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On the stationary motion of a granulated medium 
with constant density 

G. LUKASZEWICZ (WARSZAWA) 

WE CONSIDER a mo3el system of equations describing the stationary motion of a granulated 
medium with constant density. Our aim is to prove the existence of a weak solution of the first 
boundary-value problem for this system. 

Rozwai:a si~ uklad r6wnan dla modelu stacjonarnego ruchu osrodka sypkiego o stalej g~stosci. 
Celem pracy jest przeprowadzenie dowodu istnienia slabego rozwi(\zania pierwszego zagad­
nienia brzegowego dla tego ukladu. 

PaccMaTpHBaeTCH CHCTeMa ypaBHeHHH ~JIH Mo~enn CTa~HoHapHoro ~IDI<eHHH c&myqeii cpe~&I 
c rrocToHHHOH rrnoTHoCT&lo. UeJibiO pa6oThi HBJIHeTCH rrpoBeCTH ~oKa3aTeJI&CTBo cyr~eCTBo­
BaHHH cna6oro pememm rrepBoH KpaeBoH: 3a~~.qn ~JIH 3TOH cnCTeMhl. 

0. Introduction and main results 

THE PURPOSE of this paper is to prove the existence of a solution of the following boun­
dary-value proble: 

(0.1) 

(0.2) 

(0.3) 

(0.4) 

- vLlu+ (u · V)u+ Vp = f+'YJ(W xu) 

divu = 0 

(u · V)w+F(p)w = 4> 
u=O 

in D, 

in D, 

in D, 

on S, 

where D is a bounded domain in R3 with a smooth boundary S. 

Equations (0.1)-(0.3) present conservation laws: conservation of momentum, mass 
and moment of momentum, respectively, of a granulated medium with constant density 
[6] in the case of the stationary motion of the medium. 

The functions u(x) = (u1 (x), u2 (x), u3 (x)), w(x) = (w1(x), w2(x), w3 (x)) and p(x) 
denote the velocity vector, angular velocity vector of rotation of particles and pressure, 
respectively. The functions f(x) = (/1(x), / 2(x), / 3(x)) and c/J(x) = (</>1(x), </>2(x), cp3(x)) 
denote the exterior mass forces and the density of moments of these forces, respectively; 
'YJ, v = const > 0 are the Magnus and viscosity coefficients. The function F = F(p) char­
acterizes the friction between the particles. By w x u we meanl the vector product of vec­
tors w and u; V, L1 and div are the usual gradient, Laplacian and divergence operators, 
so thatLlu, (u · V)u, (u · V)ro, Vp are vectors with components Lluh uj(ajaxi)uh uj(ajax1)w, 
and (ajax,)p, i = 1, 2, 3, respectively (repeated indices are summed) divu = (ajax1)u1• 

Assuming that J, 4> and F are given, we shall prove that there exist functions u, w and p 
satisfying Eqs. (0. 1 )-(0.3) in D and the boundary data (0.4) on S. 

http://rcin.org.pl



684 G. LUKASZEWTCZ 

The time-dependent motion of granulated media with constant density has been stu­
died by several authors [1, 2], [6, 7]. The existence of weak or strong solutions of a few 
initial and initial boundary-value problems for the time-dependent version of the system 
(0.1 )-(0.3) has been established. The considerations of this paper concern the stationary 
case and seem to be new. 

Before formulating the main result (Theorem 0.1) we define the basic function spaces 
that we shall use. 

HJ(D) = closure of C~(D; R3) in the norm 

llullHA<D> = ( J 1Vu1 2f12
, 

D 

"/!" = {u e C~(D, R3):divu = 0}, V- closure of"/!" in HJ(D), Lq(D)- the set of clas­
ses of functions f: D -+ Rk, Lq- integrable in D, with the norm 

llfiiL9 <D> = ( J lflqrtll 
R 

(k = 1 or 3, q ;;;:-: 1). JV;(D) closure of C00 (D, R"), k = I or 3, in the norm 

llfllw::w> = ( ~ IID'ill!q<D>Y'q (q ;;;:-: I). 
l« l ~m 

By ( · , ·)we denote the scalar product on L 2 (D). 
THEOREM 0.1. Suppose that 

(0.5) fe L3
'
2 (D), l/J e L2 (D), 

(0.6) F is a continuous operator from Lq(D) to L2 (D) for some q E (1, 6/5], 

(0.7) F(p)(x) ;;;:-: m > 0 for each p E W~12 (D) with J p(x)dx = 0, and almost all xED. 

Then, there exist functions 

(0.8) 

(0.9) 

(0.10) 

D 

u E V r. Wf12(D), 

p e Wj 12(D), J p(x)dx = 0, 
D 

satisfying Eqs. (0.1)-(0.3) in the sense of distribution on D. 
The boundary condition (0.4) is contained in the function (0.8). 
The assumption (0. 7) manifests the positiveness of the function F characterizing the 

friction between the particles of the medium and being determined experimentally for 
individual flows. For more information about F see [1]. 

The plan of the remaining sections of this paper is as follows. Section 1 is devoted to 
study an auxiliary elliptic problem related to Eq. (0.3). In Sect. 2 we prove the solvability 
of the linearized system (0.1 ), (0.2), (0.4) in u and p. Section 3 presents the proof of The­
orem 0.1. 

Several absolute constants in this paper are denoted by the letter C without bothering 
to distinguish them with subscripts. 
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1. Solvability of an auxiliary elliptic problem 

In this section we shall prove the existence of a solution w = w, of the problem (1.1) 
below. This problem is related to Eq. (0.3) as follows. Let {e(n) }, n = 1, 2, ... be any 
sequence of positive reals tending to zero and let we<n> be a solution of the problem (1.1) 
with s = e(n). Then, a subsequence of the sequence {we<n>} converges, in a sense that will 
be determined in Sect. 3, to a solution of Eq. (0.3). 

LEMMA 1.1. Suppose u E V, F(p) E L 2 (D), F(p)(x) ~ m > 0 for a.e. xED, <P E L 2 (D). 
Then, the problem 

(1.1) - u1w+ (u · V)w+F(p)w = <P (e > 0), 

wls = 0 

has a unique solution win HJ(D) and the following inequality holds: 

(1.2) 

Proof. To prove the existence of a solution of the above problem we shall use the 
Galerkin method. Suppose that wE HJ(D) is a solution of Eq. (1.1). Then, as one can 
easily see, 

(1.3) e(Vw, Vv)+b(u, w, v)+((F(p)w, v) = (dJ. tJ) 

for all v E HJ(D), where 

b(u, w, v) = J (u · V)w · v. 
D 

Conversely, any wE HJ(D) satisfying Eq. (1.3) for all v E HJ(D) is a weak solution of 
Eq. (1.1). We shall prove the existence of such w. Let ah i = 1, 2, ... be a basis of HJ(D), 
ai E C0 (D, R3

) . We define an approximate solution wm of Eq. (1.3) by 

m 

(1.4) 
Wm = 2: ri,mai, ri,m ER, 

i=l 

s(Vwm, Vak)+b(u, Wm, ak)+ (F(p)wm, ak) = (¢, ak), k = I, 2, ... , m.: 
To prove the existence of such wm we use the following well-known [10, Ch. 2, §1] 

LEMMA 1.2. Let X be a finite-dimensional Hilbert space with a scalar product [ · , · ] 
and norm [.] and let P be a continuous mapping from X into itself such that 

[P(x), x] > 0 for [x] = k > 0. 

Then there exists x EX, [x] ~ k such that P(x) = 0. 
As X we take the space spanned by the vectors ak, k = 1, 2, ... , m, with the norm 

of HJ(D), and as P- a mapping from X into itself defined by 

(VP(w), Vv) = e(Vw, Vv)+b(u,w,v)+(F(p)w,v)-(</J,v) for all veX. 

For any fixed w in X we can treat the right-hand side of this identity as a continuous func­
tional in von X. In view of the Riesz-Frechet theorem P(w) is uniquely determined. Since 
b(u, w, w) = 0, then we have 
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(VP(ru), Vru) = ellruii~A<D>+ (F(p)ru,ru)-(<f>,ru) 

~ ellrulli~<D> + llruiiL2<D>(mllrui iL2 <D> -I</> IIL2<D>). 
This and the Poincare lemma yield the existence of k > 0 such that 

(VP(ru), Vru) > 0 for llruliH~<DJ = k. 

The proof of the continuity of P presents no difficulties. Thus we have established the 
existence of an approximate solution rom of Eq. (1.3) for any integer m. From lemma 1.2 
it follows also that the sequence {rum}, m = I, 2, ... is jointly bounded in HJ(D). We can 
choose then a subsequence {rum!} of {rum} converging to a function ru weakly in HJ(D) 
and strongly in L 2 (D). Tending to infinity with m' in Eq. (1.4) and noticing that 
b(u, v, ru) = -b(u, ru, v) for all u E V, v, ruE HJ(D), we conclude that ru satisfies Eq. 
(1.3) with v =a", k = I, 2, .... Since {a~c}, k = I, 2, ... is a basis of HJ(D), then ru sat­
isfies Eq. (1.3) for all v E HJ(D). We have thus proved the existence of a weak solution 
of Eq. (l.I). Setting v =ruin Eq. (1.3), we get 

e11Vrulli2<D>+mllrulli;<D> ~ e(Vw, Vru)+ (F(p)ru, ru) = (</>, ru) 

2 2 m 2 
~ m llc/>IIL2(D)+ T llruiiL2(D)' 

hence Eq. (1.2). It is clear that the solution is unique. The proof of the lemma is complete. 

2. Solvability in u and p of the linearized problem (O.I), (0.2), (0.4) 

In this Section we assume ru to be a given function in L 2 (D) and prove that the linear­
ized problem (O.I ), (0.2), (0.4) has a solution in u and p. We start with some useful inequali­
ties. 

LEMMA 2.1. (i) If h, u E HJ(D), then (h · V)u E L 312 (D) 
and 

ll(h · V)uliL3t2<o> ~ CIIVhiLr..2(D>l/VuiiL2<D>· 

(ii) If u E H~(D) and ruE L 2 (D) then ru xu E L 3
' 2 (D) 

and 

llru x uliL3t2<D> ~ CllruiiL2 <D> · IIVuiiL 2 <DJ. 

(iii) Iff E L 3'2 (D) then f E V' (the dual of V) and 

11/llv• ~ CII/IIL3t2<D>· 

Proof. To prove (i) and (ii) we use the inequality 

(2.1) llhiiL6<D> ~ CIIVhllL2<o> for all hE HJ(D). 

Its elementary proof can be found in Chapter I, § I of [5]. 
By the inequality (2.I) and HOlder's inequality 

f l(h. V)ul3'2 ~ c f lhl3f2 . 1Vul3'2 ~ c ( f lhl6 f'4( f 1Vul2tf4 
D D D D 

~ c ( f 1Vhl
2r14

( J 1uv1
2r'4

, 
D D 
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hence (i). In a similar way we obtain (ii). To get (iii), observe that for any function vAin V 

I J f· vi ~ llf11L3t2<D> ·llviiL3 <D> ~ cii!IIL3f2<D> ·llvliL6 <D> ~ CllfiiL3f2<D> • IIVuiiL2<D>· 
D 

LEMMA 2.2. Suppose that f E L 3
1

2 (D), co E L 2 (D) and hE V. Then there exist uniquely 

determined functions u E Vn Wi 12 (D) and p E Wl 12 (D) with J p = 0 satisfying 
D 

-vL1u+ (h · V)u+ Vp = f+rJ(ro xu) 

in the sense of distribution on D. Moreover, 

(2.2) IIVuiiL2<D> < CllfiiL3f2<D>, 

(2.3) 11PIIw~ 1 2<D> + l l u l lw~12<D> ~ CllfiiL3f2<D>(l + IIVhiiL2CD> + llroiiLz<D>). 

P r o o f. We prove the existence of the relevant u and p in two steps. At first we 
establish the existence of a function u in V such that 

(2.4) v(Vu, Vv)+b(h, u, v) = {f, v)+'Y}(ro xu, v) 

for all v E V. The proof is based on lemma 1.2 and the Galerkin method. 
We omit the details. Notice that by setting v = u in Eq. (2.4) we immediately get the 

inequality (2.2). 
From Proposition 1.1 in Chapter I of [10] we conclude the existence of a distribu­

tion p such that 

-vL1u+(h · V)u-f-rJ(ro xu)= Vp 

in the sense of distribution on D. Clearly p is not uniquely determined. We., shall now prove 
that there exist a relevant p satisfying the inequality (2.3). We fix u E V satisfying Eq. 
(2.4) for all v E V and consider the linear problem 

-vL1u+Vp = g in D, 

(2.5) divu = o in D, 

u = 0 on S, 

whereg =f+rJ(ro xu)- (h · V)u. By lemma 2.1 along with the inequality (2.2) g E L 312 (D) c 

c V' and 

(2.6) 

From the uniqueness in V of a solution u of the problem (2.5) we conclude that .u = u. 
Now, from the results of [3, 8, 9] we infer the existence of a unique p E Wl 12 (D) satisfying 

f p = 0, the problem (2.5) and along with u, the inequality 
D 

11PIIw~ 1 2<D> + llullw~ 1 2(D) ~ CllgiiL3f2<D>· 

This inequality and the inequality (2.6) imply the inequality (2.3). The lemma is proved. 
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3. The proof of theorem 0.1 

We prove Theorem 0.1 in two steps. At first we show that the nonlinear problem 

-vLlu+ (u · V)u+ Vp = f+1J(W xu), 

divu = 0, 

(3.1) ( -1/N)Llw+ (u · V)w+F(p)w = 4> (N- a positive integer), 

uis = 0, 

wls = 0 

has a solution (u,p, w) = (uH,pN, wN). Then we find a solution of the problem (0.1)-(0.4) 
as a limit of a subsequence of (uN, pN, wN), N = 1, 2, 3, .... 

LEMMA 3.1. Suppose (0.5), (0.6) and (0. 7). Then there exists a solution 

(uN,pN, wN), uH E Vn w~,2(D), PN E W1/2(D), f PN = 0, WN E HA(D) 
D 

of the problem (3.1). 
Proof. We use Schauder's principle. Let 

K = {(u,p, w) E Vx Wj 12(D) x HJ(D):IIVuiiL2<D> ~ CllfliL3tz<v>' 

J p(x)dx = 0, 
D 

2 
liwliL 2<D> ~ - - lic/>IIL2<D>' li\i'wljL2<D> ~ (2N/m)112 •lic/>IIL•<D>}, m 

where C is the constant from Lemma 2.1. 
We define an operator tP in Vx WA 12(D)xH0 (D) by the formula l/J(u,p,iii) = 

= (u,p, w), where (u,p) and ware the unique solutions (see Lemmas 1.1 and 2.2) of the 
following problems: 

-vLlu+(u· V)u+Vp =f+'YJ(wxu) in D, 

divu = 0 in D, 

uis = 0 

(-1/N)Liw+(u· V)w+F(p)w = 4> in D, 

wls = 0. 

From the inequalities (1.2), (2.2) and (2.3) it follows that l/J(K) c K. Since K is a compact, 
convex subset of Yq = L 2 (D) x Lq (D) x L 2 (D), for q E [1 , 3), [4] then to prove Lemma 3.1 
it suffices to show that tJ> is continuous in the topology of Yq for some q E [1 , 3). 

Let 

Cut' Pt' Wt ,) E K for i = 1 ' 2' 3' ... ' (U' p' w) E K and 

tP(Uhpt,Wt) = (ut,Pt,Wt), l/>(u,p, w) = (u,p,w). 
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We have then 

-vL1(u-u1)+ V(p-p1) = - (U · V)(u-u1)- ((U-u1) • V)u, 

+1){wx(u-u1)+(w-w1)xu,} in D, 
(3.2) div(u-u1) = 0 

u-u1 = 0 

in D, 

on S. 

From Eq. (3.2), the embedding Wj 12 (D) c Wj(D) and the results of [3, 8, 9] are easily 
obtained: 

IIP-Pi ll wA1s<m ~ C {II V(u-u,) IIL2 <D>+ llu-u,IIL2<D> + llu-u,IIL2<D>+ llw-w,IIL2 <D>}o 

Again, from Eq. (3.2), Poincare's inequality and by standard energy estimate 

ilu-u,!li2<D> + IIV(u-u,) IIE2 <D> ~ C {llu-u,IIL2<D)+ llw-w,IIL2<D>}· 

Combining the above inequalities we obtain 

Jlu-ui!I L2 <D> + lip-Pt ll L6ts<D> ~ C {J Ju-u,IIL2 <D> + llro-w,JIL2<D> 

+ (llu-u,IIL2<D> + iiro-w,JIL2<DJ)112 }o 

Now, "multiplying" the equation 

( -1/N)L1(w-w1)+(U · V)(w-w1)+F(p)(w-w1) = -w1(F(ji)-F(p1))+ ((U-u1) o V)w, 

by a function 1p E C~ (D) and "integrating by parts" in D, we get 

( -1/N) J (w - w1) L1 •p- J (w-w1)(U o V)'f'+ J F(ji)(w-w1)'P 
D D D 

= - J w,(F(p)-F(p1))'P+ J ((U-u1) o V)w1'Po 
D D 

Let 

ui -4 u m L 2 (D), p1 -4 p in L 615 (D), w1 -4 w in L 2 (D)o 

From (0.6) we have also F(jJ1) -4 F(p) in L 2 (D)o The sequence {w1} is bounded in HJ(D)o 
From its arbitrary subsequence {wi'} we can choose a subsequence {w,,} converging in 
L 2 (D) to a function wo Taking the limit i" -4 oo in the above integral identity we get 

( -1/N) J (w-w)L1'f'+ J (w-w)(U 0 V)'f'+ J F(p)(w-w)'P = 0. 
D D D 

In view of Lemma 1.1 w = w. Hence w1 -4 win L 2 (D)o This completes the proof of Lemma 
3ol. 

Taking into account the estimates (1o2), (2o2) and (2o3) we conclude that 

(3.3) {uN} stays bounded in V, 

(3.4) {pN} stays bounded in Wl 12 (D), 

(3.5) {wN} stays bounded in L 2 (D). 

By the compactness of embeddings VcL2(D), Wl 12 (D)cLq(D), q E [1, 3) we also have 

(3.6) {uN} stays in a compact subset of L 2(D). 

(3.7) {pN} stays in a compact subset of Lq(D) for any q E [1, 3)o 

9 Arch. Mech. Stos. nr 6/87 
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From (3.3)-(3. 7) we conclude the existence of subsequences (again denoted by { uN }, 
{pN }, {wN} for simplicity) converging to some u, p, w as N --. oo 

(3.8) UN_. U 
{weakly in V, 

strongly in L 2 (D), 

(3.9) PN --+- p 
{weakly in WJ12 (D), 

strongly in L 615 (D), 

(3.10) WN _. W weakly in L 2 (D). 

From (0.6) and (3.9) we conclude also 

(3.11) F(pN)-.F(p) strongly in L 2 (D). 

We shall now prove that the limit functions u, p and ware a distributional solution of the 
problem (0.1 )-(0.3). Let a and b be any functions from C~ (D, R3) and C0 (D, R) respec­
tively. Making use of the problem (3.1) we can write the following equalities: 

(3.12) J (-uN(uN · V)a+vVuN · Va+VpN ·a)= J (1J(wNxuN)a+fa), 

(3.13) 

(3.14) 

D D 

fUN. Vb = 0, 
D 

J (( -1/N)wN · Lfa-wN(uN · V)a+ F(pN)wNa) = J cjJ ·a. 
D D 

Tending to infinity with N in Eqs. (3.12)-(3.14) and taking into account (3.8)-(3.11), we 
easily get Eq. (3.12) with uN = u, pN = p and wN = w, respectively, Eq. (3.13) with 
uN = u and 

J ( -w(u · V)a+F(p)wa) = J cjJ ·a 
D D 

in place of Eq. (3.14). The limit integral identities we have obtained are equivalent to the 
definition of a distributional solution (u, p, w) of the problem (0.1)-(0.4) provided that 
(0.5), (0.8)-(0. 10) hold. This completes the proof of Theorem 0.1. 
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