
Arch. Mech., 39, 6, pp. 619-632, Warszawa 1987 

Some existence results in dynamical thermoelasticity 
Part II. Linear case 

A. CHRZ(SZCZYK (KIELCE) 

THis PAPER is a continuation of the paper [1] concerning the existence of solutions in nonlinea. 
thermoelastodynamics and is devoted to the investigation of corresponding linear equations 
The proofs are similar to those in [2] and therefore will be only sketched. · 

Praca dotyczy istnienia, jednoznacznoki oraz ci~glej zaleznosci rozwi~zari od danych dla pew
nego liniowego ukladu r6wnari obejmuj~cego w szczeg6lnosci r6wnania klasycznej dynamiczne
termospr~zystosci. Przyj~te zaloi:enia dotyc~ce gladkosci wsp61czynnik6w i danych s~ na tyle 
slabe, i:e wyniki pracy mogly bye zastosowane w c~sci pierwszej (patrz [1]) do dowodu istnienia 
rozwi~zari dla nieliniowej dynamicznej termospr~i:ystosci. 

Pa6ota rroca.a~eHa cy~ecraoaaHmo, e.[UIHCTBeHHoCTH H HerrpepbiBHoii: 3aBHCHMoCTH oT AaH
HbiX ):CUI HCKOTOpOH JIHHCHHOH CHCTCMbl ypaBHemm, OXBaTbiBaiOiqHX B 'tlaCTHOCTH IUI8C
CH'tleCKHe ypaBHCHHH .Z:UlliaMH'tleCKOH TepMoynpyroCTH. ilpCAIIOJIO>KCHHH rJia,zn<OCTH Ko3<P
cpHJ..UICHTOB H AaHHhiX Ha CTOJibKO CJia6bie, 'tiTO pe3yJibtaTbl pa6oTbl MOrJIH 6biTb npHMeHCHbl 
B nepBoH 'tlaCTH ( CM. ( 1 ]) B AOKa3aTeJibCTBe cymeCTBOBaHHH peweHRH AJIH HeJJHHeMHOH ,[UI• 
HaMH'tiCCI<OM tepMoynpyroCTH. 

1. Formulation of the problem 

IN' OPPOSITION' to the nonlinear case, the literature concerning the well-posedness of ini
tial boundary value problems of linear thermoelastodynamics is relatively extensive, see 
for example [3]-[6]. 

It seems, however, that the existing papers do not contain the results sufficiently strong 
to be applicable in the nonlinear case(!). Therefore we have decided to write a separate 
paper devoted to the investigation of the linear equations used in [1]. These linear equations 
are slightly more general than the classical equations of the linear thermoelasticity and 
contain the last ones as a special case. 

To be more precise, in the present paper we investigate the system of linear operator 
equations of the form 

(1.1) 

(1.2) 

x+A {x, 0} = f, 
• bfJ + B {x, o} = g in at x ] o, T[, 

( 1) In particular, in th~ linear theory the coefficients of equations are smooth functions of the position 
of the point while in the nonlinear case they are functions of solutions and therefore depend additionally 
on the time and belong to appropriate Sobolev spaces. 
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620 

where 

(1.3) 

(1.4) 

--- - -------

A {x, 0} = A1x+A20, 

B{x, 0} = BtO+B2x+B3i 

A. CHRZI,jSZCZYK 

and 14 is a given regular domain in R 3
,] 0, T[ is a finite interval of R1, x, 0 are unknown 

functions defined on 81 x] 0, T [with values in R 3 and R 1 respectively, x, & denote corres
ponding derivatives with respect to t E ] 0, T[ , f, g are given functions defined on f!J x ]0, 
T[ with values in R3 and R1 , respectively. 

The operators Ah i = 1, 2, Bh i = 1, 2, 3, the coefficient band the functions/, g are 
equal to the operators A lU, ii), i = 1, 2, Bifi, 0), i = 1, 2, 3, the coefficient b(x, if) and 
the functions f(X, ii), g(x, 0) of the paper [1 ], respectively, and have the properties de
scribed in Lemma 1 and Lemma 2 of [1]. 

To make the paper accessible to readers who are not interested in the nonlinear case, 
we show that the system (1.1), (1.2) obeys the classical equations for a linear nonhomo
geneous thermoelastic body. To this end one has to use the relation x(X, t) =X +u(X, t) 
where x (X, t) is the position of the point X E 81 at the time t E] 0, T[ and u(X, t) is the 
displacement vector, and next to put 

(1.5) A1 X = _!__divC[E], A2 0 = _!_-div(0-00)M, f= _!_ b, 
e e e 

B1 0 = div(KVO), B2X = 0, B3X = OoM · E, 
b = c, g = r, 

(1.6) 

1 
where 0 = O(X, t) the temperature function, e = e(X) > 0- the density, E = "2(Vu+ 

VuT)- the infinitesimal strain tensor, C = C(X)- the elasticity tensor, M = M(X)
the stress-temperature tensor, 00 - the reference temperature, c = c(X) > 0- the spe
cific heat, K = K(X)- the conductivity tensor, b = b(X, t)- the body force, r = r(X, t)
the heat supply. As a consequence we obtain the known equations, see [7], p. 310, 

(1.7) eu = div(C[E]+(0-00)M)+b, 
• r • 

(1.8) cO= div(KV0)+00 M· E+r. 

The reader interested in Eqs. (1. 7) and (1.8) only may read the present paper independently 
of [1]. 

In a formulation of the main results of this paper we shall use the notations concerning 
the function spaces introduced in [1]. For easy reference we record briefly these notations 

First of all let us recall that in [1] we have put 

H; = W"· 2 (81' R3
), Hy = W'~· 2 (81' R 1

), y E R1
, 

where the right hand sides are Sobolev spaces of functions defined on 81 and with values 
in R 3 and R1

, respectively. The norm of these spaces is denoted by II · II,. The spaces V, 
V are defined as follows: 

V = {xEH1 :X = 0 on off~}, V= {0EH1 :0 = 0 on o81}. 

We have also introduced the notations X, = Hyn V, Yy = H,n V. 
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SOME EXlSTENCE RESULTS IN DYNAMICAL THERMOELASTICITY. PART II 

Moreover, the following spaces of operators are used: 

(1.9) 

m-1 

!1!1 = n .Ie(ZJ+lZJ), 
J=-1 

m-k 

!l!k = n !e(ZJ+k' Z1), 
j=O 

m-2 

!e2 = n !e(ZJ+2' Z1), 
i=-1 

k=3, .. . ,m, m;;:::4, 

621 

where Z1 = H1 or z1 = H1 and .Ie(Zl, Z 2) denotes the space of bounded linear operators 
from the Banach space Z 1 to the Banach space Z 2 • 

Finally the usual notations concerning spaces of functions defined on [0, T] with 
values in a Banach space Z are used as for example LP([O~ T], Z), Wk·P([O, T], Z), 
Ck([O, T], Z), 1 ~ p ~ + oo, k = 0, 1, 2, ... (see [8], Chapt, I Sect. 3). If 1p is an element 

(i) 

of Wk·P([O, T], Z) or Ck([O, T], Z), then 1p denotes the i-th derivative of 1p with respect 
to t e[O, T]. 

Now we are ready to formulate precise assumptions concerning the operators Ah 
i = 1, 2, Bi, i = 1, 2, 3 and other data. 

First of all let us assume that an integer m, m ;;:::: 4, is given and f!J is a bounded do
main of class em. 

Let the following inclusions be satisfied: 

(1.10) 

(m-1) 

m-1 

AtE n Wk·co([O, T], !l'k+l), 
k=1 

m-2 

Bl' B2 E n wk.co([o, T], !l'k+l), 
k=l 

8 1 E L 2([0, T], !e(Hm-t, H_t)nfe(Hm, Ho)), 

m-1 

A2, B3 En Wk· 'fl ([O, T], !l'k), 
k=1 

m-1 

bE n Wk,co([O, T], Hm-t-k). 
k=O 

Also Jet the operators At and B1 satisfy the following conditions: 

(1.1 1) For any k = 0, 1, ... , m-2 and any x, () the inclusions x E Xk, 

At X E Hk (resp. () E yb Bt () E Hk) imply X E xk+2 (resp. () E yk+2). 

Furthermore assume that there exist positive constants /-li, ui, Ai, i = I, 2, c0 , such 
that 

llxl lk+2 ~ f..lt(llx ll k+IIAtXllk) for all X EXk+2' 
(1.12) 

1! 8i[ k+2 ~ P2(1!Biik+I!Bt()!lk) for all () E yk+2' 

(At x, x>+utllxll5;;:::: ;,tllxllf for all X EXt, 
(1.13) 

(B1B, B)+u21!BI!5;;:::: l21!BIIi for all () E Yt' 

(1.14) b;;:::: c0 on r!J X [0, T]. 
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622 A. CHRZ~C:ZYK 

For the general equations (1.1), (1.2) the conditions (1.10)-(1.14) are motivated by 
Lemma I and Lemma 2 of the paper [1]. 

In the special case of Eqs. (1.7), (1.8) where the operators A1 , A 2 , B1 , B3 and the 
coefficient b are defined in the relations (1.5), (1.6) and are time-independent, the rela
tions (1.10) reduce to 

(1.15) 
Al,Bl E!l'2, A2,B3E!l'1, 

bEHm-t· 

To satisfy the relations (1.15) it is sufficient to assume that the functions c, e and the com
ponents of the tensors C, M, K belong to the space Hm--t· The relations (1.11)-(1.14) are 
in this case the consequences of the strong ellipticity of the tensors C, K and the posi
tivity of the functions c, (!. 

As in [1] the right hand sides of Eqs. (1.1), (1.2) are assumed to satisfy the conditions 

(1.16) 

m-2 

jE n Ci:([O, T], Hm-k-2), 
k=O 

m-2 

g E n Ct([O, T], Hm-k-2), 
k=O 

(m-1) 

f E L2 ([0, n, Ho), 

Equations (1.1 ), (1.2) will be considered together with the initial conditions 

0 1 0 

(1.17) x(O) = X, x(O) = X, 0(0) = 0 on 31, 

where the right hand sides are given functions satisfying the relations 

0 1 0 

(1.18) XEHm, XEHm_ 1 , 0EHm 

and with the boundary conditions 

(1.19) X = 0' 0 = 0 on oBI X [0' T]. 

To satisfy the compatibility conditions at t = 0, we define for k = 0, 1, ... , m- 2 

(1.20) 

k 
k+2 (k) ~ (k) (i) k-i (i) k-i 

X = f(O)-? i [At(O) X +A2(0) 0 ], 
1=0 

k k 
k+l (k) '-' (k)(i) k+1-i ~ (k) (i) k-i (i) k-i (;) k+l-i 

(1.21) b(O) 0 = g(O)-~ i b(O) 0 - .? i
1 

[B1 (0) fJ +B2 (0) X +B3(0) X ]< 2
> 

1=l 11=0 

and assume that 

k 

(1.22) 
XEXm-k• k=2, ... ,m, 
k 

0EYm-k' k= I, ... ,m-1. 

(2) In the case of the time-independent operators defined in the relations (1.5), (1.6) the relations 
(1.20), (1.21) simplify in an obvious manner. 

http://rcin.org.pl



SOME EXISTFNCE RESULTS IN DYNAMICAL THERMOElASTICITY. PART II 623 

Finally we introduce the auxiliary expressions 

(1.23) 

(1.24) L0 = IIA1(0)11zz+ llb(O)IIm-•' e E ]0, ~ [-sufficiently small, 

m-1 (k) m-1 (k) 

(1.25) L = esssup {IIAt (t)l/zz +}; IIA1 (t)llzk+l + I/A2(t)ll.2''t +}; IIA2(t)l1zk 
re~.n k=1 k=1 

m-2 (k) m-; (k) 

+ IIBt(t)llz2 +}; IIBt(t)ll2'k+1 + IIB2(t)ll2'z+ ll!B2(t)ll2'k+1 + IIBJ(t)ll2't 
k=l k=l 

m-1 m-
~ (k) ~ (k) (m-1) } 

+ L..J IIB3(t)112'k+ L.,; llb(t)llm-k-t-a+ll b (t)llo 
k=l k=O 

T T 

+ (J II <B~
1

> (t)II~<Hm-t,H-t>dtr12 
+ (J II (B~

1

> (t)II~<Hm,Ho>dtf 12 

0 0 

T (m-1) 1/2 
+ (J II B2 (t)li~(Hnr,Ho)dt) ' 

0 

m k m-2 (k) T (m-1) 

(1.26) N =}; llxll!-k+ max L llf(t)ll!-2-k+ r II f (t)ll~dt 
k = 0 I e (0, T) k = 0 0 

m-l k m-2 (k) T (m-l) 

+}; 11011!-"+ max}; llg(t)ll!-2-k+ J II g (t)ll:.tdt. 
k=O te[O, TJ k=O 0 

Now we formulate our main result: 
THEOREM. Let the assumptions (1.10)-(1.14), (1.16), (1.18), (1.22) be satisfied. Then 

for any positive number T the problem (1.1), (1.2), (1.17), (1.19) has a unique solution 
{x, 0} with the properties 

m 

(1.27) X En C"([O, T], Hm-k), 
k=O 

m-2 

(1.28) () E n CA:([O, T], Hm-k), 
k=O 

Furthermore, the following estimate holds: 

m (k) m-2 (k) (m-1) T (m-1) 

(1.29) esssup(};llx(t)ll!-"+}; IIO(t)ll!-k+ll 0 (t)ll~)+ J II 0 (t)llfdt 
te[O, TJ k=O k=O 0 

~ (C1 N+C2 LN)(1 + (1 + TC3)exp(TC3)), 

where 

ci = Ci(co' p,, u, A, L0
) for i = 1' 2, c3 = CJ(Co, p,, u, A., L0

' L) 

and the functions c1' c2' c3 depend continuously on their arguments. 
The proof of this theorem will be divided into several steps. 
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624 A. CJmz~zczYK 

2. Regularization 

It is well known that the operators At, i = 1, 2, B1, i = 1, 2, 3 can be extended to the 
interval [- T, 2T] in a smooth manner, see [9] Chapt. 1, Sect. 2.2 and therefore the se
quences 

(2.1) 
A,n(t) = (en*Ai)(t), i = 1, 2 

B1n(t) = (en*B,)(t), i = 1, 2, 3 n = 1, 2, ... 

can be constructed, where en is a usual sequence of regularizing kernels and the symbol -f.
denotes convolution, i.e. 

00 

(en*'f')(t) = f en(t-a)tp(a)da, t E [0, T], 'f' = A1 or B;. 
-oo 

The operators A1n, i = 1, 2, Bin' i = 1, 2, 3 have the following regularity properties: 

AlnJ BlnJ B2n E cm([O, T], !l'2), 

A2n' B3n E cm([O, T], !l'l). n = 1' 2, ... 
(2.2) 

and the following convergence properties if n -+ + oo : 
m-1 

Atn-+ At in n Wk· 00 ([0, 1'], .!l'k+t), 
k=1 

m-2 

B1n-+ B1 , B2n--+ B2 in n Wk·oo([O, T], .!l'k+ 1), 
k=1 

(m-1) (m-1) 

(2.3) Btn -+ Bt in L2 ([0, T], .!l'(Hm-1, H_t)n.P(Hn, Ho)), 
(m-1) (m-1) 

B2n-+ B2 in L2{[0, 11, .!l'(Hm, Ho)), 
m-1 

n wk·oo([o, 11, !l'k). 
k=1 

Since the construction does not generally preserve compatibility conditions (1.22), 
2 m 1 m-1 

we approximate x, ... , x, (), ... , () , f, gin such a way that the compatibility holds true. 
To this end we put 

m m m-1 m-1 m-1 m-1 

(2.4) Xn =X· Xn = X• ()n = (), 

and note that for sufficiently large r > 0 and for x1 , x 2 , n > r the operators 

(2.5) 

and 

(2.6) 

are invertible from X"+ 2 to Xk and from Yk+ 2 to Yk, respectively, if k = 0, 1, ... , m- 2. 
k k 

Thus, a recursive determination of Xn, ()n, k = 0, 1, ... , m- 2 from the equations 
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k+2 k 

(2.7) l.n + [Al,,(O)+~~ -A2rr(O)(Btn(0)+~2)- 1 B2n(O)]Xn 

k+1 k+l k+l k 
+Azn(O)(Btn(O)+u2)- 1 

( -b(O) On -B3n(O) X +b(O) 0 +Bt(O)O 

k k k+ 1 k+2 k k k 

+u20+B2(0)x+B3(0) X)= X +A(O){x, O}+utx, 

k +I k k k + 1 k+ 1 k k k 

(2.8) b(O)( On +B1n(O)+x2)0n+B2n(O)xn+B3n(O) Xn = b(O) 0 +B(O){x, O}+u20 

is possible. Here 

k k k k 

A(O){x, 0} = At(O)x+A2(0)0 

and 

k k k k k+ 1 

B(O){x, 0} = Bt(O)O+B2(0)x+BJ(O) X • 

It is not difficult to check that the convergence properties (2.3) imply 

k k 
Xn __.X in Xm-k• k=0,1, ... ,m-2, 

(2.9) 
k k 
(jn --+ (j in Ym-k• n--+oo. 

Now let us rewrite the formulas (2. 7), (2.8) in the abbreviate form: 

k+2 k k k k+2 k k k 

(2.10) 
Xn +An(O){x"' On}+utXn = X +A(O){x, 0}+u1 x, 

k+ 1 k k k k+ I k k k 

b(O) On + Bn(O) {Xn, On}+ U2 ()" = b(O) (j + B(O) {X, (j} + "2 (j, 

where 

k k k k 
A11(0){Xn' 011 } = A111(0)xn+A2,.(0)0,., 

k k k k k+l 

B"(O) {Xn, 0"} = Btn(O) 0, + B2n(O) Xn + B3,.(0) Xn 

and let us define the sequences 

(2.11) 

(2.12) 

0 0 

P~ = "1Cx- x,), 
0 0 

q~ = "2(0-011), 

k 
k k ~ (k) (i) k-1 k-i (i) k-l k-l 

P~ = ut(X-xn)+? i [An(O){Xn' 0"}-A(O){ x, 0 }], 
I= I 

k 
k k ~ (k) (i) k-i k-i (i) k-i k-i 

q! = r.2(0-0n)+? i [B11(0) { Xn, 0"}-B(O) {X , 0 }] 
1=1 

k 

2 (k)(i) k+1-i k+l-i 

+ . b (0) ( (jn - (j ) , 
l 

i= 1 

5 Arch. Mech. Stos. nr 6/ 87 
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626 A. CHRZ~ZCZYK 

where 
(i) k-i k-i (i) k-i (i) k-i 

k = I, 2, ... , m-2, An(O) { Xn, On } = Aln(O) Xn + Aln(O) On 

and the symbols 
(/) k-i k-i (i) k-i k-i (i) k-i k-i 

A(O){ X, 0 }, Bn{Xn, On}, B(O){ X, 0 } 

are defined analogously. 
From the properties (2.3) and (2.9) it follows that 

(2.13) 
p:-+ 0 in Xm-k' k = 0, 1, ... , m-2, 

q! -+ 0 in Ym-k, as n -+ oo. 

By the trace theorem, see [9], Chapt. I, Sect. 3.2, there exist sequences {Pn }, {qn }, n > r 
such that 

(2.14) 

m-1 

Pn E n Wk' 2 ([0, T], Hm-1-k), 
k=O 

(k) 

Pn(O) = p~, 

m-1 

nr-1 

qn En Wk' 2 ([0, T], Hm-1-k), 
k=O 

Pn-+ 0 in n Wk· 2 ([0, T], Hm-1-k), 
k=O 

m-1 

qn-+ 0 in n Wk· 2([0, T], Hm- 1-k), as n-+ oo. 
k=O 

Therefore if we define f,., Kn by 

(2.15) 
fn == f+pn, 

Kn = g+qn, 

then it is not difficult to prove that 

(2.16) 

(2.17) 

(m-1) (m-1) 

m-2 

in n Ck([O, T], Hm-2-k), 
k=O 

f, -+ f in L 2 ([0, T], H0), as n-+ oo, 

m-2 

Kn-+ g in n Ck([O, T], Hm-2-k), 
k=O 

(m-1) (m-1) 

Kn -+ g in L 2 ([0, T], H_ 1), as n-+ oo 

and the compatibility conditions 

k 
k+2 (k) ~ (k) (i) k-i k-i 

Xn = f,(O)- ? i An(O) { Xn , On } E Xm-k- 2, 

1=0 

k+l (k) ~'k)(i) k-i k-i ";(k)(i) k+l-i 
(2.18) b(O) On = 'g(O)- 4 \i Bn(O) { Xn, On}-? i b(O) On E Ym-k-h 

1=0 I= l . 

n > r, k = 0, 1 , ... , m- 2, hold true. 
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3. Existence of solutions for the regularized problem 

In the present section we shall show that if the conditions ( 1.1 0) are replaced by the 
stronger conditions 

(3.1) 
At, Bl, B2 E cm([o, T], .P2), 

A 2 , B3 E Cm([O, T], .P 1), 

then the existence of solutions of the problem ( 1.1 ), ( 1.2), ( 1.17), ( 1.19) can be proved 
by use of the Faedo-Galerkin method. In a consequence we shall prove that the regula
rized problem from Sect. 2 has at least one solution. 

Let us differentiate Eqs. (I. I), (1.2) m- I times with respect to t to obtain 

(3.2) 

m-1 m-1 
(m+l) (m-1)_ ~(m-1J· (i)(m-l-i) ~(m-1)(i)(m-l-i) (m-1)_ 

X + A 1 X - - . A1 X - . A2 0 + f = F, 
l l 

i=l i=O 

m-1 
(m) (m-1) ~(m-1)(i)(m-i) (i)(m-1-i) 

b 0 + B1 0 = - . (b 0 + B 1 0 ) 
l 

i=1 

m-1 
~(m-l)(i)(m-1-i) (i)(m-1) (m-1) 

- L,.; ; (B2 X + B3 X ) + g = G. 
i=O 

We shall show the existence of a weak solution of the problem (3.2) with the initial 
conditions 

0 1 (m) m 

x(O) = x, x(O) = x, ... , x(O) = x, 
0 • 1 (m-1) m-1 

(3.3) 
0(0) = 0' 0(0) = 0' ... ' 0 (0) = 0 . 

Let us note that the compatibility conditions (1.22) imply that a solution of the problem 
(3.2), (3.3) is also a solution of Eqs. (1.1), (1.2), (1.17). The boundary conditions (1.19) 
will be accounted for by appropriate choice of the function spaces used in the proof. 

As usual in the Faedo-Galerkin method Jet {~11 }.:'= 1 be a base of V and {Cp}~ 1 
a base of V. Let V, and V" be the subspaces of V and V spanned by {~1 , •.• , ~"} and 
{C 1 , ••• , Cv}, respectively. We seek a Faedo-Galerkin approximate solution in the form 

v v 

Xv = 2: f/Jvl' ~~" 0, = l;'PvpCp, V = 1,2, ... , 
tl=1 p=1 

where qy,P, 1J'111_~. are real-valued functions defined on [0, T] such that the ordinary differen
tial equations 

(m+ I) (m-1) 

( Xv , ~~-')+(At Xv , ~~-') = (F, ~~-'), 
(m) (m-1) 

(3.4) 

( b Ov, C 1) + ( B 1 Ov , Cl-') = ( G, Cl-') , /-t = 1 , 2, ... , V, 

with the initial conditions 
0 (m) m 

(3.5) 
x,(O) = x,, ···' Xv(O) = x,, 

0 (m-1) m-l 

0"(0) = 0,, ... , Ov (0) = 0, 

5* 
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628 A. CHRZ~ZCZYK 
- - ----------------- --- ----··-- ------ - -

0 m 0 m-1 0 m 0 m - 1 

are satisfied, where x,, ... , x,, 0,, ... , 0, are the projections of X· ... , x and 0, ... , () 
on V, and V,, respectively. 

It is easy to check that the following a priori equality for the approximate solution 
{x,, 0,} holds: 

(m) (m-1) (m-1) (m-1) 
1 

(m-1) (m-1) m 

(3.6) llx,ll~+llh 112 0, II~+(At x. , x, >+ J (B1 0,, , o, )da = llx,ll6 
0 

m-1 m-1 m-1 
1 

• (m-1) (m-1) 
1 

(m-1} (m-1) 
12 2 f f. +lib 1 (0) 0, llo+(At(O) Xv, x, )+ (At x, , x, )da+ (b O. , 0, )da 

0 0 

(m-1) m-1 
1 

(m-1) 
1 

(m-1) 

+2(F, x. )-2(F(O), x, )+2 j (F, x, )da+2 j (G, 0, )da 
0 0 

which, according to the relations (3.1) and (1.12)-(1.14) leads to 

I 
(m) (m-1) (m-1) J (m-1} 

(3.7) llx.ll~+ll 0, 11~+11 x, IIi+ II 0, llrdu 
0 

t - t . . J (m) (m-1) (m-1) C ~ f (m-1) 

~ Ct+C2 (llx,ll~+ll x, llr+ll o. ll~)da++ II 0, llida 
0 0 

with the arbitrary positive number ~ and some constants c.' c2, CJ. Putting CJ ~ ~ l 
and using the Gronwall's inequality, we get 

(m) (m-1) (m-1) 
1 

(m-1) .. 

(3.8) II x,ll~+ II 0, II~+ II x, Iii+ f II 0, llidu ~ C4, 
0 

with constant c4 > 0. 
The estimate (3.8) enables us to extract two subsequences of the sequences {x, }:; t 

and {0, }:': t weakly convergent in the space 

W"'· 2([0, T], H0)nW"'-t· 2 ([0, T], Ht) and wm-t. 2 ([0, T], Ht), 

respectively. By a standard argument, the limits x and 0 of the two subsequences form 
a weak solution of the problem (3.2), (3.3) and therefore the solution of the relations 
(1.1), (1.2), (1.17). 

Integrating Eqs. (3.2) with respect to t and using the compatibility conditions (1.22), 
we obtain the equalities 

k k 
(k) (k+2) ~ (k) (i) (k-1) ~ (k) (i) (k-i) (k) 

At.X = - X - L.J i At X - LJ i A2 0 + f, 
i=l i=O 

k k k 
(3.9) (k) 2 (k)(i)(k-i+ 1) 2' (k) (i) (k-i) 2(k) (i) (k-i) (i) (k+ 1-i) (k) 

Bt 0 = - . b 0 - . Bt 0 - . [B2 X + B3 X ] + g , 
l l l 

i=O i= 1 i=O 

k=0,1, ... ,m-2. 
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Similarly as in [2], from Eq. (3.9) and the elliptic regularity properties of the operators 
A 1 , B 1 it follows that the solution satisfies the additional smoothness relations 

m m-l 

(3.10) X En Wk·2 ([0, T], Xm-k), () E n Wk· 2 ([0, T], Ym-k). 
k=O k=O 

4. Regularity and uniqueness of solutions of the non-regularized problem 

Now let us assume that {x. 0} is a solution of the problem (1.1), (1.2), (1.17), (1.19) 
with the properties (3.10) and that the hypotheses (1.10)-(1.14), (1.16), (1.18), (1.22) are 
satisfied (3). 

From the Sobolev embedding theorem and from the properties (3.10) it follows that 

(4.1) 

m-l 

X E n cm-l-k([O, T], Xk), 
k=O 

m-1 ()En cnr-l-k([O, T], Yk). 
k=1 

To prove that the solution {x, ()} possesses the regularity properties (1.27), ( 1.28) 
(m-1) (m-1) 

we use Eqs. (3.2), which we regard as evolution equations for x and () of order two 
or one, respectively, with the initial conditions 

(m-1) m-1 (m) m (m-1) m-1 

(4.2) X (0) = X , X (0) = X, () (0) = () . 

The right hand sides F and G of Eqs. (3.2) satisfy the inclusions 

(4.3) 

and therefore the known results concerning evolution equations (see [9], Chapt. 3, Sect. 
4.4, 8.4) can be used to obtain 

(m) (m-1) 

(4.4) 
X EC0 ([0,T],X0 ), X EC0 ([0,T],X1), 

(m-1) 

() E C0 ([0, T], Yo). 

Moreover the following energy identity is valid: 

m (m - 1) (m-1) (m-1) 
1 

(m-1) (m-1) 

(4.5) llx !!5+ !lh 112 
() 1!5+(At X , X )+ f (Bl () , () )da 

0 

m m- I m- 1 m- I ~ • (111- 1) (111 - I) 

= ll xll~+l!b 112 (0) () 1!5+(At(O) X , X )+ j (At X , X )da 
0 

1 
• (m-1) 

1 
(m) 

1 
(m-1) 

+ jl!(b) 112 
() 1!5da+2f (F, x)da+2.f (G, () )da. 

0 0 0 

(3) In the present and nexr section we do not assume that the relation (3.1) holds. 
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Starting from the relations ( 4.4), using the elliptic regularity properties ( 1.11) of the oper
ators A 1 and B1 , Eqs. (3.9) and proceeding inductively as in [2] we can show that the 
properties (1.27), (1.28) hold true. 

It is clear that a solution with the properties (1.27) and (1.28) is unique. 

S. A priori estimate for the non-regularized problem 

From the identity (4.5) we obtain the estimate 

T 

(m) (m-1) (m-1) r (m-l) 

(5.1) esssup {II X (r)ll~+ II 0 (r)ll~+ll X (r)lli+ II 0 (u)llidu} 
-re[O,t) 0 

m-2 t 

~ (k) (m-1) } ~ - f (m-1) 
+ .L.J !IO(o')ll!-k+ll () (<t)ll~ du+-f-C4 II () (u)l!idu 

k=O ~ 

where ~~' i = 1' 2, 3 are arbitrary positive numbers and the constants ci' i = 1' 2, ... ' 6 
may depend on c0 , "' p,, A, L0

• Using the relations (3.9) and (1.12) we also get 

m m-2 t 

( 

~ (k) \, (k) (m-1) ) f (m-1) - -
(5.2) esssup L.J II x ( r)ll~-k + ~ II() ( r)ll!-k +II () ( r)ll~ + II 0 (a) III du ~ C1X, 

TE[O, t] k=O k=O 0 

where c7 is a constant depending on Co,"' p,, L0, A and X is equal to the right hand side 
of the estimate (5.1). 

If the numbers ~i, i = 1, 2, 3 are sufficiently small, then the following inequalities 

(5.3) 

~~ c4c7 ~ 1, 

_ _ T (m-1) 

~2 Cs c7 J II Bl (a)II~(Hm. Ho)du ~ 1' 
0 

T 

~3c6c7 J II<B21

>(a)II~<Hm,. Ho>da ~ 1 
0 

hold true, and we obtain 

m m-2 t 
~ (k) \I (k) (m-1) f (m- 1) 

(5.4) L.J llx(t)ll!-k+ ~ IIO(t)ll!-k+ll 0 (1)11~+ II 0 (a)llida 
k=O k=O 0 
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(5.4) 
[cont.] 

m (k) m- 2 
(k) (m-1) 

1 
(m-1) 

~ esssup(.rllx(r)ll~-k+ .r IIO(r)ll~-"+11 0 (r)ll~) + J II 0 (a)llida 
TE[O, t] k=O k=O 0 

t m m-2 

~ C1N+C2LN+C3 J (.r ll<~(a)ll~-"+ .r ll~>(a)ll~-"+ ll<m0
1

> (a)ll~)da, 
0 k =0 k=O 

where the constants ci' i = 1' 2, 3 depend on Co' x, ft, A., L 0 and c3 depends additionally 
on L. 

Finally, using the Gronwall's inequality we arrive at the estimates 

m m-2 

.r 117(t)ll;,_"+ .r II<O>(t)l1~-"+ll<mo
1

\t)ll~ ~ (C1N+C2LN)exp(TC3), 
k=O k=O 

(5.5) 
t 

f ll<m0
1

>(a)l!ida ~ (C1 N+C2 LN)(l+C3Texp(T~)), 
0 

which imply the estimate (1.29). 

6. Proof of the main theorem 

Let us consider a sequence of regularized problems from Sect. 2, i.e. the problems of 
finding solutions of the system 

x,.+A,. {x,., 0,.} = /,., 

(6.1) bO,.+B,.{x,.,O,.} = g,., n > r, 
0 1 0 

x,.(O) = Xn, x,.(O) = Xn, 0(0) = 0,., 

where r is sufficiently large. According to Sect. 3, the problem (6.1) possesses at least one 
solution. From Sect. 4 it follows that the problem has only one solution. 

Let {x,., 0,.} n > r be the solution of the system (6.1 ). By virtue of the construction 
0 1 0 

of A,., B,., x,., x,., 0,., f,., g,. and the a priori estimate (1.29) proved in Section 5 the se-
quence {x,., O,.},.>r is bounded in the space 

m m-1 

n W"· 2 ([0, T], Xm-k) x n W"· 2 ([0, T], Ym-k) 
k=O k=O 

and therefore we can extract a subsequence which converges weakly in this space to some 
{x, 0 }. Standard arguments show that {X, 0} is a solution of Eqs. (1.1), (1.2), (1.17), 
(1.19). The additional regularity (1.27), (1.28) follows from Sect. 4. The proof is complete. 
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