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A method for computing compressible flows past a profile set 
between permeable walls 

J. F. CIAVALDINI, M. POGU and G. TOURNEMINE (RENNES) 

WE ARE concerned with the determination of subcritical, irrotational, steady plane flows of a com
pressible, inviscid fluid past a lifting profile set · between two linear permeable walls, when the 
speed distribution at infinity is uniform and parallel to the walls. The wal's are assumed to be 
far enough from the profile so that their ~or king condition may be semi-Iinearized with respect to 
the conditions at infinity. Therefore, the research of the stream function reduces to the deter
mination of the solution of a nonlinear variational inequality in a weighted Sobolev space. We 
prove existence and uniqueness as long as the flow is subcritical and the profile is smooth. We 
show that the circulation of the speed vector along the profile can be fitted by regulating the 
pressures outside the permeable walls. As ·it is. usually done, we bound the domain by setting 
the uniform flow as· ~he boundary condition at a finite_distance. We give a convergence theorem 
with an error estimate as the diameter of the bounded domain increases to infinity. At last, 
we describe an algorithm, the convergence of whjch is proved, to compute directly the speed 
distribution in the physical plane. We give the first numerical results which have been computed 
with a finite element method of order one as the walls are completely permeable. 

Praca dotyczy · okre8l(mia podkrytycmych, bezwirowych, ustalonych plaskich przeplyw6w 8ci
sliwej nielepkiej cieczy za ukladem no8nych profili majduj~cych si~ pomi~ dwiema prze
puszczalnymi Sciankami, .gdy rozklad pr~o8ci w nieskonczonoSci jest r6wnomiemy i r6wno 
legly do Scianek. Zalozono, 2:e SCianki ~ wystare?aj~co daleko od profili, tak i:e ich oddzialywanie 
na profile moi:e bye semi•.zlinearyz<>wane w stosunku do warunk6w w nieskonczonoSci. Dlatego 
zbadanie funkcji prfldu. sprowadza. si~ .do okre5lenia rozwi~nia nieliniowej nier6wnoSci waria.,. 
cyjnej w przestrzeni Sobolewa z waSQ. Wykazano istnienie i jednomacmosc rozwi~a do chwili, 
gdy przeplyw jest podkrytycmy a profit gladki. Pokazano, 2:e cyrkulac~ wektora p~oSci 
wzdlui: profilu . moi:na dopasowac przez. regulae~ cisnien na ze~trz przepuszczalnych Scia
nek. Wyprowadzono zbiei:ny algorytm celc~m obliczenia rozklcnJu pr~o8ci bezpo§rednio Iia plasz
czyinie fizycmej. Przedstawiono pierwsze wyniki numerycme obliczone mete<bl element6w skofl
czonych o aproksymacji pierwszego r~du dla przypadku pelnej nieprzepuszczalnoSci Scianek. 

Pa6oTa KacaeTcH onpe~eneHWI ~oi<pHTII'IeCl<HX, 6e3Bmq>eBLIX, yCTaHoBHBIIDJXcH, IIJIOCI<HX 
Tel.leHHH C>I<HMaeMOH, HeB113KOH >I<H,W<OCTH 38 CHCfeMOH Hecynuoc npo4>HJieit, HaXOWDIUlXCII 
Me>K.Zcy ABYMII npo~eMbiMH Cl'eHl<8MH., KOr,ml pacnpe~eJieHHe CKOpOCTeH 'B 6ecKOHe1.1HocrH 
paBHOMepHO H Il8paJIJieJILHO Cl'em<aM. llpe,ltiiOJIO>KeHO, trrO creHKH HQXOAJITCII ~OCI"aTOl.IHO 
romeKo oT npo4>HJieii, Ta.I<, trro HX B03~eiiqmue Ha npocl>WIH MO>KeT 6blTI> nonyJIHHeapH30BaHO 
IIO OTHOIIIeHHIO K yCJIOBIDlM B 6ecKOHellHOCTH. llo3TOMY HCCJie~OBamle $ym<J:n~H TOKa CBO.lnfTCII 
K onpe~enemuo pemeHHII HeJIHH:eiiHoro uap~oHHoro HepaBeHCTBa B npocrpaHCTBa Co6Q.. 
JieBa· C BecoM: lloK838HO ~eCTBOBaHHe H e~CTBeHHOC'l'b pemeHWIK MOMeHTY, KOr,ml Te
qeHHe ~OKpHTH1.1eCKOe, a npO$HJID- rna,r:umH. llOK838HO, 1.1TO Ul(pKyJVIInu<> BeKTepa CKO
poCTH B~OJib npo<l>HJIH MO>KHO cornacouan. nyTeM pery~ ~asnemdt: BHe npo~eMbiX 
creHOK. BLIBe~eH cxo.zvttmmc11 anropKTM c ~eJibro Bbi'IHCJieHWI pacnpe~eneHWI CI<Opocreit 
Henocpe~CTBeHHO Ha $H3H1.1eCKOH IIJIOCKOCTH. llpe~craBJieHbl nepBble l.IHCJieHHbie Pe!JYJibTaTbl 
paCtiH'I'aHHble MeTO~OM KOHel.IHbiX 3JieMeHTOB C amipoKCHM~eH nepBOro IIO~ AJV1 cny
l.laR IIOJIHOH HenpoHKQaeMOCTH CTeHOK. 

l. Introduction 

Tms PAPER is devoted to the determination of subcritical irrotational steady plane ftows 
of a compressible, inviscid fiuid past a lifting profile set between two penneable linear 
walls. The speed distribution at infinity is uniform and parallel to the walls. The working 
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368 J. F. CIAvAIDINI, M. Poou and G. ToURNEMINE 

condition of the walls proceeds from the Darcy law. The main interest of the problem is 
to be related to wind tunnel corrections. 

From the numerical point of view the problem has already been studied by several 
authors, for instance LAVAL [1]. Our aim is to analyse the statement of such a functional 
frame that leads to a variational formulation in a way which makes it possible to prove 
numerical approximations based on the classical finite element method in bounded domains. 

According to the above device, we have already dealt with a simpler model of the prob
lem in a previous paper [2]. The tlow was assumed to be. incompressible past a symme
tric profile without incidence. The permeable walls were assumed to be far enough from 
the profile so that their working condition was linearized with respect to the conditions at 
infinity. Thus we got a linear elliptic equation with oblique derivative boundary conditions 
along the walls. 

In this work we take into account the compressible effects. The linear problem is turned 
into a nonlinear one. The equation remains elliptic as long as the Jluid is subsonic, there
fore we have to deal with an additional constraint on the speed distribution. We still assume 
that the working condition of the walls may be linearized. Noting that the order of approxi
mation remains the same we actually use a so-called [3] semi-linearization to get natural 
boundary conditions for the elliptic operator. Taking into account the arguments already 
used for the study of compressible ftows past lifting profiles in an infinite atmosphere [4], 
we mainly show that the problem reduces to determine the solution of a nonlinear va
riational inequality. 

An outline of the paper is as follows. Sections 2 and 3 are devoted to the statement of 
the problem and its transformation. In Sects. 4 and 5 we give some technical lemmas and 
mathematical results, proofs of which follow analogous devices as ·in [4]. Theorem 1 proves 
the existence and uniqueness of the stream function. Theorem 2 shows that the circulation 
can be fitted by regulating pressures in the plenum chambers. We construct in Sect. 6 a se
quence_ of approximate problems in bounded open domains by setting the uniform ftow · 
as the boundary condition along two vertical lines at a finite distance. Theorem 3 proves 
the existence and uniqueness of the approximate stream functions. Theorem 4 shows that 
this sequence converges towards the solution and gives an error estimate as the diameter 
of the bounded domains increases to infinity. In Section 7 we exhibit an algorithm which 
allows a direct computing of the speed distribution in the physical plane by solving a se
quence . of harmonic problems with linear mixed-type boundary conditions. At last, we 
discuss in Section 8 the first numerical results which have been computed with a finite 
element method as the walls are completely permeable. 

2. Statement of the problem 

Let 0 be the axis origin. The x-axis is directed parallel to the speed at infinity q00 = 
= (u00 , 0) and two permeable walls F±H are determined by the equations y = ±_H (see 
Fig. 1). We assUipe that the profile 9 is bounded by a smooth curve r (l) and .Q will de
note the Unbounded region exterior tO 9 and Set between rH and r-B• 

(1) We assume that r is at least a third continuously differentiable simple closed curve. 
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Denote the density by(!, the critical speed by qc; the speed field q = (u, v) satisfies the 
relations 

(2.1) 

(2.2) 

throughout !J, 

(2.3) u-bev = L%H along r%H' 

(2.4) q · D = 0 along F, 

(2.5) q -+ q00 as lxl -+ oo. 

The irrotational character and principle of conservation of mass are expressed by the 
relation (2.1). The flow is subsonic as long as the inequality (2~2) holds. 

The working conditions are represented by Eq. (2.3), where the right-hand sides are 
connected with the permeability constant P and the plenum-chamber pressures p~8 by 

L±H = Uoo+-1-(Poo-P~n), b = -~p' 
f!oo Uoo f!oo 

here 

P~H-+ Poo as lxl-+ oo. 

Without loss of generality we choose henceforth P :f: 0; the case P = 0 leads to a Dirich
let problem which involves no proper difficulty. 

The classical slip condition is given along r by the relation (2.4) where n is a vector 
normal to r. At last, the speed is prescribed uniform at infinity by the relation (2.5). 

e> q will denote the speed magnitude. 

http://rcin.org.pl



370 J. F. CIAVALDlNI, M. PoGu and G. :rotJJlNEMINB 

The limit speed is chosen for speed unit. Since the fluid is isentropic, we obtain through 
Bemoulli's law the speed-density relation 

(2.6) (!(ql) = (}o(l-ql)l/(Y;-1>. 

Here y is the ratio of specific heats (y > 1) and eo the density when the speed vanishes. 
REMAiuc 1. The circulation of the speed is defined as 

(2.7) a= J udx+vdy. 
r 

We point out-that u is not a datum of the problem. However, we shall state that a depends 
only on the data: u00 and p~8 (see Paragraph 5.2.). 

REMAiuc 2. In fact, the wall working-conditions proceed from the Darcy law and are 
defined as 

(2.8) P(p-p~H) = (!V along r±H· 

Here pis the pressure. Actually, the walls are assumed to lie far enough from the profile 
so that the left-hand side in Eq. (2.8) may be linearized with respect to the conditions at 
infinity. The approximation order does not alter when the right-hand side is not linearized; 
thus we get Eq. (2.3) which will be turned into a natural boundary condition for the later 
transformed problem. 

3. Traasformation of the problem 

3.1 

At present our aim is to reduce the above problem into a boundary value one, involv
ing only one partial-differential inequality throughout !J. In view of the continuity equa
tion, the stream function tp ana the speed q are related by the classical differential system 

(3.1) 

From Eqs. (3.1) we derive (3) 

(3.2) 

1 
u = -1p,, 

(! 

1 
V= - -'1'~· 

(! 

The right-hand side is a strictly increasing function of q2 under the assumption (2.2), 
therefore we can define in the interval 

0 ~ z ~ t:, fc = qce(q:) 

the function h(z) such that 

(3.3) 

h is a strictly increasing convex function over [0, t:] and is infinitely derivable inside 
]0, t:[(see [4D. 

(l) Let a= (u1, u2) e R2, Y = (vLt v~) e R2, lul = yuf+ui will denote the Euclidian norm and 
(a, v) =- "1"1 +u2v2 the associated scalar product. 
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Using EQ.s. (3.2) and (3 .. 3), we bring the problem (2.1) ... (2.5) into the boundary-vat .. 
ue one: 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

3.1 

div[2(1V1J'I2)V1J'] = 0} 

IV1pl ~ tc 
throughout D, 

h(IV1pl 2)1p,+b1J7x = L±H along r ±H' 

· 'P = 0 alongF, 

V1p ..... (0, too), (too= (!ooUoo) as lxl ..... CX>. 

In order to derive an appropriate functional frame of the above problem, we look for 
the stream Qlnction in the form 

1p = E+w, 
where w is a smooth raising of the condition at infinity (3.8) and does not alter the Dirich
let condition (3.7). Hence we have to determine E such that VE is square-summable. 

More precisely, we choose an indefinitely derivable function w of support disjoined 
from PJl and we state that there exists a number t1 such that Vw obeys 

(3.9) I Vw(x, y)l ~ t 1 < tc for any (x, y) e D (see lemma 1 in. (4D. 

3.3 

We now have to deal with the argument h(IV1pl 2) V1p which is not square-summ.abie 
over the unbounded domain D. For this purpose, we consider 

Q(E) = h(IV(E+w)I2)V(E+w)-h(t!)T+b'VE, 

where 

T = (0, t00), 'VE = ( -E,, Ex) 

are solenoidal. The vector-valued function 'V E has been introduced to take into account 
the left-hand side of the oblique derivative condition (3.6). 

LEMMA 1. If too < tc, then there exists a constant M> 0 and a square-summable 
function g, depending only on the data of the problem, such that for any E satisfying 

IV(E+w)l ~ tc a.e. (x, y) e D, 
the estimate 

IQ(E)I ~ MIVEI+g a;e. (x,y) eD 
holds. 

This is proved in the same way as for Lemma 2 in [4]. 

4. A functional frame 

In this section we present notations and results from functional analysis which win 
be needed later. 
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Let 

H 1(!J) = {~ e !!J'(!J); U~ e L2{!J), loci ~ 1} 

be the classical Sobolev space provided with the usual norm e). We set rl =rH ur_H 
. and we denote by H 112 (F1) the space of the traces over F 1 of the functions belonging to 

H-l(!J) [5]. 

Define the function x 7 m(x) = V 1 
, and introduce the weighed space 

1+x2 

V={~ e !!J'(!J); m~ e L2 (!J), U~ E L 2 (!J), loci = 1, ~1r = 0} · 

provided with the norm: 

~ ~ llm~lt2<m++IV~IIt2<.o>Jl'2 • 
Let V denote the subspace of V spanned by the infinitely differentiable functions which 

are of bounded support dispoined from fJJ. 
LEMMA 2. The Hilbert space V is the closure of V and the n~rm defined above is equiva

lent to the following one 

~ v-+ u;u = IIV~IIL2(0). 
First we refer to classical density properties in Sobolev spaces [5]. Hence we deduce it 
suffices to show that V is the completion of bounded-support functions. Then, using 
a truncation process, we establish that any function in V can be approximated by a se
quence of functions which are of bounded support [6]. Using integration by parts, the 
second statement is proved in the same way as for an analogous norm equivalence in [7]. 

We_ denote by V' and H- 112 (F1) the dual spaces (5) of V and H 112 (F1). Given LE V' 
and ~ e V(resp. I e H- 1/ 2(F1) and x e H 112 (F1)), the value L(~) (resp. /(x)) is written as 

<L, ~)v,,v (resp. <I, z)8 -1'2<r1>,H•'2<r,>), where the brackets indicate the pairing between V' 
· and V (resp. H- 112 (F1) and H 1l 2 (F1)). 

5. A variational fonnuJation 

5.1 

To take into account the condition (3.5), we consider 

K = {~ e V; IV(~+w)l ~ tc, a.e. (x, y) e !J}. 

From the inequality (3.9) we observe that 0 e K and it is classical to state that K is a closed 
convex subset of V. We introduce the semi-linear functional 

a(~, x) = J {Q(~), Vx)dxdy for (~, x) e Kx V. 
D 

(
4

) L2(D) is the space of square-summable functions over D provided with the norm luiL2(D) = 
= (J !u(x)l 2dxt2

• !!.d'(D) is the space of generalized functions. 
D 

(
5
) The dual space of a Hilberl space is the space consisting of all continuous linear forms defined 

over the Hilbert space. 
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LEMMA 3. For any (~, x) e Kx V, the estimates 

hold. 

la(~, x)l ~ [MII~II + IKIL2<D>1 · llxll, 

a(~,~- x)-a(x, ~- x);;?; -
1 11~- xll 2

, eo 
a(~, ~) ~ - 1 II~W -lgiL2<D> · 11~11 eo 

Moreover, for fixed(~, x, C) e KxKx V, the function 

t ~ a(~+t(x-~), C) 

is continuous over R. 

373 

Proof. As an application of Lemma I, we derive the first estimate; the second and 
third are consequences of the following [4]: 

(Q(~)-Q(x), V(~-x)) ~ -1 IV(~-x)l2, eo 
(Q(~), V~) ;:o; -

1 IV~I 2 -g.IV~Ieo 
At last, applying the Lebesgue theorem in the integrand of a, we complete the proof of 
the lemma. 

The right-hand side of the oblique derivative condition (3.6) is taken into account by 
introducing the distribution L defined along F1 as 

L = L±H- [bwx+h(t!)t00]. 

It is easily seen that if~ e V., then m~ e H 1 (!J), so that its trace lies in H 112(F1). Further-

more, if we assume that~ e n- 112 (F1), we get the continuity estimate (6) 
m 

(5.1) 

It follows that L induces a continuous linear form over V defined by 

(5.2) 

THEOREM I. If 100 < tc and if .!:.._ e H- 112 (F1), then there exists one function ~ e K 
m 

and one at the most such that 

(5.3) 

Moreower, if the data are such that the function 1p = ~+w satisfies 

!VVJI ~ Ic-e a.e. (x, y) e !J, e > 0, 

ff1p e L2 (!J), lal = 2, 
(5.4) 

then V' = ~ + w is the unique solution of Eqs. (3.4)-(3.7) in w+ V. 

( 6) C means any constant which depends only on the data of the problem and not on the other para
meters. 
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P r o o f. Since Lemma 3 holds, we deduce that a is continuous over K x V so that 
it defines the operator A acting from K to V' by 

<A~, x)v,.v =a(~, z}, (~, x) eKx V. 

Then we observe that A is strictly monotone, hemi-continuous and coercitive. Therefore, 
we state the relations (5.3) to be a consequence of Eqs. (5.1) and (5.2) and the monoto
nicity method [8]. The proof of the second statement follows the same lines as in the 
proof of Theorem 1 in [4]. 

5.2 

We now show that if we assume the relations (5.4}, then the circulation given by Eq. (2. 7) 
depends only on the data of the problem. 

THooREM2. Assuming the relations (5.4}, suppose the difference (p8-p:8 ) is summable 
ol'er R. Then theformula 

00 

a= -
1

- J[p: 8 (x)-p8(x)]dx 
(!ooUoo 

-oo 

holds. 

y 

f!f!)_- - -.---=----~--r:._/...,.---+-H------------,------

Q* 

-R +R X 

(eH)- ·· - _...._,. ________ -:r:;:-:::~t;---+_-:-H-:------.----~ -----

FIG. 2. 

P r o o f . Given R > 0, !J* denotes the region exterior to fJ' and is enclose(! in the 
rectangle [ -R, R] x [ -H, H). 

Let rt (resp. r:) be the hori~ontal (resp. vertical) sides of the rectangle (see Fig. 2). 
We setF* = rt u r:. 
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Using Eqs. (2.7), (3.1), (3.2) and (3.3), we have by Green's formula 

(5.5) 

where we set 

-u = f h(IV1J'f2
) (1p1 dx-1p%dy) = It -I2, 

r• 

I1 = f h(IV'f'I2)'J',dx, 
• r1 

I2 = f h(IV'f'l2)'f'%dy. 
r; 

When written out, the integral I 2 takes the form 

H -H 

I 2 = f h(IVV'I2)1f'x{ -R, y)dy+ j h{IV1f'l2)1f'%(R, y)dy, 
-H H 

and we have, by Schwarz's .inequality, 

H 

(I2 )
2 ~ C f [V'~( -R, y)+V'i(R, y)]dy . 

-H 

37S 

From the relations (5.4) we observe that 1/'% belongs to H 1(D); ~en, using the Babitch 
extension [5], we show the estimate 

(/2)2 ~ C J [1p~ + IV1f'%1 2]dxdy. 
l%l;;;tR 

Since C does not depend on R, we derive by the Lebesgue theorem 

(5.6) I2 --. 0 as R--. oo. 

If we take into account the oblique-derivative condition (3.6) then we obtain 

where we set 

R 

I1 = f (LH(x)-L_ 8 (x)]dx-bi, 
-R 

R H 

I= J J 1p%1 dxdy: 
-R-H 

Following the same way as above for I 2 , we show that 

I-+ 0 as R-+ oo, 

hence we have 

(5.7) I1 -+ 0 as R -+ oo. 

Gathering together the relations (5.5), (5.6) and (5.7), we conclude that 

00 

U = f (LB(x)-L_8 (x)]dx. 
-oo 

Theorem 2 is proved. 
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6. Approximation involving bounded open .sets 

In order to justify the numerical approach involving- bounded domains, we actually 
solve the problem (3.4)-(3.8) in the bounded sets 

D* = Q t1 {(x, y); lxl < R}, 
where parameter R > 0 is expected to increase to infinity. 

6.1 

We now look for a function "P* which satisfies the boundary value problem 

div[h(IVW*I 2
) VW*] = 0} 

IVW*I ~ te · 
thoughout D*, 

(6.1) h(IVW*~2)W: +bP: = L±H along F~, 
P* = 0 alongF, 

W* = t00 y along r:. 
As in the previous section we introduce the space 

V* = {~ E H 1 (!J*); ~Jrvr! = 0}, 
provided with the norm 

~ _. 11~11* = IIV~IILa(,a.)• 

We point out that the weight does not appear any more in V* since !J* is bounded. Let 
us consider the non-empty closed convex subset of V* 

K* = {~ e V*, IV(~+w)l ~ tn a.e. {x, y) e D*} 

and the functional defined over K* x V* as 

a*(~, x) = J (Q(~), Vx)dxdy. 
D* 

We denote by L* a suitable approximation of L that we will state precisely in the sequel. 
Proceeding as in the proof of Theorem 1, we obtain the following: 

TtiEOREM 3. If t00 < le and if L * e V*, then there exists a unique function ~· e K* such 
that 

(6.2) 

Moreover, if the function P* = ~· + w satisfies 

{
IVtJI*I ~fe-e a.e. (x, y) E !J*, 

(6.3) fft[l* e L2 (D*), lal = 2, 

e>O 

then P* = ~*+w is the unique solution of Eqs. (6.1) in w+ V*. 

6.2 

At present we investigate the connection between P and W* as R increases to infinity. 
For. all x e V:", we denote by i its zero-extension over !J,thus x e V. 

L js approximated by L * in such a way that 

<L, i>v',Y = (L*, x>v•'.Y•; Vx E V*. 
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We introduce an infinitely derivable function ~ which obeys 

~(x) = 0 for lxl ~ sh(R/2), 

~(x) = 1 for lxl;;::,: R, 

0 ~ ~(x) ~ I, l~'(x)l ~ (C1 /R) · m(x) for any x. 

Here C 1 does not depend on R = Arg sh R and the function Arg sh acts as a primitive 
of the weight function m. 

Using interpolation results [5], we show that the relation 

defines a continuous linear functional ~L E n-112 (F1). 
m 

Following the same lines as in the proof of Theorem 3 in [4], we state such a result: 
THEOREM 4. If we assume that there exists e > 0 such that 

IVPI ~te-e, IVP*I ~te-e, a.e. (x,y)e.Q 

then the functions P* = §* + w converge in _ w + V towards P = ~ + w as R increases to in
finity. Moreover, we have the asymptotic estimate 

REMARK 3. Note that I ~L I vanishes as R goes to infinity. Furthermore, for suit-
m H-1f2(r.> 

able choices of L we get an estimate inO(l/R). For instance, it is easily seen that if we take 
P~H = Poo, then·L vanishes for any R large enough. 

7. An algorithm to compute speed distribution . 

Henceforth we shall work in the bounded open set D* and for the sake of simplicity 
we agree to omit the stars from now on. 

On the other hand we assume the flow to be totally subsonic so that the function P 
actually represents the stream function. We extend the function ;. -+ e(.l.) by a function 
g continuously differentiable and strictly decreasing on R such that 

g(l) = e(l), 

g(A) ~ a > 0, V A eR, a eR, 

A. -+ z(A) = .l.g2 (.1.) is inversible all over R, 

and we denote h as the analogous function to Eq. (3.3) which satisfies 

h(z) = 1/g(.l.), V A eR. 

By setting 

e= VP 
m = h(lel 2)e, 
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the equation which defines the stream function as long as q ~ qc, 

(7.1) (h(IVPI2)VP +btVtp, Vz) = <L±H' z)n-l/2(r1),Hl/2(r1), Vz e V(') 

is turned into 

rote= 0, 

(m+bte, Vx) = <L±H' x>n-lf2(rt).Hlf2(ri)' Vx E V. 

According to an analogous device as in [4], we construct a sequen~ m", e" e [L2(.Q)]2 
with the following algorithm: compute m0

, e0 in [L2 (.Q)]2 such that 

(7.2) 

Get step n + 1 from step n through 

(7.3) 

compute tpn+t = ~n+t +w, ~n+t e V, solution of the variational problem 

(7.4) (V'I'~~+t, Vx) = (e"+t, Vx), Vz e V, 

(7.5) m11 +1 +bten+t = mri+bte"+v(VlJI"+1 -e"+1), v eR, v > 0. 

THEoREM 5. Assume that 

(7.6) lbl < 1/(!o, 0 < v < 2(1/(!o-lbl); 

thus the algorithm (7.2)-(7.5) is convergent and, more precisely, 

~· _. . ~ iil V, e"--. VlJ' in [L2 (D)]2, m"--. m= tq in [L2 (.Q)]2 , 

where 

1J1 = ~+w, q = (h(IVWI 2
) W,, -h(IV!P"jl) Wx) 

are the juncti01is connected to the solution of Eq. (7.1). 
THEOREM 5 is proved just in the same way as for the proof of Theorem 4 in [4]. 
From Eqs. (7.2) and (7.5) we deduce that the equality 

(7.7) (m"+b te", Vz) = <L:8 , x>n-lf2H1J2<r1>, Vx e V 

holds at each step. Since the algorithm is convergent, we get at limit 

VlJ' = e, 

hence 

rote = 0 in D ~ div (g(q2)q) = 0 in .Q 

and, integrating Eq (7.7) by parts, 

div m = 0 in D ~ rot q = 0 in .Q, 

m2 +bel = L±H on rl ~ u-b(!V = u+ -1-(poo-P~B), 
f!ooUoo 

that is to say we have computed the speed distribution in .Q whenever the flow is subsonic. 

C) The scalar product defined over (L2 (.Q))2 is also denoted as the scalar product over R2
• 
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8. First numerical experiments and comments 

We first note that at each step we have to compute Eqs. (7.4). This is very easy because 
we deal with the harmonic operator associated to the Dirichlet-Neumann boundary condi-· 
tions, hence the matrix is symmetric, definite and positive. 

To find the starting point m0
, e0

, we compute once am:lfor all the stream function tpo-

corresponding to the associated incompressible problem (see [2]). Then we set 

I eo = V"tJ'o, mo = -eo 
f!oo ' 

hence the condition (7 .2) is automatically realized. 
Naturally, we are anxious to find appropriate wind-tunnel corrections to simulate the

flight through an infinite atmosphere. Therefore we have first studied the speed distribu
tion as the profile is set in an unbounded domain. 

Note that the algorithm (7.2)-(7.5) still works. Just set 

b = 0, P~H = Poo, 

the conditions corresponding to completely open walls and choose in addition 

V= HJ(!J) 

to take into account the fact that 

'1' __. tooY, as • lxl 2 + IYI 2 
__. oo. 

With the finite element method of order I, we have computed the flow past an ellipse
the thickness ratio of which was 0.1. We have tried experiments with a large range of Mach. 
numbers at infinity and angles of attack from 0 to 7 degrees. In practice, the conditi~n (7.3) 
is written with the expression of p whatever the velocity modulus may be. It occurs that the 
algorithm still works for supercritical :flows with no shock. Figure 3, 4 and 5 give an exam-

:o 0.20 

Y Me =0.785 
Moo=0.70 
Moo=0.50 

a 0.20 DAD 

FIG. 3. Subcritical speed distributions, expressed in Mach number, along the ten per cent ellipse with an 
angle of attack of 1 degree. 
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FIG. 4. Transonic speed distributions along the ten per cent ellipse in the same conditions. 
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FIG. 5. Supercritical pockets past the ten per cent ellipse with an angle of attack of 1 degree. 

pie of the speed-distribution computed along the profile. More complete results have been 
presented in [9]. 

At last, we would like to discuss the constraint appearing in the inequalities (7.6) 

lbl < 1/eo. 
In terms of permeability it is equivalent to 

{8.1) ( 
y-1 )1/y-1 

P > 1+~2-M~ , 

so that the largest restriction corresponds to M 00 = Me. In practice, the inequality (8.1) 
appears to be quite reasonable. For instance, for the 10% ellipse without incidence (that 
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is to say the angle of attack which corresponds to the largest critical Mach number) we have 
found Me = 0.8; that implies P > 1.35. 

To conclude, we shall say that the weighted Sobolev space allows the statement of the 
first theorem, according to our knowledge, to prove the existence and uniqueness of the 
stream function of the flow between permeable walls. The convergence theorem justi
fies the usual way to set boundary conditions at a finite distance. On the other hand, 
the algorithm provides an easy calculus of the speed distribution; furthermore, the first 
numerical experiments in an infinite atmosphere show that the method is fast and efficient. 

Finally, since we can fit the circulation, we actually expect to deal with the profiles 
which present a sharp trailing edge. Indeed, we have already obtained some results on the 
way to take into account the Kutta-Joukowski condition as the profile lies in an infinite 
atmosphere (see [10]). 
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