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Hydrodynamics of strictly propulsive waves 

A. MONAVON (ORSAY) 

WATER propulsion has been studied from a theoretical point of view for fifteen years. However,. 
the author essentially interested in the total physical parameters associated to this kind of 
flow. A study of the details of the pressure field and local thrusts and powers which act on 
a thin waving plate is made. The description of simple shaped waves leads to ideas useful for 
a more involved analysis. As the wave number k grows, the situation becomes more intricate~ 
because then we observe more than three forces pushing at the same time on the plate. Never
theless, the principle of non-recoil is the same. In this case, the forces are shifted astelll (like 
the wave) instead of being stationary as in the smallest wave number case. The iilfluence of the 
flow parameters and particularly the wave number k on the resulting forces is investigated. 

Napftd wodny od strony teoretycznej byl badany od 15 lat. W niniejszej pracy autor byl 
gl6wnie zainteresowany wszystkimi parametrami fizycznymi zwictmnymi z tego rodzaju prze
plywem. Przeprowadzono badania dotyc~ce szczeg616w pola cisnienia i lokalnych sil ci~gu 
i mocy dzialaj~cych na cienk~ faluj~c~ plytktt. Opis fal prostego ksztaltu dostarczyl pozy
tecznych idei dla bardziej wnikliwej analizy. Gdy liczba falowa k rosnie, sytuacja staje sitt bar
dziej zawila, gdyi; wtedy obserwujemy wittcej niz trzy sily napieraj!lce w tym samym czasie na 
plytkft. Niemniej jednak zasada nieoddzialywania zwrotnego jest ta sama. W tym przypadku 
sily oraz fala ~ przesunittte do tylu. Fala przestaje bye stacjonarna, jak w prznmdku najmniej
szej liczby falowej. Zbadano wplyw parametr6w przeplywu, a w szczeg6lnosci ticzby falowej k 
na sily wypadkowe. 

Bogm.m npKBo~ c TeopeTHtiecKoii CTopoHbi Hccne~osanc.s~ OT 15 neT. B HaCTo.mi.leii pa6oTe 
aBTOp rJiaBHbiM o6pa30M 3alQITepeCOBaH BCeMH <!>H31{tleCKHMU napaMeTpaMU:, CB.R3aHHbiMK 
c 3TOro po~a Te'lleHH:eM. Tipose~eHLI HCCJie~oaaHH:H, KacaroiiUteCH no~o6HOCTeii non.s~ ~aB
JieHlf.R U: JIOKa.JibHbiX CIUI T.Rrll ~ MOIIUIOCTn:, ~eHCTBYJOIIUIX Ha TOHI<yro BOJIHHCTyro nnacnon<y. 
0nHcaHI{e BOJIH npoCToii <!>opMbi ~ano none3Hbie n~eK ~H 6onee no~o6Horo aHaJIU:3a. Kor~a 
BOJIHOBoe liHCJIO k paCTeT, CMTY~H CTaHOBHTCH 6onee CJIO»<HOH T. K. TOr~a Ha6mo~ae.M 
6onLwe 'lleM TpH CIUibi Hanopa, B 3TOM me CaMOM Mo~eHTe, Ha nnaCTn:HKy. TeM He MeHee 
o~aKO np:mnum OTcyTCTBM o6paTHoro B03~eHCTBJVI TOT me CaM. B 3TOM CJiy'llae CHJibl H BOJI
Hbl c~KHyTbi H~. BoJIHa nepeCTaeT 6b1Tb ~oHapHoii KaK B cnyqae HaHMLHewero 
BOJIHOBoro tmcna. Hccne~oBaHo BJIMHne napaMeTjjos Te'lleHHH, a B 'llaCTHOCTH BOJIHOBoro 
tmcna k Ha pe3ynrnpyro~e CWibi. 

1. Introduction 

HIGH Reynolds number aquatic propulsion has been studied from a theoretical point of 
view for twenty-five years. We are interested in the two-dimensional waving plate. The 
theory of such a model has been given by Wu [1, 2], and SIEKMANN [3]. However, the 
authors were essentially interested in the total physical parameters associated to this kind 
of flow. Our objective is to study in detail the pressure field and local thrusts and powers 
generated by a non-recoiling wave. 
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502 A. MONAVON 

:2. Description of the model 

The fluid is perfect and extends to infinity. It flows at free stream velocity U. A flexible 
p1ate of negligible thickness performs transverse waves which progress from left to right 
(Fig. 1). 

u 
~ 

\ 

X 

u --
Fro. 1. 

The deformation is supposed to be harmonic and described by the following equation: 

h(x, t) = H(x)e.J[at-kx+a(x)]. 

Calling (I) the circular frequency, b the half-chord and k the wave-number, we have: 

G = wbfU: reduced frequency, 

basic phase velocity, 

basic wave length. 

Co = Gjk: 

A0 = 2njk: 

The amplitude H(x) remains small and so does the slope, in order to linearize the Euler 
equations. 

The wave progresses at a phase velocity: c.(x) = u/ (k- ::; ). 
For the computations we have used a different formulation [1]. The wave is compos

ed of the sum of M+ 1 basic waves which progress at the same basic phase velocity: eo 

M 

h(x, t) = (}; bme.Jemx'") e.J<at-kx>. 
m=O 

As ~ result of a selected motion, the difference between the pressure on both faces 
L1p(x, t) can be computed. Pressure difference is positive when it pushes up the plate. 

The forces acting on a small part of the plate are: 
the lift: dL = t1pdx, 

ah 
the thrust: dTp = - LJp 7fX dx. 
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X 

FIG. 2. 

The contribution of this small segment to the total moment is: dM = - t1pxdx and 
it requires a power 

The distribution of both the thrust and the power are studied with their local values 
per unit length: 

5'p(x, t) = ~P /((Tp)/2); & = ~= /((P)/2) 

which can be averaged over a time period. 
After integration upon the plate we have the lift L, the moment M, the leading-edge 

suction Ts, the thrust Tp, and the power P. From the ratio between the total thrust and the 

-1 Ps Tp 

Pi X 

FIG. 3. 

power we can define a hydrodynamic efficiency: 'YJ which measures the part of P used for 
propulsion, the other part being wasted into the wake. 

An analytic solution of the general problem stated above has been given by Wu [1]. 
He used the acceleration potential representation 

00 

Llp(x, t) = (a0 tg ~ +2 ,2 a.sinnO )eM, x = cos 0 
n=l 

and provided the general expressions for the a,.. 
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504 A. MONAVON 

We have performed. a detailed analysis of the three following fields: pressure, velocity 
and local forces related to simple wave shapes. Such an analysis has never been done so 
far. And as a continuation we have carried out the calculation of strictly propulsive waves. 

3. Statement and solution of the problem 

Those specific waves are calculated such as: 
n to maintain the leading-edge suction Ts at zero, in order to prevent the flow from 

stalling near the leading-edge; 
2) to maintain both the lift and the moment at zero, in order to reduce the resulting 

forces acting on the plate to the sole pressure thrust Tp. 
As mentioned earlier by Wu [2, Part 2], the solution depends only on a finite number 

of basic waves. Here only four basic waves are needed to obtain strictly propulsive waves. 
The two previous conditions can be stated in the following way: 

a0 = 0 <=> Ts = 0, 

ao+a1 = 0 <=> L = 0, 

a0 -a2 = 0 ~ M= 0, 

which reduce to a0 = 0, a1 = 0, a2 = 0. 
It can be easily shown that each a, can be written as 

M 

a, = 2; a'; bm eitpm (n ~ 0) with 
m=O 

where the new coefficients a'; are 

~ = 2{ -j)•-l ~: H: -I rJ.(k)] (n;;. I), 

am 
A'; = dkm [(k-a)J,(k)], 

J,.(k} is the Bessel function of first kind and /F(a) + jf"§((J) the Theodorsen function [4]. 
If we take b0 = 1 and e0 = 0, the three conditions are equivalent to a linear system 

of six equations 
- '1 ao a~2 a~3 111 -ao 112 -ao ''3---ao -x1- --a~0Xo+a~0Yo-

"1 ao 112 ao "3 ao a~1 a~2 '3 ao x2 -a~0X-a'8Yo 

a~ a~ af 0 0 0 x3 -a?Xo 
0 0 0 a~ ai a3 

1 yl -a?Yo 
a~ a~ a~ 0 0 0 y2 -a~Xo 
0 0 0 a~ ai a~ -- _Y3 _ -a~Y0 

where 

bmei'Pm = Xm+jYm 

and 

X0 =I, Y0 = 0. 
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HYDRODYNAMICS OF STRICTLY PROPULSIVE WAVES 505 

The coefficients of this system are functions of k and c0 • Finally, the bm can be divided 
by the same number in order to impose 

sup[H(x)] = 1, 

X E ( -1, 1]. 

Therefore, for each value of the parameters k and c0 we are able to compute the bm 
and cm in such a way that the resulting wave satisfies the non-recoiling conditions and 
remains within th~ square ( -1 ~ x ~ 1) x ( -1 ~ y ~ 1). 

4. Results 

4.1. The wave amplitude H (x) 

Figures 4, 5, 6 and 7 represent the variations of the amplitude H(x) of the wave. 
We can notice that H(x) increases from the leading-edge to the trailing-edge just like 

the shapes that could be observed in nature. Within the range of our computations the 

H(x) 

Co=3 

c0 =4 

k= Jr/4 

-1 0 1 X 

FIG. 4. H(x): Amplitude of the waving-plate h(x, t). 

Co=4 

Co=3 

0 1 y 

FIG. 5. H(x): Amplitude of the waving-plate h(x, t). 
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H(x) 

- 1 a 1 X 

FIG. 6. H(x): Amplitude of the waving-plate h(x, t). 

H(x) 

-1 0 1 X 

FIG. 7. H(x): Amplitude of the waving-plate h(x, t). 

maximum of H(x) remains always situated at the trailing-edge and the amplitude at the 
leading-edge becomes smaller as the wave-number k and the basic phase velocity c0 become 
larger. 

4.2. The wave phase velocity C,.(x) 

For small wave number such as k = : or k = ~, we observe two maxima near which 

the wave will become "smoother" than elsewhe~:e. As the wave number becomes larger 

k = n or k = 3
; , these maxima disappear and then only one maximum remains. 

In every case the resulting wave progresses slower than the basic waves, that is, eh < eo, 
whereas, near the leading-edge, the phase velocity eh( -1) remains nearly equal to one. 
This last remark can be explained with respect to the ·absence of leading-edge suction. 

If we notice that a pure sinusoidal wave with constant amplitude and a phase velocity 
equal to one would not disturb the free ·stream, we can see that the leading part of the 
plates hows a shape similar to that quoted above. 
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FIG. 8. Ca.(x): Phase velocity of the waving-plate h(x, t). 

2.5 

k= JT/2 

X 

FIG. 9. C.(x): phase velocity of the waving-plate h(x, t). 

-1 0 1 X 

FIG. 10. C,.(x): Phase velocity of the waving-plate h(x, t). 

Moreover, the small discrepancies from the exact value Ch( -1) = I can be inferred 
from the perturbations of the incident flow generated by the motions of the middle and_ 
rear parts of the plate. 
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Ch(X) 
2.0 

1 X 

FIG. 11. C11(x): Phase velocity of the waving-plate h(x, t). 

·4.3. Amplitude of the pressure difference L1P(x) 

A. MONAVON 

The wave motions described above generate a pressure difference L1p(x, t) between 
both faces of the plate. 

llP(x) 

-1 a 1 x 

FIG. 12. LJP(x): Amplitude of the pressure difference Llp(x, t). 

-1 

FIG. 13. L1P(x): Amplitude of the pressure difference L1p(x, t). 
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Figures 12 and 13 represent the variations of the amplitude L1P(x) for several values 
of the wave number k; we can notice that the shapes depend highly on k. 

For small k, L1P(x) shows three maxima, whereas for larger values only one maximum 
remains then. These features will be explained later by means of the analysis of the distri
butions of the lift and the moment. 

In fact, the shape of L1P(x) does not depend on C0 • Roughly speaking, this does not 
appear as yet in Figs. 12 and 13; the variations of the phase velocity C0 operate as a multi
plying factor. 

4.4. Phase of the pressure difference fP (x) 

Associated to L1P(x), the variations of the phase angle q>(x) complete the description 
of the pressure difference L1p. 

~(x) 
180 

FIG. 14. qJ(x): Phase of the pressure difference L1p(x, t). 

The same shape difference can be noticed in Fig. 14. For small k, that is k = ~ and 

k = ; , q>(x) looks like stairs. T~e vertical parts, where cp(x) varies very rapidly, are lo

cated at the very same places as the amplitude minima. There is a phase angle difference 
of 180° between two successive steps. 

For larger values of k, the variations of q>(x) are more regular. 

4.5. Phase velocity of the pressure difference C,1p (x) 

The same features also appear through the variations of the phase velocity of the pres
sure difference. 

12 Arch. Mech. Stos. 4-5178 
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510 A. M9NAVON 

For small k, C.d11 (x) varies from small values which correspond to the vertical parts 
of q>(x), to very large values related to the flat steps' parts. Furthermore, it comes out 
that c.d, can be negative. 

- Cflp 
--- -CLip 

1 X 

-1 0 1 X 

FIG. 15. C.dp(x): Phase velocity of the pressure difference L!p(x, t). 

On the contrary, when k is larger, C.d, does not vary very rapidly. This means that the 
pressure difference progresses with an approximately constant phase velocity far from the 
·leading-edge. 

5. Non-recoiling mechanisms 

From the previous remarks we can deduce two different mechanisms which allow for 
zero lift and zero moment. 

S.l. Case of small wave numbers 

As we can see in Fig. 16 the envelope of L1p(x, t) is constituted of three parts separated 
by throttles where Ap is always nearly zero. 
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(t) 

t(t+3T/6) 
• (t+JT/CJ) I I I I 

-1 1 

I 
I 

rtJ I 

(t) I 
I 

The locations or the I 
Static I 

3 Forces are stationary trt+Jr/a) eq,ui/ibrium 

FIG. 16. Sketch of the lift and moment generation mechanism. 

Within each of these parts the phase velocity C-1, is very large. Finally, the phase dif
ference between two adjacent parts turns out to be 180°. 

Therefore, we can roughly consider that LJp(x, t) oscillates like a string and generates 
three distinct forces, each one corresponding to one alternation. 

Yet in order to satisfy the zero lift condition, the sum of these forces has to be zero, 
which implies the relative magnitude of the three parts. 

And the moment will be zero when two lateral forces push together on the central one 
which acts as a pivot. This requirement is satisfied by the phase difference of 180° which 
has been quoted earlier. Since the· locations of the three forces are nearly stationary, we 
·can speak of static equilibrium. 

5.2. Case of large wave numbers 

The second mechanism appears with large values of the wave number k, Fig. 17. 
Now the amplitude LJP(x) exhibits only one maximum. The phase velocity is roughly 

constant over the plate and slightly smaller than C0 • Hence LJp(x, t) progresses astern 
and shows three or four alternations. 

The lifting effect of LJp(x, t) can be represented as the sum of three or fourJorces, each 
one corresponding to one alternation and travelling astern at the same velocity as LJp. 

12* 
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!lp 
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-1 
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k=3JT/2 
C0 =2.5 

(t) 
(t+rr/2a) 

(t) 
--1~--.----.,---~~-L--~~--~~1 

0 

(t+JT/2a) 
(t) 

Dynamic equilibrium between 3 or 4 Forces 
which are travelling astern along the plate 

rp 
180 

90 

00 

-180 

- 270 

-360 

FIG. 17. Sketch of the lift and moment generation mechanism. 

A. MONAVON 

In order to obtain zero lift and zero moment, the same conditions as stated for the 
first mechanism should be satisfied for every time t. But since the forces travel from the 
leading-edge to the trailing-edge, they realize a dynamic equilibrium. 

6. Thrust generation mechanism 

Since no condition is required to obtain a special distribution of the thrust, the varia
tions of the local thrust per unit length ~ p(x, t) do not exibit characteristic features. 

However, for a given wave number k we can notice a particular value of C0 which 
leads to an almost positive distribution of f7 p· 

When C0 is small, for instance C0 = 1.25, the pressure field and the waving plate are 
quite out of phase (Fig. 18). 

Then, for . increasing values of C0 it appears that the phase angle difference between 
Llp(x, t) and h(x, t) becomes smaller. 

When C0 = 2, f/p(x, t) is positive everywhere and the phase angle difference is equal 
to n/2 (Fig. 19). Then, every segment of the plate generates a thrust. 

When considering large values of C0 , Llp(x, t) is more and more shifted relatively to 
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!:Jp 

1.0 
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k=3T 
c0 ;,1.25 

h 

FIG. 18. Skftch of the thrust generation mechanism. 

h 

1<=:rr 
c0 ,;2 

Fio. 19. Sketch of the thrust generation mechanism. 

h 
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Tp 
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2 
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-5 

FIG. 20. Sketch of the thrust generation mechanism. 
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X 

FIG. 21. Mean local thrust per unit length. 

h(x, t). Eventually, for C0 = 3.5 they are nearly in phase together and some parts of the 
plate generate a drag although the total streamwise force remai~s a thrust. 

These results are summarized in Fig. 21. 
W~ have plotted the average value over a time period of 5"p(x, t). Here we can see that 

the average distribution of the thrust upon the plate can be locally negative. 

rp(o)-£(o> 
o~----~1 ____ ~2~----T3 ____ ~4r·-----Ts~C~o 

FIG. 22. PhaSe difference at x = 0 between Ap (0, t) and h(O, t). 

Figure 22 shows the variations of the phase angle difference between Ap and h at the 
middle of the plate. This gives an approximative idea of the shift between the pressure 
difference and the waving plate near a maximum of AP(x). 

For increasing values of k, the optimum value of C0 decreases. However this particular 
result is of secondary importance since we know from a paper by Wu [2] that it is possible 
to · compute waves which minimize the kinetic energy wasted into the wake under the con
straint of the fixed total thrust T. 
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1. Hydrodynamics eft'iceney 

Nevertheless, a very simple result that we have discovered through our computations 
is the expression of. the hydrodynamic efficiency fJ· 

q{%) 
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110 
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80 

Drag ----
\ 

Thrust ----
~ 1 c0+3 

~ 
(}•2 c

0
+1 

10 

60 --------
50 

0 1 3 4 5 Co 

FIG. 23. 11: Hydrodynamic efficiency (Vk). 

It appears that 1J only depends on ~he basic phase velocity C0 and does not depend on 
the wave number k. 

1J is given by the following formula: 

1 C0 +3 
1J = 2 C0 + 1' 

which is valid within the range of our computations. 
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