOREM 6. If the initial values N01(x) are continuous and differentiable functions sat
isfying the inequalities 0 ~ N 1 (x) ~ K0 , then the unique solution of the problem (2.1), 

1 2 

(2.2) exists for x e R 3 and 0 < t ~ t50 = AKo , where A = p
2 

sup A~}. 

For certain particular models it is possible to show that in the domain x e R3 and 
0 < t ~ t50 and under certain conditions for the initial values the (local) solution satisfies 
the inequalities 0 ~ N1(x, t) ~ K, where the constant K depends only on the initial values. 
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We can consider the instant t = <50 as initial and repeat the argument; so the solution 
exists for <50 < t ~ <50 + t5, with t5 = 1/AK; and for t = t 1 = <50 + <5, we always have 
0 ~ N1(x, t) ~ K. This proves the global existence of the solution. We will show ·in the 
next section the existence of a number K for a three-dimensional model with 14 velocities. 

3. Global solution for "small" initial values 

The model considered is obtained by joining the center of a cube to the vertices and the 
centers of faces. The velocities are denoted by u1(i = I, ... , 8) and v1U = 1, ... , 6), and 
their components in the directions Ox, Oy, Oz. are 

u1 = c(-1, I, 1), u2 = c(l, 1, 1), u3 = c(-1, 1, 1), 14 = c(l, -1, 1), 

v1 = c(1, 0, 0), v2 = c(O, 1, 0), v3 = c(O, 0, 1) 

and 

u9 _ 1 = -u, (i = 1, 2, 3, 4), vi+ 3 = -v1 U = I, 2, 3) 

the moduli being given by lv11 = c, lu11 = cy'f The number density ofmoleculeswith the 
velocity 11; is denoted by N, that of molecules with velocity v1 by M1. 

To write the kinetic equations we designate by u11 , u12 , u13 the velocities associated 
with the velocity u1 so that u11 -u;, u12 ...... u,, u13 -u1 are parallel to the coordinate' axis. 
Then we put 

u14 = u12+u13 -u, 2v11 = u1+uu, 
(3.1) u15 = u13 +u11 -u,, 2v,2 ~ u,+u,2, 

ui6 = Uu +u12 -u, 2v,3 = n,+uu. 
The kinetic equations, are then (for details see [5]): 

aN, - ¥3 ~ 
(3.2) ----;;( +u, · VN, = 2 cS L.J (NsN9-s-N,Ng_,) 

,. ... 
6 . 3 

+y2cs{NuNt3+N,JNu +HuN,2-N, 2 N,ot} + y
2
'6 cS 2 (N,aMJ+Iot-N,M,a), 

ot-4 ot=l 

There are 8 equations, (3.2) i = 1 , ... , 8. and 6 equations, (3.3), U = 1 , ... , 6). When 
the initial densities are independent of y and z, which we assume, the densities are 
independent of y and z. Therefore we look for the solution N 1(x, t), M1(x, t) of the kinetic 
equations which satisfy the following initial conditions: 

(~.4) 
N1(x, 0) = N01(x) 

M1(x, 0) = M 0 j(x) 

(i = 1' ... '8), 
U= 1, ... ,6). 
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We assume that the initial densities are differentiable and satisfy the following condi
tions in which K0 and cx0 are two positive constants: 

(3.5) 0 ~ Noi(x) ~ Ko, 0 ~ Moi(x) ~ K0 • 

00 8 6 

(3.6) J {~ Noi(~) + ~ Moi~)} Sd~ = Gt0 • 

-00 i=l j=l 

THEOREM 7. When the conditions (3.5) and (3.6) are satisfied, and when cx0 is less than 3/4, 
the solution of ihe initial-value problem (3.2), (3.3), (3.4) exists for all x and all t > 0. 

To prove this theorem by the method of Nishida and Mimura, we consider the sums 
of the densities of the velocities having the same components on the x axis, i.e. we put 

d 1 (x, t) = N2+N4+N6+Na+M1, 

(3.7) .fil2(x, t) =-Nt +N3+Ns+N1+M4, 

2d3 (x, t) = M2+M3+M5 +M6. 

We write ~~ = c > 0, ~2 = -c, ~3 = 0; from Eqs. (3.2)-(3.3) we deduce the three 
equatio~s 

(3.8) 
as,~, a.r,~i 
---at+~~ ax = Ji(x, t) (i = 1' 2, 3), 

(3.9) 
2 

f1 =f2 = -/3 = 3cS(M2Ms+M3MsM6-2MtM4). 

Equations (3.8) can be integrated in the form 
t 

(3.10) di(x, t) = d1(x-~1 t, 0)+ J f1(x-~1 s, t-s)ds (i = 1, 2, 3). 
0 

The functions d 1(x- ~it, 0) are bounded by 5K0 • And in the domain x e R, 0 < t ~ <50 , 

the densities being positive, the integrals in the second term of Eqs. (3.10)1J (3.10)2 and 
(3.10)J are bounded by 

(3.11)i 

(3.11)3 

t 

~ KcS J (M2 + M3)(x- ~1 s; t-s)ds (i = 1, 2), 
0 

t 

~ KcS J M 1 (x, t-s)ds, 
0 

K being a bound of the densities in the domain. It is then possible to majorize the last in
tegrals by integrating the conservation equations 

(3.12), 

over the triangles AA1A3 of the x, t plane. The points A. and A1 have as coordinates 
(x, t) and (x-~1 t, 0), respectively. The Stokes theorem gives for i = 1, 

t t X 

(3.13) J d 1 (x, t-s)cds+ J d 3(x-cs, t-s)cds = J {d1 (~,0)·+d3(~,0)}d~ ~ ~ 
0 x-ct 
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and a similar formula for i = 2. We deduce that the integrals (3.11)1 (i = 1, 2, 3) are 
4 

bounded by 3 cx0 K, and 

(3.14) 

4 
or, for cx0 < 3 

(3.15) K~ 

which proves the global existence of the solution of the problem (3.2), (3.3), (3.4). 

4. Global existence for large initial-values 

The global existence theorem proved in the former section assumes that the initial 
mass in a tube of the cross-sectionS is sufficiently small. For a plane regular model with 4 
velocities, Crandall and Tartar, using the H-theorem, have been able to drop this assump
tion when the initial densities Noi(x) are periodic functions [4]. The demonstration of 
Crandall and Tartar is valid for all models for which the results of the previous section 
are valid: existence of a bound of the local solution. 

The initial densities being independent ofy and z, the densities N,(x, t) will also only 
be periodic in x; we will designate the period by n. We have therefore to solve the follow
ing problem: 

(4.1) 

(4.2) 

with 

(i= 1,2, ... ,p), 

N1(x, 0) = N0 ,(x) 

0 ~ N0 ,(x) ~ K0 , and Noi(x+n) = No,(x). 

By multiplying the two members of Eq. (4.1) by 1 +log N1 and by adding the equations 
obtained for all values of i, we obtain 

(4.3) 

The right-hand side is negative or zero. Thus the first member will also be negative, as will 
be its integral, say, over a period 

(4.4) 
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as a consequence, 

p n 

(4.5) ( ~ J N 1(x, t) 
J t) = L.J N1(x, t) log K dx ~ /(0) ~ 0. 

1•1 0 ° 
From. this inequality we deduce, for 2cT < n-, 

p x+cT 

(4.6) ~ f 4npK0 L.J N1(x, t)dx ~ 2cT 
1-1 x-cT 1-log--

n 

the detail of the calculation are given in the reference [6]. 
Returning to the 14-velocity model, we now denote by N 1(x,t) the densities (i vary 

from 1 to 14), and we consider the functions N1(x, t) which satisfy the following conditions: 

N1(x, 11) = N1(x, t 1) for X -eT~ x ~X +eT, 

N1(x, t 1) = 0 for IX -xl > eT. 
(4.7) 

The functions N1(x, t 1) satisfy, for all 11 positive, the condition 

00 14 

(4.8) f { ~ } 56nSK0 LJ N,(~, t1) Sd~ < «1 = 2cT . 
-oo i•t 1-log--

n 

If we choose 

(4.9) 2cT { 224 } ----;- ~ exp 1- -
3
- nSK0 , 

the first member of the inequality (4.8) is less than ! , and we can apply: 

THEOREM 7. Therefore, the functions N1(x, t) exist for all values of x eR and t > t1. 
In the triangle with the vertices (X, t 1 + T), (X± eT, t 1) the solution N1 (x, t) coincides with 
the solution of the kinetic equations which takes the values Ni (x, t 1) fort = t 1 ; as X is arbi
trary, this proves the existence of the solution fort 1 < t ~ t 1 + T. The inequality (4.8) is still 
valid for t 2 = t 1 + T, hence existence also holds for t 1 + T < t ~ t 1 + 2T; the argument 
can be repeated, and as t 1 is arbitrary and can be chosen less than ~0 , global existence 
follows. 

It is now easy to pass from the periodic case to the general case where the initial densi
ties satisfy only the conditions 0 ~ N01(x) ~ K0 • We can define new initial values N01(x) 
periodic, of period n, with continuous ·derivatives, and satisfying the conditions N0 (x) = 

= N 01 (x) for lx-XI ~ eT, with 2cT < n. The corresponding solutionM(x, t) exists glob
ally and coincides with the solution corresponding to the initial densities N10(x) in the 
triangle (X, T), (X± eT, 0) of the x ,-t plane. As X is arbitrary, the solution N1(x, t) exists 
for x e R, 0 < t < T; and as T is arbitrary the existence is global. Hence we have the 
following general conclusion: 

THEOREM 8. If the initial densities are continuous, dijferentiable, positive and bounded, 
the solution of the initial value problem, for the 14-velocity model, exists globally. 

3 Arch. Mech. Stos. 4-sns 
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