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On the stationary motion of a granulated medium
with constant density

G. LUKASZEWICZ (WARSZAWA)

WE consiDER a model system of equations describing the stationary motion of a granulated
medium with constant density. Our aim is to prove the existence of a weak solution of the first
boundary-value problem for this system.

Rozwaza si¢ uklad rownan dla modelu stacjonarnego ruchu osrodka sypkiego o stalej gestosci.
Celem pracy jest przeprowadzenie dowodu istnienia slabego rozwiazania pierwszego zagad-
nienia brzegowego dla tego ukladu.

PaccmarpuBaeTcst crcTeMa YpaBHEHHH U1 MOJAEJIN CTALMOHAPHOTO ABHYKEHHS ChUIy4eH Cpeqbl
C IIOCTOSTHHOW ILTOTHOCTEIO, 1lenpio paboThl sIBJIAETCA IPOBECTH JOKAa3aTeJIbCTBO CyUIECTBO-
BaHUA C1a00ro pelleHusi IepBoi KpaeBoil 3aJaul AJIA 3TOM CHCTEMBI,

0. Introduction and main results

THE PURPOSE of this paper is to prove the existence of a solution of the following boun-
dary-value proble:

0.1) —vAu+ (- VIYu+Vp = f+n(wxu) in D,
0.2) divu =0 in D,
(0.3) w Vo+F(pow=¢ in D,
0.9 u=0 onS,

where D is a bounded domain in R® with a smooth boundary S.

Equations (0.1)-(0.3) present conservation laws: conservation of momentum, mass
and moment of momentum, respectively, of a granulated medium with constant density
[6] in the case of the stationary motion of the medium.

The functions u(x) = (u,(x), u(¥), u3(%)), ©(x) = (0;(x), w,(x), ®3(x)) and p(x)
denote the velocity vector, angular velocity vector of rotation of particles and pressure,
respectively. The functions f(x) = (f1(x), £2(x), f3(x)) and ¢(x) = (¢1(x), ¢2(x), ¢3(x))
denote the exterior mass forces and the density of moments of these forces, respectively;
n, v = const > 0 are the Magnus and viscosity coefficients. The function F = F(p) char-
acterizes the friction between the particles. By w x # we mean| the vector product of vec-
tors w and u; V, 4 and div are the usual gradient, Laplacian and divergence operators,
so that Au, (u* V)u, (u- V)w, Vp are vectors with components Au;, u;(0/0x;)u;, u;(d/0x;)w;
and (9/dx;))p, i = 1, 2, 3, respectively (repeated indices are summed) divu = (d/dx))u;.

Assuming that f, ¢ and F are given, we shall prove that there exist functions », w and p
satisfying Eqs. (0.1)-(0.3) in D and the boundary data (0.4) on S.
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The time-dependent motion of granulated media with constant density has been stu-
died by several authors [1, 2], [6, 7]. The existence of weak or strong solutions of a few
initial and initial boundary-value problems for the time-dependent version of the system
(0.1)-(0.3) has been established. The considerations of this paper concern the stationary
case and seem to be new.

Before formulating the main result (Theorem 0.1) we define the basic function spaces
that we shall use.

H{(D) = closure of CF(D; R?) in the norm

g = ( J V)7,
D

v = {ueCP(D, R*):divu = 0}, V' —closure of ¥ in H{(D), L D) — the set of clas-
ses of functions f: D — R¥, [? — integrable in D, with the norm

1 llescor = (S 171"
R
(k =1or3, g=1). WD) closure of C*(D, R¥, k = 1 or 3, in the norm

vz = ( 2 1D llfe)™ (g > 1),

la|sm

By (- , -) we denote the scalar product on L?(D).
THeorReM 0.1. Suppose that

0.5) feL¥*(D), ¢ eL*D),
(0.6) F is a continuous operator from L%(D) to L*(D) for some qe (1, 6/5],

0.7) F(p)(x) = m > 0 for each p € W;;(D) with f p(x)dx = 0, and almost all x € D.
D

Then, there exist functions

(0.8) ueV n W2, (D),

©0.9) peWl D), [p(ax =0,
D

(0.10) w € L*(D)

satisfying Egs. (0.1)-(0.3) in the sense of distribution on D.

The boundary condition (0.4) is contained in the function (0.8).

The assumption (0.7) manifests the positiveness of the function F characterizing the
friction between the particles of the medium and being determined experimentally for
individual flows. For more information about F see [1].

The plan of the remaining sections of this paper is as follows. Section 1 is devoted to
study an auxiliary elliptic problem related to Eq. (0.3). In Sect. 2 we prove the solvability
of the linearized system (0.1), (0.2), (0.4) in # and p. Section 3 presents the proof of The-
orem 0.1.

Several absolute constants in this paper are denoted by the letter C without bothering
to distinguish them with subscripts.
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1. Solvability of an auxiliary elliptic problem

In this section we shall prove the existence of a solution @ = w, of the problem (1.1)
below. This problem is related to Eq. (0.3) as follows. Let {e(n)}, n = 1, 2, ... be any
sequence of positive reals tending to zero and let w,¢, be a solution of the problem (1.1)
with ¢ = &(n). Then, a subsequence of the sequence {w,,} converges, in a sense that will
be determined in Sect. 3, to a solution of Eq. (0.3).

LeMmMmA 1.1. Suppose u € V, F(p) € L3(D), F(p)(x) = m > 0 for a.e. x€ D, ¢ € L%(D).
Then, the problem

(1.1 —edw+ @ -Vo+F(po =¢ (¢ >0),
ol =0

has a unique solution w in H§(D) and the following inequality holds:

m 2
(L.2) &||Vol|E2(py+ 7 llew||f2¢py < 5 ll|lZ2¢p)-

Proof. To prove the existence of a solution of the above problem we shall use the
Galerkin method. Suppose that w € Hy(D) is a solution of Eq. (1.1). Then, as one can
casily see,

(1.3) e(Vo, Vo) +b(u, o, v)+ ((F(p)ow,v) = (6, )
for all v € Hy(D), where

b(u,w,v) = J (u" Vo v.
D
Conversely, any w € H3(D) satisfying Eq. (1.3) for all v € Hj(D) is a weak solution of

Eq. (1.1). We shall prove the existence of such w. Let a;, i = 1, 2, ... be a basis of H}(D),
a; € CP(D, R®). We define an approximate solution w,, of Eq. (1.3) by

N\

W, =
(1.4) i=
&(Vor,, Va) + b, wp, @)+ (F(P)om, &) = (¢, a), k=1,2,...,m!

To prove the existence of such w, we use the following well-known [10, Ch. 2, §1]
LEMMA 1.2. Let X be a finite-dimensional Hilbert space with a scalar product [-, -]
and norm [-] and let P be a continuous mapping from X into itself such that

[P(x),x] >0 for [x]=4k>0.

Then there exists x € X, [x] € k such that P(x) = 0.
As X we take the space spanned by the vectors ay, k = 1,2, ..., m, with the norm
of H}(D), and as P— a mapping from X into itself defined by

(VP(w), Vo) = &(Voo, Vo) +b(u, w, )+ (F(p)w,v)—(p,v) forall wveX.

For any fixed w in X we can treat the right-hand side of this identity as a continuous func-
tional in ¥ on X. In view of the Riesz-Frechet theorem P(w) is uniquely determined. Since
b(u, w, w) = 0, then we have

rim@i, Ttim€R,

-
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(VP(0), Vo) = éllwlliym+ (FR)w, )~ (¢, »)
= &llol|ism + ol L2y (mllollLmy — | 1l w)-
This and the Poincaré lemma yield the existence of £ > 0 such that
(VP(w), Vo) > 0  for ||ol|luim, = k.

The proof of the continuity of P presents no difficulties. Thus we have established the
existence of an approximate solution w,, of Eq. (1.3) for any integer m. From lemma 1.2
it follows also that the sequence {w,}, m = 1, 2, ... is jointly bounded in H{(D). We can
choose then a subsequence {wn' } of {wn} converging to a function w weakly in H(D)
and strongly in L?(D). Tending to infinity with m’ in Eq. (1.4) and noticing that
b(u,v,w) = —b(u,w,v) for all ueV, v,w € HY(D), we conclude that o satisfies Eq.
(13) withv=a,, k=1,2, .... Since {&}, k=1, 2, ... is a basis of H{(D), then w sat-
isfies Eq. (1.3) for all v € Hy(D). We have thus proved the existence of a weak solution
of Eq. (1.1). Setting = w in Eq. (1.3), we get
&l|Vol|Z2cpy+ml |0 |72py < (Ve Vo) + (F(p)w, w) = (¢, w)
<2 1IplEsar+ ol o

hence Eq. (1.2). It is clear that the solution is unique. The proof of the lemma is complete.

2. Solvability in # and p of the linearized problem (0.1), (0.2), (0.4)

In this Section we assume w to be a given function in L2(D) and prove that the linear-
ized problem (0.1), (0.2), (0.4) has a solution in # and p. We start with some useful inequali-
ties.

LeEmMMA 2.1. (i) If h, u € H}(D), then (h- V)u € L33(D)
and

(R - V)ullLar2py < ClIVA|| 200y 11VU|| L2y -

(ii) If u € HY(D) and w € L*(D) then w x u € L3*(D)
and

o xul| 32y < Cllol|L2py * [|VUHl| 20y -
(iii) If f'e L3/2(D) then f'e V’ (the dual of V) and
11y < ClIfllLar2py-
Proof. To prove (i) and (ii) we use the inequality
(2.1) [|AllLecpy < Cl|VAllL2py for all ke Ho(D).
Its elementary proof can be found in Chapter I, § 1 of [5].
By the inequality (2.1) and Halder’s inequality

fl(h'v)ulajz < Cf[hl:”z' V|32 < C(f|h|6)1/4( f |Vu!2)3/4
b b b b

< C(Df1VhIZ)3"‘(Df[uV|2)”“,
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hence (i). In a similar way we obtain (ii). To get (iii), observe that for any function v in ¥
‘ ff 7){‘ < ez * 1ollm < ellfllezm - 1olliemy < ClIfllLsiz o) * [Vl p)-
b

LemMMA 2.2. Suppose that fe L32(D), w € L?(D) and 4 € V. Then there exist uniquely
determined functions u e VAW?3,(D) and pe Wi,(D) with [p =0 satisfying
D

—vAu+(h-V)u+Vp = f+n(wxu)
in the sense of distribution on D. Moreover,
2.2) [IVulle2oy < Cllf I3z
2.3) pllwd 2o+ lullw3 20y < ClIfl|L3r2a@y(1+1IVAl L2y + l@]l20)) -

Proof. We prove the existence of the relevant # and p in two steps. At first we
establish the existence of a function # in ¥ such that

2.9 »(Vu, Vo)+b(h, u, v) = (f, v)+n(w xu, v)

for all v € V. The proof is based on lemma 1.2 and the Galerkin method.

We omit the details. Notice that by setting ¥ = u in Eq. (2.4) we immediately get the
inequality (2.2). ‘

From Proposition 1.1 in Chapter I of [10] we conclude the existence of a distribu-
tion p such that

—vAu+(h VIu—f—n(wxu) = Vp

in the sense of distribution on D. Clearly p is not uniquely determined. W¢ shall now prove
that there exist a relevant p satisfying the inequality (2.3). We fix u € V satisfying Eq.
(2.4) for all v € V" and consider the linear problem

—vAu+Vp=g in D,
(2.5) divi=0 in D,
#=0 onsS,

where g = f+#(w x u)— (h - V)u. By lemma 2.1 along with the inequality (2.2) g € L3¥*(D) =
< V' and

(2-6) ”g|]L312(D) < C”f”mlz(p)(l + ||Vh||u(n)+ ”me(D))-

From the uniqueness in ¥ of a solution u of the problem (2.5) we conclude that i = u.
Now, from the results of [3, 8, 9] we infer the existence of a unique p € W3, (D) satisfying

f p = 0, the problem (2.5) and along with u, the inequality
D

[Ipllw}2 oy + ullw3 20y < ClIgllL32(p)-

This inequality and the inequality (2.6) imply the inequality (2.3). The lemma is proved.
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3. The proof of theorem 0.1

We prove Theorem 0.1 in two steps. At first we show that the nonlinear problem
—vAu+(u- VYu+Vp = f+n(oxu),
divy = 0,
3.1 (-1/Ndw+@w:V)o+Flp)o =¢ (N —a positive integer),
uls =0,
wls=0
has a solution (u, p, w) = (u¥, p", ). Then we find a solution of the problem (0.1)-(0.4)

as a limit of a subsequence of (", p¥,0"), N=1,2,3, ....
Lemma 3.1. Suppose (0.5), (0.6) and (0.7). Then there exists a solution

@Y P o), W eVaWia(D), PP eWiD), [P =0, o"cHYD)
D

of the problem (3.1).
Proof. We use Schauder’s principle. Let

K = {(u, p, ) € Vx W3,5(D) x Hy(D):||Vui|2py < ClIf|I22¢0)s
ji2
llpllw} 20y < CllfllL32¢my (1+ = Hd’”z.’(m'f'C”f||1.3/2(n)).

[ pxyax =0,
D

2
[lew||L2py € m lldllzmys  IVollLapy < (2N/m)*/2 « @1l }»

where C is the constant from Lemma 2.1.

We define an operator @ in ¥V'x Wj,(D)x Ho(D) by the formula @(u,p,w) =
= (4, p, w), where (u, p) and w are the unique solutions (see Lemmas 1.1 and 2.2) of the
following problems:

—vAu+ (- V)u+Vp = f+y(wxu) in D,

divue = 0 in D,
uls =0
(—1/N)Aw+ (- V)o+F(p)wo =¢ in D,
wls =0,

From the inequalities (1.2), (2.2) and (2.3) it follows that #(K) < K. Since K is a compact,
convex subset of ¥, = L2(D)x LY(D) x L*(D), for g € [1, 3), [4] then to prove Lemma 3.1
it suffices to show that @ is continuous in the topology of Y, for some g € [1, 3).
Let
(W, pi, @)€K for i=1,2,3,..., (u,p,w)ekK and

¢(ahﬁ!sal) = (uhpia Ct),), Q(Hs ﬁ: a) = (“,P, o).
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We have then

~vAu—u)+V(p—p) = —@-VYu—u)— (@E-u)V)y
+nfox@—u)+(@-w)xu} in D,
(3.2 divlu—u)) =0 in D,

u—u; =0 on S.

From Egq. (3.2), the embedding W3 ,,(D)< W3 (D) and the results of [3, 8, 9] are easily
obtained:

Hp—pillwhisam S CIVu—u) L2y +u—1yl 2oy + [ —wil] L2epy + |0 — @4 [ 12Dy } -

Again, from Eq. (3.2), Poincaré’s inequality and by standard energy estimate
H“—ui”iz(m‘i‘”V(“—‘“t)”?.’(m < C{”ﬁ_ﬁi”L’(D)'i'”a—a)_i”L’(D)}-

Combining the above inequalities we obtain

=il 2oy +1p—pillesiseny < C{lu—uillapy + [l =@y | L2cp)

+([[u=ul| L2y + || — @ | L3p)) /* }-
Now, “multiplying” the equation
(=1/N)A(@w—o)+ U V)(w—w)+F@)o—w) = —w,(FP)—F(p))+ (@—u) - V),

by a function y € C(D) and “integrating by parts” in D, we get

(=1/N) [ (@=-w0)dp— [ (0-0)@ Do+ [ FRo-w)y
D D D

=~ [, (F@)-F@D)p+ [ (G-7) V).
D D
Let
w—»u in L*D), p,—-pinLD), @ —o in L*D).
From (0.6) we have also F(p;) —» F(p) in L?>(D). The sequence {w;} is bounded in H(D).

From its arbitrary subsequence {w;-} we can choose a subsequence {w;-} converging in
L?*(D) to a function @&. Taking the limit i” — oo in the above integral identity we get

—UN) [ @-@)dp+ [ (@-d)@ Vp+ [ FE)w-b)y = 0.
D D D

In view of Lemma 1.1 & = w. Hence w; — w in L2(D). This completes the proof of Lemma
3.1.
Taking into account the estimates (1.2), (2.2) and (2.3) we conclude that
(3.3) {u¥} stays bounded in ¥,
(3.4) {p"} stays bounded in W},(D),
(3.5) {w"} stays bounded in L?(D).

By the compactness of embeddings V= L?(D), W1,,(D)=LYD), g € [1, 3) we also have
(3.6) {u"} stays in a compact subset of L?(D).
(3.7 {p"} stays in a compact subset of L!(D) for any q € [l, 3).

9 Arch. Mech. Stos. nr 6/87
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From (3.3)-(3.7) we conclude the existence of subsequences (again denoted by {u"},

{p"}, {w"} for simplicity) converging to some u, p, ® as N — o0

. weakly in V,
G.8) o= {strongly in L*(D),
weakly in Wi,(D),
(3.2 Pop {strong};y in Ls‘;’zs((D)),
(3.10) oV - ® weakly in L*(D).
From (0.6) and (3.9) we conclude also
(3.1 F(p") —» F(p) strongly in L*(D).

We shall now prove that the limit functions u, p and w are a distributional solution of the
problem (0.1)-(0.3). Let a and b be any functions from C&(D, R?) and C(D, R) respec-
tively. Making use of the problem (3.1) we can write the following equalities:

3
3

@3

12) [ (¥ @ Vya+2Vu" - Va+Vp¥ - a) = [ (0" xu™)a+fa),
L D
.13) fuN‘Vb=0,
D
14) [ (~1/M)0" - da—*@" - V)a+ F(pMo'a) = [¢-a.
. D

Tending to infinity with N in Eqs. (3.12)-(3.14) and taking into account (3.8)-(3.11), we
easily get Eq. (3.12) with «¥ = u, PY = p and o" = w, respectively, Eq. (3.13) with
u¥ =y and

in

f(—w(u-V)a+F(p)wa)= fgb'a

place of Eq. (3.14). The limit integral identities we have obtained are equivalent to the

definition of a distributional solution (4, p, w) of the problem (0.1)-(0.4) provided that
(0.5), (0.8)—(0.10) hold. This completes the proof of Theorem 0.1.
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