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Unsteady supersonic radial gas expansion
from a rapidly started source

S.F. CHEKMARYOQOV (NOVOSIBIRSK)

THE PROBLEM of supersonic radial gas expansion to a low pressure medium from a rapidly started
source is considered. The present study is mainly concerned with the initial expansion stage of
an unsteady gas flow. For this stage, using a simple approximated solution, the regularities of
motion of discontinuity surfaces have been found which determine the structure of the flow
region. A numerical solution has been obtained for the problem of viscous heat-conducting

gases.

Rozwazany jest problem naddiwigkowej promieniowe] ekspansji gazu do osrodka o nizszym cis-
nieniu od nagle pojawiajacego si¢ Zrédla. Niniejsze studium dotyczy glpwme etapu ekspansji
niestacjonarnego przeplywu gazu. Na tym etapie, stosujac proste rozwigzanie przyblizone,
znaleziono zasady ruchu powierzchni nieciggloéci, ktére okreflaja strukture obszaru ply-
nigcia. Ot‘rzgmano rozwiazanie numeryczne dla zagadnienia przeplywu gazu lepkiego przewo-
dzacego cieplo.

PaccmarpuBaerca npobnema cBepX3BYKOBOIO PajiMaiHOIO PacliMpeHMs rasa B cpefty c Gosee
HH3KUM [aBJICHHEM OT BHESAMHO NOABJAIONerocAa Hcrounmka. Hacrosmee mccnenosanue
KACcaeTcsi IJIaBHBIM ofpasom aTama paciMpeHHs HecTallHOHADHOrO TedYeHMA rasa. Ha 3ToM
ITanme, OPUMEHAA MPOCTOe NPHONMYKEHHOE pellleHUe, HAWIEHLI DPErYJAPHOCTH NBHIKEHHA
TIOBEPXHOCTH Pa3phblBa, KOTOPLIE ONPEAENAIOT CTPYKTYPY obnacth TeuenmdA. Ilonyueno wm=
CJIEHHOE pelleHHe UIA 33/1a4l TeUeHHA BASKOrO, TEIUIONPOBONHOIO rasa.

Nomenclature

4

radial distance,

time,

temperature,

pressure,

density,

gas velocity,

ratio of heat capacities,

Mach number,

distance downstream from nozzle exit,
velocity of « surface motion,
gas mass in the range (ra, rg),
sound velocity,

u  viscosity.

PR N R

d
n ™

v=1,2 cylindrical and spherical symmetry,
dimensional value,
—(+) left (right) side of discontinuity surface,
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ambient space conditions,
stagnation condition,
sonic velocity surface,
source surface.

- +o 8

STATIONARY supersonic flows of heated gases in nozzles and free jets past underexpanded
nozzles are widely used in laboratory practice for physical and aerodynamic investigations.
In this case gas heating in a gasdynamic source pre-chamber is made using a pulse electric
charge or shock compression [1-3]. Under these conditions, gas flow from a pre-chamber
to a diverging nozzle section or to free space is started by an abrupt pre-chamber pressure
increase. In a critical nozzle section a stationary flow regime is set and further gas flow
development in the diverging nozzle section or free space occurs with a stationary gas
source in the critical nozzle section having the parameters p,, T, u,, which correspond
to those stagnations in the pre-chamber p, and T,. Provided that p, and T, remain con-
stant for a sufficiently long period of time, the required nozzle or jet stationary flow is set.
In a real case [1-3] the time during which they can be considered constant is small. Hence
it is important to know the way of stationary flow formation, particularly in the central
flow region which is usually used for experiments.

Gas flow in the central region of jets flowing from an axisymmetrical or slotted nozzle
with a heavily underexpanded stream as well as those in axisymmetrical or slotted nozzles
with a straight contour (provided that the nozzle wall friction is neglected) are close to the
radial one (with a sperical or cylindrical symmetry) [1-4]. Thus, as a result of idealizing
the starting problem we turn to the problem of radial (unsteady) gas expansion from
a rapidly started stationary source.

For the case of gas expansion to vacuum (as applied to nozzle flow) this problem was
solved in [1]. In reference [4] (as applied to jet flows) flow asymptotics is studied at 1 - co
for gas expansion to flooded space. In references [1, 4] the consideration was made in
terms of the ideal fluid theory.

1. Formulation of problem

Assume that in an infinite volume of rest gas with the known parameters p,,, T, there
is a spherical or cylindrical surface with the radius r;. It is necessary to determine the gas
flow development in the limit (r,, co) with time if at a certain moment ¢ = ¢, gas para-
meters on the surface r = r, jump to the given stationary value p,, Ty, u, > 0, i.e. the
stationary source is rapidly started.

2. General flow picture

Let the process of flow development be considered at radial gas (ideal fluid) expansion
into flooded space from a rapidly started supersonic stationary source; herewith the re-
sults of references [1-4] will partially be used. A qualitative flow picture for » = 1 and
v = 2 is analogous.
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Figure 1 shows the trajectories of discontinuity surfaces which determine the structure
of the flow region. The letters i, e, s are given for the interface separating the source and
ambient gases, the shock waves in ambient and source gases, respectively.

Fic. 1.

At the initial moment of time ¢ = ¢, the interface motion velocity V' = u,. The source
gas acts on the ambient one similarly as an expanding cylindric or spherical piston and,
since according to the problem conditions u; > 0 is instantaneously achieved, at the
moment ¢, the compression wave in the ambient gas will be centered. Hence it should be
considered that the ambient gas compression from the very beginning of its flowing will
occur under the action of a shock wave (e).

With rising r, the mass of ambient gas displaced and set in motion by a piston and the
ambient pressure counteraction increase, while the driving pulse of a source per unit time
remains constant. Hence the surface motion i is decelerated with time, thus hindering
free gas expansion from the source and resulting in its accumulation in front of the surface
i and compression. At the initial period the process of gas compression will be isentropic,
since at ¢ = ¢, velocities of the surface i motion and its “flowing” gas are equal, and the
difference in these velocities continuously grows with time. In time an isentropic compres-
sion wave transforms to a shock one whose trajectory is shown by a solid curve s; the
dashed portion of this curve corresponds to the stage of isentropic compression. Gas
flow in the region (r,, ry), under a solid curve, is not disturbed and occurs as if the gas
flowed into vacuum.

At t — oo r;, re— co. In this case ¥; - 0 and the wave is degenerated to a weak dis-
turbance. At the same time the pressure in the range (r,, r;) becomes close to that of the
ambient gas p,, as a result of which the shock wave tends to a certain position ry = ry, ~ ry
(Po1/peo)' " [4].

Herewith the following nomenclature will be used (see Fig. 1): T — initial expansion
stage r.,rs, r; € rg, Il —intermediate expansion stage, III — final expansion stage
(t = 00; 1y = 005 re = 00; 75 = 1)
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3. Basic regularities of discontinuity surfaces motion at the imitial gas expansion stage
to flooded space

For simplicity in terms of the ideal fluid theory consider gas expansion from a rapidly
started hypersonic stationary source (M > 1). The conditions in flooded space will be
taken practicable: g, < 05, Too € To;. In the limiting case of gas expansion to vacuum
the problem has a simple solution: gas (in particular, its front edge, i.e. the interface)
moves almost at a constant rate u =~ uy,, ~ u;, and the distributions p, ¢ and T in the
range (ry, r;) are close to those at stationary expansion [1].

Let the interface motion be determined. Using the concepts of the thin compressed
layer theory [6], we will assume [5] that at the initial expansion stage the gas mass con-
centrated in a compressed layer (7, r.) moves at an average velocity equal to V; = (dr;)/(dt).
Since, according to the problem conditions M7 > 1 and the thickness of compressed layer
is small, the influence of pressure due to the current tubes widening on the gas flow can
be neglected. In addition, the counterpressure p,, may also be neglected, since for suffi-
ciently small T, (or, to be more precise, for C2 < V'?) the flowing gas deceleration will
occur mainly as a result of the motion of the displaced ambient gas. Taking this into con-
sideration the pulse conservation equation will be written in the form

d | dr] ST .y
@G0 ‘&‘_r[(m;.l+ml.c)T‘:‘ + 2 fgur’dr] = 2vmp{ui’ry’,

where a dash is given for a dimensional variable and m; ; and m;, . stand for the gas mass
in the regions (rs, r;) and (r;, r.), respectively.

It is evident that m; , is approximately equal to the mass of the displaced ambient gas.
In particular, for r; > r{

- 2y 23!
(2 Mo = — el

To determine the value mj , let an equation of the following gas mass conservation be
used. At ¢ > t; it approximately equals

(3.3) mi; = mgiuiret’ —2vm [ o'rdr’.

In the range (r,, r,) gas flows as if it expanded into vacuum. In particular, when M3 > 1
we have ¥’ ~ y; and
(34) g'r'r = e;r;v
and this will be used to calculate integrals entering into Egs. (3.1) and (3.3). In addition,
having replaced the upper limits of integration in the above integrals for a close value

r;, after substituting Eqs. (3.2) and (3.3) into Eq. (3.1) and double integration, the law
of interface motion will be obtained:

2

3.5 —t) = brrt? = R S
( ) (ri r) bri +C1 t+C2’ b (v'l‘l) (‘l’+2) Qoos
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where r; = rifri; t = t'uifri; 0w = 0wl0i- At r;, t=0(1) from Eq. (3.5) and its
associated differential first order expression for integration constants the evaluation C,,
C, < 0(p) follows. Hence, for r;, ¢ > 1 we finally have

r+2
(3.6) t=r+ybr,?

Note that the solution method used [5] is a simplified version of the method based
on the parameter expansion into a series by the powers of ¢ = (#+1)/(x—1)[6] and
conforms to its zero approximation. In this case the solution obtained (3.6) accurately
coincides with an exact one (for ¢t > 1, r; > 1).

It should also be noted that to define the interface motion law we have used only the
equations of pulse conservation and continuity and have not used that of energy. This
implies that in a zero approximation of the thin compressed layer theory this layer motion
does not depend on its energy transfer processes. In particular, it is independent of whether
heat transfer from the compressed layer (or into it) takes place or not. Heat transfer to
or from may be due to such processes as radiation, condensation or, for example, relax-
ation of the molecule internal freedom degrees, whose influence on gas flow in a com-
pressed layer is similar to heat transfer to (or from) gases. The influence of flow of non-adia-
batic character in a compressed layer in terms of the thin layer theory [6] is considered in [7].

At r; € b~ Eq. (3.6) gives r; = t, which is the solution for gas expansion to vac-
uum [1]. The effect of flooded space begins to manifest itself at r, = 0(b='/). Consider
the solution obtained at r; > 0(b~'/*) where

1 2
3.7 r=b 2 p+7,
Coming back in Eq. (3.7) to the dimensional variables
1
ror2 iy '1-_2
3.8) o [(v+1)2(v+2) oiui’ri ] i
(2

one can see that the interface motion for each » = 1, 2 is determined: only by two values:
0o and the source-pulse per unit time I} = 2zvo;ui?ry”. If the pressure p., is neglected,
then, among the parameters determining the gas state in the ambient space only one
is unequal to zero, i.e. the dimensional value g,,. Hence the gas flow process itself in the re-
gion (ry, oo) is determined only by two dimensional values I1 and g, . Since their dimensions
are independent, in the region (r;, co) there is as similar solution of the problem dependent
on v, » and the only variable [8]:

3.9 A= ( ) re” '+2

Discontinuity surfaces are ascribed to certain fixed values .
This solution reduces to the known solution of the problem on gas displacement by
a cylindrical or spherical piston moving according to the power law r; = C't"**! (3.8).
In particular, we have
<= a(n, x,v),

(3.10) rt) = i—‘:r,(t), i—‘

where n = —»/(v+2). For » = 1.4 the numerical values @ = a(n, », ¥) are given in [9].
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To evaluate the value r.(¢f) the formula (3.10) may be used at r; < 0(b='"*) as well,
since the value a is weakly dependent on the # exponent (which cannot be said about the
parameters’ distribution itself in the region (r;, r.)). Thus, e.g. for » = 1.4 at the maximum
variation of n for Eq. (3.6) (from 0 to —/(v+2)) the value a for» = 1 and » = 2 changes
to the extent of 5% about a certain a,,., = 1.13 [9].

Let the approximate law of shock wave motion be found. Assuming that in the region
(rs; r) @ = gs—(x+1)/(—1) from Eq. (3.3) and using Eq. (3.4) we obtain

w41 rptl—pitt
e _1__,"_ =@+D)(@-ry),
3

where ¢ = t'ujfry, rqe = refri. Or with the account of ri—r, < r;

#+1 x—1
(3.11) By s (r;«- x+1r)'

The results of the above consideration make it possible to explain some regularities
of the discontinuity surface motion at a flow of shock-heated gas from a slit (the analogv =
= 1) and an annular slot (v = 2) [2, 3].

First the following should be noted. The condition r; > b~'” is equivalent to the con-
dition implying that the mass of the displaced ambient gas mj,.(~gy,ri’*!(?)) is much
above that of the gas supplied by the source, m, ;(~g{u;r{(t')). This provides a physical
foundation of the fact that at r{ > r} and ¢’ > ¢{ the law of interface motion r; = r;(z)
is determined only by the values », I and g.

It is reasonable to suggest that in the case of gas expansion from the source with M; = 1,
as is the case in the experiments [2, 3] at the initial expansion stage where m; . > m; ; and

"r{> r{, the motion of interface as before will be determined by two dimensional values
I} = 2vn(p{ui*+p{)ry and g,. Here then the considerations which have led to Egs.
(3.9)-(3.10), are valid.

Reference [2] presents laws of motion of the interface and shock wave in an ambient gas
experimentally determined and given as x, = C,t™ dependences. The analysis of experi-
mental conditions shows that practically for the whole stage of expansion the condition
mj . > my,; has been met. The table presents a comparison between. the values of n
exponents and theoretical ones.

For » = 1.4 numerical values of a from Eq. (3.10) are known [9]. Hence the value
Xe/x; can be compared with a theoretical one. For a flow of N, (¥ = 1.4) from a slit where
n. = n; =~ 0.67 we have x,/x; = 1.19 and r,./r; = 1.16.

The formulas (3.6), (3.10) and (3.11) determining the time laws of discontinuity surface
motion i, e, s at the initial expansion stage make it possible to introduce new variables

r \lfy s ¢ \1fv s

= (27, ()R, anies
€1 r (431 ry

Herewith the motion of the above surfaces for various p,/o; will be given by unified

dependences. The treatment of data on the interface motion law using these variables
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points to the actual generalization of these data [3]. Ibidem a comparison is given between
the law of interface motion and approximate solution (3.6) which gives an adequate agree-
ment over a wide range of v (1072 < 7 < 102).

4. Numerical solution of problem for viscous heat conducting gas

Unsteady radial flow of a viscous heat conducting compressible perfect gas is described
by the following system of equations [10]:

du ou 1 op 1 )4dpd u o
o I o TR ST i _Rel{.’» ar[ o T

@) T4 dT_ %=1 ap)= 1 {1 1i(r- ar)

e Y~ Na "I e ler o\ Y
4 5 du u ou [u)’
+?("_1)M‘”[('37) _"?EF*(T) ]
do l )
44 p =T,

where all values are related to their associated at r’ = r{; ¢ = t'uj[r{; Re, = piu ri/ui;
M, = ui/c;; the Prandtl number o and the heat capacity ratio » are assumed to be constant.

Proceeding from a general formulation of the problem and taking the account of the
character of the equation system (4.1)-(4.4), the boundary conditions can be written in
the following form:

att=1 u=1, T=1, p=1 forr=1,
u=0, T=T, p=0o forl<r<oo;
4.5
att>1 wu=1, T=1, o=1 forr=1,
u=0, T=T, forr = oo.

The system (4.1)-(4.5) has been solved numerically using a finite-difference approxi-
mation given in [11].

Figure 2 as an example illustrating the development of viscous heat conducting gas.
flow, presents. the flow parameters’ distribution for gas expansion from a rapidly started
cylindrical source (v = 1) with M; = M, = 1 to a medium with g, = 0.12, T, = Toy =
=12. Here x =7/5 0 =34, u=T.

Zero marks the distribution of those parameters which correspond to the moment 7, = 1.
These distributions representing smooth discontinuities were set in the calculations as ini-
tial ones. The indices 1-13 mark the moments with respect to time 7, = 1+0.32- 2E-L,
Solid and dashed lines stand for Re, = 25 and Re, = 200, respectively. Arrows with
indices s, i, e point to the positions (varying within 5-7%) of the corresponding disconti-
nuity surfaces for the moment 75 = 11.28.
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A general flow picture conforms to that given in Point 2. The shock wave e is formed
practically immediately after the beginning of gas flowing. Thus at the moment ¢, the dif-
ference in the value T/p*~* “before” and “after” wave is as large as 307, (for Re, = 200).
The process of gas compression in front of the internal “piston” surface during a.certain
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=

FiG. 2.

period of time remains isentropic. Thus, for the same Re, at the moment ¢, the behaviour
of p and T over the range from r = 1 to the point with the maximum valne g obeys the
law T = ¢*~*, accurate to 5%, as well. At the moment #s a shock wave s has already been
formed.

Gas flow in the range (1, r,) is the same as in the case of its expansion to vacuum. And
since in this case g, and T, are sufficiently high, the interface moves slower than the bound-
ary of the stationary flow at gas expansion to vacuum [1]. Hence gas flowing in the re-
gion (1, ry) is stationary. It possesses all the properties of the stationary radial flow at gas
expansion to vacuum [12]. It should be noted that here the influence of Re,, %, o and the
dependence u = u(T) for » = 1 and » = 2 manifests itself in a similar way.
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The behaviour of flow parameters in the region (r;, r,) at the initial moment of expan-
sion (up to ¢ = 0(/)) qualitatively conforms to that in the piston problem [9].

Att — cor,, r; = oo and r; — ry,. In this case as a result of the shock wave e degener-
ation to a weak disturbance T;, — T,,. At the same time T;_ tends to the flowing gas
stagnation temperature T, here equal to T,. Hence T;, — T;_. In addition, since on the
contact surface u;, = u;_, p;, = pi-, the parameters’ drop on it at ¢t = co disappears
and the flow goes to a stationary regime.

It should be noted that a decrease in the total flow continuity (a decrease in Re,),
resulting in a considerable change of the parameters over the total flow region, rather
slightly influences the instantaneous positions of shock waves and interface.

A quantitative pattern of flows for the case of spherical (v = 2) expansion of a viscous
heat conducting gas to flooded space with T, = Ty, is in good agreement with the one
above. A significant difference between the cases » = 1 and » = 2 is registered at T, # Ty
and mainly refers to the final expansion stage. This problem requires a special consideration
and will not be discussed here.

ry 7

,"// /42

25

FiG. 3.

Figure 3 presents a comparison between the dependences r; = r; () for the initial mo-
ment of gas expansion at » = 1, this was found using the approximate consideration of
Point 3 (Formula (3.6), Curve I) and according to the results of numerical calculation

Table 1.

Experiment Theory
x=9T x=7[5%=5/3 »x=9/7;7/5;5/3

v=1 n 068 071 0.5 0.67
ne 071 071  0.69

v=2n — 054 052 0.5
ne — 066 063

(Curve 2). Here % = 7/5; My = 5; pbfoy = 0.123; T"/T; = 0.145. Since at x = 7/5 > 1
a compressed layer is not infinitely thin and r. # r;, to achieve a better accuracy
of the approximate solution the value r, = ar; (3.10) was introduced into Eq. (3.2)
instead of r; which, in a physical sense, corresponds to m;,.. This led to a new value in Eq.
(3.6): b = 2a"*'[[(¥+1)(»+2)], a = 1.13. The additional conditions for a numerical calcu-
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lation are: o = 3/4; p = T; Re; = 400. As an illustrative example a dashed line is given
for the dependence r; = t, corresponding to the expansion to vacuum.

The approximate dependences r.(¢) and ry(z) determined by the formulae (3.6) and
(3.10) with a = 1.13, Eq. (3.11), are in agreement with those obtained from the results
of numerical calculation accurate to 5—10%,.

The author is grateful to Professor A. K. REBRoV for a useful discussion of the work.
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