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The method of virtual power and a simple multipolar rod model 

J. LUBLINER (BERKELEY) 

IT IS SHOWN that an application of the method of virtual power to a simple multipolar rod model, 
with the force-system space representing force and couple distributions, leads to the correct 
equations of motions and, in the case of elastic rods, to a torsion-dependent strain-energy func­
tion - results that had eluded previous attempts to represent three-dimensionally deforming 
rods by simple body models. 

Wykazano, :le zastosowanie metody mocy wirtualnych do prostego modelu pr~ta mikropolarnego 
prowadzi do poprawnych r6wnari ruchu. W przypadku pr~t6w spr~i:ystych energia odksztalcenia 
jest funkcj'l, skr((cania, w przeciwieristwie do wczesniejszych wynik6w opartych na zastosowaniu 
klasycznego modelu osrodka do tr6jwymiarowego stanu odksztalcenia pr((ta. 

11oKa3aHO, liTO IIpHMeHeHHH MeTo,n;a BHPTiaJihHhlX MOJ.nHOCTeH K IIpOCTOH MO,ll;eJIH MHKpO­

IIOJIHpHoro crep>«HH rrpHBO,ll;HT K rrpaBHJihHhiM ypasHeHHHM ,n;BH>I<eHHH. B cnyqae yrrpyrHx 

CTep>I<HeH 3HeprHH ,n;e<iJopMHpOBaHHH HBJIHeTCH cPYHKU:HeH KpytieHHH, B OTJIHtJ:He OT paHee 

IIOJiytJ:eHHhlX pe3yJihTaTOB, OCHOBaHHblX Ha llpHMeHeHHH KJiaCCHl.JeCKOH MO,ll;eJIH cpe,ll;bl K TpeX­

MepHOMY COCTOHHHIO ,n;e<iJopMaU:HH CTep>I<HH. 

1. Introduction 

IN 1958 ERICKSEN and TRUESDELL [1] inaugurated the modern theory of rods by reintro­
ducing the idea of E. and F. CossERAT of treating a rod as a one-dimensional continuum 
whose deformation is determined not only by the positions of its particles but by additional 
vector variables which they called directors. Continua with directors were subsequently 
also used as models for liquid crystals [2], shells [3], and other bodies. 

In general, if f!J is a manifold with boundary of dimension at most three and if .P 
is a set of mappings A of f!J into some finite-dimensional manifold Jt, then the pair (f!J, .P) 
will be said to represent a simple body model if vH = <ff, the three-dimensional Euclidean 
affine space (with associated vector space £), and a generalized body model otherwise. 
More particularly, vH may be of the form <ff x !#',where!#' is an additional manifold whose 
dimension is the number of additional local degrees of freedom accounted for in the 
model. If a point in !#' may be represented by an ordered n-tuple (d1 , ... , d,.) of vectors 
(not necessarily linearly independent) in £; then these vectors are called directors and the 
body model is called directed or oriented, or, if f!J is a continuum, a Cosserat continuum. 

In the continuum model originally treated by the Cosserats, the directors are three 
in number and form an orthonormal triad, so that !#' is a three-dimensional manifold 
(sometimes denoted F3); points in §' may, consequently, be represented by three angles 
(such as the Euler angles), and, if one prefers to work with directors, one needs only use 
two, say d1 and d2 , since d3 = d1 x d2 if the triad is right-handed. Clearly, this model 
is the simplest one that, in the case of a rod, would account for torsion and shear. It was 
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4 J. LUBLINER 

pointed out by ANTMAN [4] that virtually every deformational phenomenon that has 
a name will be accounted for by a model with two directors that are orthogonal but not 
restricted to be of unit length. However, rod theories with an unrestricted number of 
independent directors have been proposed [5] to account for displacement fields in the 

-three-dimensional rod whose dependence on the transverse coordinates is of a degree 
higher than the first. The "micropolar" rod model discussed by KAFADAR [6] is essentially 
equivalent to the Cosserat rod; here :F is the group of proper orthogonal tensors. 

The configuration space of a simple body model, as defined above, will be denoted 
f; a configuration )e E f is therefore a mapping )e: !A--+ tff, and a spatial virtual velocity 
field v is a mapping v · )e(!A) --+ E, that is, a vector field on )e(!A) (not necessarily defined 
·everywhere); a material virtual velocity field is given by v o x, and will be denoted 'YJ· 

The space of material virtual velocity fields in a configuration )e is, in some sense, the 
tangent space to % at )e; as a topological vector space with an appropriate topology, it 
will be denoted Vx. A force system may then be regarded as a continuous linear functional 
on Vx; the value of a force system fat a virtual velocity field 'YJ will be 9enoted (f, 'Y}) 
and is called the virtual power off on 'YJ· Most often in mechanics force systems are assumed 
to be given by measures on some a-algebra of subsets of )e(!A) (the closure of x(~)); 
they are necessarily so if~ is discrete. For example, Vx may be the Banach space of con­
tinuous E-valued functions, or an LP space with an appropriate trace space. If the E-valued 
measure representing a force system f is also denoted f, then 

(f, v o )e) = J v(x) · f(dx). 
x(Sf) 

If !A is a differentiable manifold (possibly with boundary) and )e is a diffeomorphism, 
then force systems may more generally be represented by distributions on )e(~)(l). If, for 
example, the distribution is of order one, then a force system f may equivalently be repre­
sented by a pair of measures (f0

, f 1
) on )e(~), the former with values in E and the latter 

with values in the space of second rank tensors on E, such that 

(f, v o )e)= J [v(x)·f0 {(fx)+Vv(x):f1 {dx)]. 
x(aJ) 

Such a body model is called a simple dipolar continuum [7]. The generalization to simple 
multipolar continua, where force systems are distributions of order higher than one, is 
obvious. 

In 1965 TADJBAKHSH [8] showed that a rod undergoing planar extension and flexure 
may be modeled as a one-dimensional simple dipolar continuum. A later attempt by LAws 
[9] to extend this result to three-dimensiomil deformation, however, proved unsatisfactory, 
'in that the torsional moment was not involved in the equations of motion and consequently, 
for the elastic rod, the strain energy could not depend on the torsion. Moreover, no improve­
ment was obtained by assuming the model to be multipolar of a higher grade, for exam-

!' 

ple, by assuming the force system to be given by a distribution of order two. This negative 

(1) If ..It is a manifold with boundary, then by a distribution onJ# we mean an ordered pair consisting 
of a distribution on .//{. and a distribution on oJ# (as a manifold). 
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result shows the difficulties that arise when the velocity-field space is assumed to have 
a mathematical structure without regard to the physically necessary force systems. 

The situation is different when the method of virtual power [10, 11] is used; in this 
method a space of force systems, based on the physics of the problem, is assumed a priori 
and placed in duality with the velocity-field space. Physically significant conclusions can 
then be drawn by using some formal results of duality theory [12-13]. It will be shown 
here that the correct equations of motion for a rod, as well as a torsion-dependent strain 
energy, are derived when the force systems are assumed to take the form of very specific 
distributions of order two, representing distributed (and possibly concentrated) forces 
and couples. 

2. The method of virtual power for simple body models 

Forces systems must, of course, be algebraically dual to velocity fields; in other words, 
since .'K (being a space of mappings of flA into the affine space G) is itself an affine space 
with an associated vector space K, the space F-x of force systems in a configuration u is 
a subspace of K*, the algebraic dual of K. The velocity-field space V" may now be defined 
as the weak tangent space to :1{ at u with respect to the weak duality topology a(F-x, V,J 
That is, if x, defined as t ~ Xt E :1{, is a motion, then there exist at every time t the 
limits Xt± (one-sided velocity fields) defined by 

. 1 
(f, Xr±) = ± hm -h (f, Xt±ll- Xr) 

h--..0+ 

for every f E Fxr. The velocity-field space V'X is generated by the one-sided velocity fields 
in every motion such that Xt = u; it is a topological vector space whose dual is the quotient 

space F-x/VK d,;r V~, the space of equivalence classes of force systems that differ from one 
another by a force system whose virtual power on any virtual velocity field in V" is zero 
(a reactive or workless force system); see [14] for more details. 

In order to formulate the equations of motion within the context of the method of 
virtual power, it is convenient to assume that all rigid-body displacements are a priori 
possible, so that every velocity-field space V" contains the subspace V~ whose elements 
are the rigid-body velocity fields (also called distributors), given by 

YJ(X) = Cl+~ x (u(X)-x0 ), 

where Cl and ~ are arbitrary vectors in E and x 0 is an arbitrary point in G. Iff: denotes 
the external force system acting on the body at time t as a result of its interaction with 
other bodies (governed by physical laws, such as gravity or friction) and if fl denotes the 
inertial force system of the body at time t (derived from its inertia [14]), then the laws 
of motion are equivalent to what GERMAIN [10] calls the fundamental axiom of the method 
of virtual power, namely 

(1) 

where v;l. is the orthogonal or annihilator of v;, that is, the space {f E V~l(f, 17) = 
= OV17 E V~}. It can be shown[14] that Eq.(l) is equivalent to Euler's equations of motion. 
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6 J. LUBLINER 

A deformation of a simple body model may be identified with an equivalence class 
of configurations that differ by a rigid-body displacement. If this equivalence relation 
is denoted &l, then the space of deformations may be identified with the quotient manifold 
:Jt j&l, and its tangent space (defined with respect to the appropriate duality topology) 
at a representative configuration u - the deformation-rate space - is isomorphic to the 
quotient vector space V~/V;. It follows [14] that the space of equilibrated force systems, 
i.e., those whose torsors vanish, is isomorphic to the dual of the deformation-rate space. 

Let the deformation space be represented by a manifold~; specifically, assume a bijec­
tion k from :1( J Bl onto ~ and define I = k o j, where j is the canonical injection from 
:Jt into :Jt j&l, so that a deformation process corresponding to a motion xis given by I oX· 
The deformation-rate space at /(u) will be denoted D1<~b and there must exist in some 
sense a derivative of I at u, denoted /'(u) (a linear mapping from V" into D1<">), such that 

! /(x,) = I' (Xt) · .it. Clearly, I' (u) · rJ = 0 if and only if rJ E v;; 0 consequently/' (u) defines 

an isomorphism, say ;.H~>, of V~/VJ onto Du">, such that, iff E VJ .1 (that is, iff is equilibra­
ted), then 

(f, Y)) = (f, Ai(~> ·l'(u) · Y)) = (J.fc;/ · f, l'(u) · Y)), 

where we use the same symbol to denote f as an element of v;.1 ( c V~) and of (V"/V=)', 
the two being isomorphic, and where J.fc;/ denotes the transpose of Ai(~> · J.fc;/ · fED;<~> 
is the internal force system corresponding to the equilibrated force system f. 

In an actual motion x, let the deformation process be denoted ~ ct,;,r I o x, and let the 

internal force system at time t be denoted sr ct~r ),fr- 1 
• (f~ + ff); then 

(2) (ff + c:, Y)) = (sr, I' (Xr) · Y)). 

Eq. (2) embodies the principle of virtual work for deformable bodies. When Yl equals the 
actual velocity field Xr, then 

(ff +f:, Xr) = (st, ~t) ~r Pt, 
Pt being known as the deformation power at time t. A body is called elastic if there exists 
a function (/>: ~ ~ R, called the strain-energy functional, such that 

(3) Pt = ~ {/>(~r) · 

3. Kinematics of a simple rod model 

In applying the method of virtual power to the simple rod model, we recognize at the 
outset that a physically meaningful force system on a rod consists of a force distribution 
and a couple distribution, together with end forces and end couples. Now the power 
of a force distribution is on a linear velocity field, and the power of a couple distribution 
is on an angular velocity field. In a Cosserat rod model, the appropriate angular velocity 
is that of the director triad. In the absence of directors, it would appear that the appropriate 
angular velocity . should be that of the Frenet vectors. We shall see that with this choice 
the correct equations of motion are deduced, and the strain energy of an elastic rod does 
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indeed depend on the torsion. In deriving these results, we shall have recourse to a principle 
of localization, namely, the postulate that there exists a sufficiently large family of subbodies 
having the same structure as the body under consideration. In the case of a rod model, for 
which f!4 = [0, L] c R (with material points given by S E [0, L]), the assumption is 
that a subbody given by [S1 , S2], with 0 ~ S 1 < S2 ~ L, likewise defines a simple rod 
model. 

For a rod undergoing three-d~mensional deformations which is modelled as an exten­
sible curve, the deformation is specified by the triple (A.,~, r), where ). is the stretch and (jJ 
is the Lagrangian curvature, and r is the Lagrangian torsion or tortuosity (not to be 
confused with torsion in the mechanical sense, whose treatment requires a generalized 
body model), which is the rate (with respect to S) of rotation of the plane of curvature 
(the osculating plane) of the rod. If we denote by t, nand b the unit tangent, normal and 
binormal vector fields on the curve occupied by the deformed rod, then (jJ and r may be 
defined intrinsically by the Lagnragian version of Frenet's formulas: 

d -
dS t = <pn, 

d - ---n = rb-mt dS r' 

d 
-- b = -rn. 
dS 

Alternatively, we may write these formulas as 

d~ l:} ~ (rb+ Tt) X r:J. 
When the rod is moving, with the motion described by 

Xr(S) = Xo+rr(S), 0 ~ S ~ L, 

we have the time-dependent triple (A.t, q;t, rt); in particular 

(4) At = lr;l, 

where we define 0' = o0/oS for convenience, so that r; = At tr, r;' = A; tr +At t; = ;.,; tr+ 
+At ip, nt (from the first of Frenet's formulas), and therefore 

(5) 

Moreover, 

I I 1 I - 1' -1 - - -( )" lt = ~rt = (<ptnt) = <TJrDt+<TJr( -<pttr+rtbr), 

so that 

(6) _ 1 ( I ,)" 
rt = ~t bt. -A.t rt . 

Eqs. (4)-(6) represent the equation ~t = l(xr) for the simple rod model. 
To obtain the rates (material time derivatives) of At, fPt and Tt in terms of i,, i.e., in 

order to determine l'(xr), we may proceed as follows. Since the triad (tt, Dt, b,) is orthonor­
mal, there must be an angular velocity field Wr such that 
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and therefore r; = ~t tt + l,w, X t,. Thus 

(7) 

while 

Now 

~t 1 1 • I t ~t 1 o 1 

tt = ----,yrt+Tc, =- tT+Tc,, 
At t t t 

so that "'•. t, = ~. ( ~. r;)'. b,. and therefore 

(8) 1 0 1 1 ( 1 • l)l b w, = -,-- t, x r t + -=-- T r t • t t, . 
At CfJt t 

On the other hand, t; = (/), n, = ( w, x t,)', so that 

0 = ij5;n,- (w, x t,)' = ~tnt+ (j),(wr x Dr) -w~ x tt -w, x (ip,nt), 

and therefore w; x t, = ~t Dt, from which follow 

(9) 

and 

~ 1 b I 
(/Jt = w, x t, · n, = , · w, , 

n, · w; ~ 0. 

Similarly, by noting that li; = - rtnr = (wt x br), we obtain 

(10) 

and thus 

(11) 

T t = - w; X b, · Dt = t, · w;, 

Eqs. (7)-(1 0) together define II (Xt). 
A rigid-body velocity field is given by 

ft(S) = (X+~ X r,(S)' 

SO that r; = At~ X t, and therefore 

Wt = ft X (~ X f,) + _.;.__ ft ~ X t; · b, = t, X (~ X ft) + ft ~ X Dt ' bt = ~ 
(/Jt 

J. LUBLINER 

as expected. It follows from Eqs. (7) and (11) than an actual velocity field is a rigid-body 
velocity field if and only if f., = 0, "f r = 0, and ~t = 0. 

4. The equations of motion 

In the method of virtual power, the equations of motion take the following form: 
if the external force system acting on the body at time t is denoted f~, and if the inertial 
force system of the body at time t is f!, then 

(f: + fL YJ) = OVYJ E Vir. 
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The inertial force system is derived by a canonical formula from the inertia functional [14]~ 

Here we will take the inertia as classical, so that the inertial force system is given by 

L 

(fL "fl) = - j Po vr · "fldS, 
0 

where p 0 is mass density per unit reference length, and the external force system will be 
assumed (as discussed above) to take the form 

L 

(f:, YJ) = J (P·Yl+m · w)dS+ [P· Yl+M·w] \ ~, 
0 

where w is related to Yl by 

I I I ( 1 1)
1 

b 
W = ytr X Yl + -=- T Yl · rtt. 

t CfJr t 

p and m are the distributed force and couple (per unit reference length), respectively, and 

P and M are, respectively, the end force and end couple. But in accordance with the 
principle of localization, P and Mare also defined on (0, L), namely, P(S) (M(S)) is the 

force (moment) exerted by the subbody [S, L] on the subbody [0, S], and if we assume 

sufficient differentiability we can obtain 

L 

(f,e, Yl) = j [p · Yl+ (P· Yl)' +m · w+ (M · w)']dS. 
0 

Let the torsor of r,e + r:' i.e.' its restriction to v;(' be represented with respect to Xo by 
(Ff, Mt(xol). As we noted above, if Yl(S) = a+~ x rr(S), then "fl 1 = (1 / Ar)~ x tr and w(S) = 
= ~· It follows, first off, that 

L 

F~ = j (p-p 0v+P1)dS = 0, 
0 

and therefore, by localization, 

(12) p+P1 = PoV. 

We can now simplify f,e + f/ to obtain 

h 

It then follows that 

< fre + r:' Yl> = f [P . Yl I + m . w + (M. w )'] dS. 
0 

L 

M~[xol = J (rr xP+m+M1)dS = 0, 
0 

and, again by localization, 

(13) rr xP+m+MI = 0. 

Eqs. (12) and (13) are the standard equations of motion for rods with classical inertia. 
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10 J. LUBLINER 

5. Elastic rods 

With the help of Eqs. (7), (11), (12) and (13), we can show that the deformation power 
reduces to 

L 

(14) . Pf = ( (N,~t+Mr~t+T/i,)dS, 
0 

where Nt = P · tr, Mt = M · bt, and T = M · tt are, respectively, the axial force, the 
bending moment in the osculating plane and the torsional moment at time t. The triple 
(N, M, T): [0, L] -+ R 3 thus constitutes the internal force system of the simple rod model. 
The shear forces P · n and P · b, and the other bending moment M · n, are not part of the 
internal force system but constitute internal reactions. 

If the rod is elastic, then a reasonable assumption (consistent with the localization 
principle) for the strain-energy functional (/> is that f/>(1-(. ), (j)(. ), r(. )) is the value 
at (0, L) of a positive (for stability) Borel measure on (0, L). By the Lebesgue decomposi­
tion theorem, such a measure can be written as the sum of a measure that is absolutely 
.continuous with respect to Lebesgue measure and one which is singular. A strain energy 
represented by a singular measure that is concentrated at, say, S 1 may be interpreted 
physically as a spring located there. In Ute absence of springs, the Radon-Nikodym theorem 
:implies the existence of a function W( A( · ) , ip ( · ) , r ( · ) , S) .such that 

L 

{15) fi>(A( · ), (j)( · ), r( · )) = f W(A( · ), (jj( · ), r( · ), S)dS. 
0 

By the principle of localization, Eq. (3) remains valid when the limits of integration in 
Eqs. (14) and (15) become (S1 , S2 ) in place of (0, L), provided the functions .A(·) etc. 
are interpreted as their restrictions to (S1 , S2). Since the equations must be valid when 
the integrands are continuous, there result the local equations 

(16) N,(S)i,(S)+Mr(S)~t(S)+ Tr(S)it(S) = :t W(Ar( · ), cp,( · ), rA · ), S), 

where A( · ) etc. are now to be interpreted as the restrictions of the functions to an arbitrarily 
small neighborhood of S, but they cannot be replaced automatically by their local values 
A(S); for example, W may depend on A(·) through A(S), A'(S), A"(S) and so on. If such 
is the case, then the dependence on the derivatives may be eliminated through the use 
of the chain rule: let sr denote (Nr, M,, T,) and let ~t denote (Ar, Cfr, rr); if Wr(S) = 

W(~r(S), ~;(S), ... , ~~n>(S), S) then 
k=n 

(s,- a:,rs) )i,(S)- J; a~~S) ~l.'(S) ~ 0. 

Since a deformation process may, in general, be found such that ~·,( ·), ~;( · ) , ... , ~~n>( ·) 
have arbitrary values at S, the coefficients of ~~k>(S) must vanish, so that Wr(S) = 

= W(~r(S), S), and . 

(17) 
aw 

s,(S) = -a~,(sf · 
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If the dependence of Won ~~( ·) is not through its derivatives, then a result identical 
to the preceding one may be derived through a method based on a proof due to GuRTIN 

[ 15]. Consider a deformation process t ~ ~~ ( ·) during a time interval [t 0 , t d such that, 
at the given pointS E (0, L), ~1 (S) =~(a constant) at all t E [t0 , td, while ~11 ( ·) = ~1( · ), 
where I ( ·) is the unit function on (0, L). In words, such a deformation process changes 
an arbitrary deformation state into one of uniform deformation (extension, curvature 
and torsion) while keeping the deformation constant at one point; it is not difficult to 
show that ~uch a process is possible. Now, since ~1 (S) = 0, it follows from Eq. (16) that 

:t W(~c( · ), S) = 0, so that W(~r( · ), S) = W(~1( · ), S) d~c W(~, S). It follows that the 

dependence of Won ~ ( · ) is only through its local values, and Eq. (17) holds. Returning 
to the internal-force and deformation variables peculiar to the rod, we write this equation 
as 

(18) 
aw 

M = a-cp , T =aw 
a-:r · 

The third of these equations shows explicity the torsion dependence of the strain energy 
that eluded Laws. 

It should be pointed out, in conclusion, that the purpose of this note is not to produce 
a general rod theory,_ but only io show the applicability of the method of virtual power. 
For one thing, the fact that the strain-energy function W depends on the total material 
curvature (j;, rather than on its components in two mutually perpendicular planes, means 
that a rod that is modeled by a simple rod model must be transversely isotropic: it must 
have equal stiffness in all possible planes of bending. Transverse anisotropy, along with 
torsion, can be handled by means of a simplified Cosserat rod model in which one of the 
directors remains tangential; this is essentially the Kirchhoff-St.Venant-Clebsch model 
[16]. 
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