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Some existence results in stationary problems of solid mechanics
with unilateral constraints for displacements and stresses

Z. NANIEWICZ (WARSZAWA)

THE pPAPER deals with some class of stationary problems with unilateral constraints imposed
both on displacements and stresses. The existence of solutions to such problems is discussed. The
method proposed is based on the suitably constructed family of approximation sets.

W pracy rozpatruje si¢ pewna klase zagadnien stacjonarnych z wigzami jednostronnymi natozo-
nymi zarOwno na przemieszczenia jak i naprezenia. Zbadano problem istnienia rozwigzan tych
problemdéw. Zaproponowano metode¢ opartg na odpowiednio skonstruowanej rodzinie zbiorow
przyblizajacych.

B paboTe paccMaTpuBaeTcsi HEKOTOPLIA KJIACC CTAIMOHAPHBIX 3a1ay C OJHOCTOPOHHHUMH CBS-
3AIMH, HaJIOYKEHHBLIMH TaK Ha MEPEMEIIEeHNsT, KaK W Ha HanpshkeHus. MccnemoBana mpoGiema
CYIIECTBOBAHMSA PEINEHHMI 3THX 3amay. [IpeiyioyKeH METOM OMUPAIONIHIACA HA COOTBETCTBEHHO
TIOCTPOCHHOM CEMEHCTBE MPUOIMYKAIOUIMX MHOMKECTB.

1. Introduction

IN THE PAPER we are to discuss the existence of solutions to some class of stationary problems
of solid mechanics with unilateral constraints imposed both on displacements and stresses.
The analysis will be carried out under assumptions of the infinitesimal theory of elasticity.

Let £ denotes a regular bounded region in the Euclidean space R™ and let R™*™ be
the space of all real-valued symmetric matrixes m x m. Throughout this study by 4 < R™*™
a proper convex closed subset of R™*™ with 0 € 4 and int 4 % 0 will be denoted.

We are interested in problems in which the stress field T is subject to the following
condition:

(1.1) T(x)ed, xecQ.

Independently of the stress constraints defined above there are also some restrictions
imposed on the displacement field », namely

(1.2) ues,

where Z is a certain convex set of all admissible displacement fields, known in every problem
under consideration.

The aim of the paper is to present some existence results for problems with the con-
straints (1.1) and (1.2). Such problems have been encountered in the theory of slender
and textile-type materials [5, 15]. The case in which only stress constraints (1.1) are taken
into account (for example, the Hencky plasticity case) has been analysed by many authors,
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cf. [1,6,7,10,11]. For problems with displacement constraints (1.2) only, the reader
is referred to [3]. ‘
We start our investigation with the assumption that

Hi(E™ = {fve H'(Q)™: v)p,0 = 0},
2, 2 being a part of the boundary 642 with a positive m—1 dimensional measure, and
L2(Q)mxm) = {§ = (8,)):8; = Sj, SyeL*(), i,j=1,2,...,m}

are taken as the displacement space and the stress space, respectively. Let us denote by L
the operator which assigns to any displacement field » the symmetric part of its gradient
Vo, ie.,

Loy = %(waf).

Let the material properties of the body be determined by the operator K: L2(Q)™*™ —
— L2(Q)™*™ which is assumed to be demicontinuous and strong monotone, i.e. it is
continuous from L2(£2)™=™ into L2(2)im*™ (1), and

(1.3) (KS—KT,S—T)y, > BIS—Tl|%, S, TeL2(@)™m, § >0,

(*, *)1z and || - ||.2 being the inner product and the norm in the Hilbert space L*(£2)"*™,
respectively.

The body force b and surface traction p are assumed to lie in L2(2)" and L*(I")",
I' = 90090, 82, respectively. According to the condition (1.1) the set of all admissible
stress fields will be defined by

(1.4) 2 ={Sel?@)mm. S(x)ed, ae xe}.

In the sequel the set = of all admissible displacement fields is assumed to be nonempty
convex and closed in H{()™ '

Summing up, we are to deal with such problems in which the displacement field u«
and stress field 7 are subject to

(1.5) uer
and
(1.6) TelX,

respectively. In this case the governing relations take the form of the following system
of two variational inequalities [8, 14]:

[lT(o—Lido— [b- (0—)do— [p-@-1)ds >0, VoeZ,
o2 o r

(1.7
[ &l(KT—Lu) (S—T)dw 2 0, VSeZ,

Q2

uezZ, Tel,

(1) L2(@2)i"x™ denotes the space L2(2)™*™ endowed with the weak topology.
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or, equivalently,

[r(TLeldo+ [ tKT(S—T)do— [ tr[SLu}de
Q Q Q

(1.8)
= fb-(v—u)dw~ fp-(-v—u)ds;O, VoeE, VYSel,
Q r

uel, TelZ,
Let L*: L2(2)™™ - (H§(2)™)*, (H5(£2)")* being the dual of H{(2)™, be the adjoint
of L. It assigns to any S e L*(Q2)™*™ element L*S € (Hy(£2)™)* such that
(L*S, 3 2 (S, Lv)., ©eHY(Q)",
{*, > being the pairing over (H(£2)")* x Hy(£2)™. Putting

(1.9) S, Vue il fb~vdw+ fp-vds, ve H ()™,
Q r

the system (1.6) can be rewritten as
{ L*T—f€ ¢indz(u),
Lu— KT € dindx(T),

where dindz and Jdindy are the subdifferentials of the indicator functions of = and 2,
respectively.
The following existence result for systems of the type (1.10) has been obtained.
THEOREM 1. [8]. Let &' and X' be closed convex nonempty subsets of HY(Q)™ and
L2(Q) =™, respectively, and let f' be an element of (H(£2)™)*. Define oy, =, L?(£2)™m —
— (—o0, 0] according to the formula

(1.10)

Upozn(S) £ inds (—LXS+f),  Se L2(Q)mm,
ind%. being the conjugate of indz.. Suppose that K': L*(Q2)™*™ — L*(Q)™*™ s demicon~
tinuous and strong monotone and that the mapping
3 indz"*‘ aa(f'_ 8)

is maximal monotone. Then there exists a pair (W', T')eE' x X' such that

L¥T" —f’e—3dindg (1)

Lu'—K'T’ € ¢dindz(T")
holds.

From Theorem 1 it follows that the existence solution problem related to the system
(1.10) can be reduced to the investigation of the maximal monotonicity condition for-
mapping
(1.11) dindg+das, =),
where o, £,(S) £ indi(—L*S+f), S € L3(2)*™_ Unfortunately, for the set X defined
by the relation (1.4) there are many physical situations with sets = and loadings f for-

which -the mapping (1.11) is not maximal monotone (unconstrained displacements, for
instance). Hence it can be easily deduced that, in general, the system (1.10) has no solutions.
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in spaces H(2)™ and L2(Q)™*™. However, as it will be shown in Sect. 2 and Sect. 3,
the family {Z.},., of approximation sets to X' may be constructed in L2(£2)™*™ with the
properties

N X252, >0,

2 NZ=2=,

&>0
3) dindg, +de, =y is maximal monotone (provided that f satisfies the modified
safe load condition).
So, Theorem 1 implies the existence of solutions to the system (1.10) with X' replaced
;by 2,;, i.e.

(L.12) {L T—fe —3dindz(w),

Tu—KT e dindz (7).
In Sect. 4, using suitable a priori estimations for the relation (1.12) and assuming among

-other things that Range (dindz) is closed in (HO(Q)’")* the existence of solutions to the
following problem

(1.13) [ tr[TLoldo+ [ t[KT(S—Tdo— [ w[STul— [ b @0 —u)do
0 0 2 Q2

- fp' (vds—du) 2 0, VYoeZ, VSeXnCy(R)m=m,
I

ueZy,, TelX, dueM )",

will be deduced. Above Zy, stands for the weak (star) closedness of = in BD(Q), BD(£2)
being the space of bounded deformation, [7, 12], Co(£2) is the space of all continuous
functions with compact support in £2, M(I") being the space of bounded measures on I".

This result allows us to conclude that if BD(£2) and L2(2)™*™ are taken as the displace-
ment space and the stress space, respectively, then it is possible to realize the constraints
-determined by sets of the form 55, and 2 in the sense of satisfying the problem (1.13).

‘2. Approximation sets

The aim of this Section is to construct in L?(£2)™*™ the family {X,},., of such sets
that

H 2,02, £>0,

2y NIE=2,

e>0

3) intX, #0, &>0,

4 ifT,eX, e>0, and T, » T weakly in L?2(2)"™*™ as ¢ —» 0, then TeZ.

To this end, let us denote by w,: R" = R, £ > 0, a function having the following
properties:

ws(x) = Os ws(x) = ws(_x): X € Rm'
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w, is continuous in R™,

suppw, = {x € R™:[|x]| < ¢},
fcu,,(x)dx =1, &>0.
Rm )
To any S e L*(2)™™ will be assigned w, % S e C(2)™*™ according to the formula
o % S@) = [ SOo,-n)dy,  xe L.
Q2

It allows us to define

@1 5, = {SeL(@™™:0, % SeZ}, &> 0,
as a convex closed subset of L2(Q)t™*m,
Setting

Y.(x) i fws(x—y)dy, xef, >0,
Q2
and

Y, = inf y,(x), &>0,

XN
we obtain immediately (by the regularity and the boundness of £):
2.2) 0<y, <1, &>0.

ProposSITION 1. Let @ be a closed convex nonempty subset of R™*™. Define m, =

= conv(y,mun). Suppose that S e L2(2)™*™ is such that S(x) € = for a.e. x € 2. Then
w, ¥ S(x)€m, for every x e .

Proof. We argue by the contradiction. Suppose that there exists x, € £ such that

w, % S(xo) ¢ m,. Using the standard separation argument for convex sets we can find
w e R™x™ with ‘

(2.3) (z, Wrm = (0% S(x0), W)gm+v, Vzem,,

where v is a positive constant, ( -, +)gm denotes the inner product in R™*™, By the assump-

tion we have S(x) €  for a.e. x € 2. Thus, using the definition of 7, and the inequalities
(2.2) we get

ye(x0)S(x) e, ae. x€ L.
Hence, according to the inequalities (2.2) we easily establish that
YeX0) (S(X), W)gn = (@, 5% S(x0), W)rm+», a.e. x€ L.

Multiplying both sides of the above inequality by w,(x—x,) and integrating over £ we
find

¥o(xo) (0% S(xo), W)an = 7,(x0) (0% S(xo), W)rm +7),
which, due to y,(x) = y. > 0, leads to the contradiction.

REMARK 1. If Oem, then y,7m = @ and, consequently, =z, = = for any & > 0.

€

CoroLLARY 1. From Proposition 1 and Remark 1 it follows immediately that

F.ooX, &30

2 Arch. Mech. Stos. nr 1—2/86
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Let A = 4 be a closed convex nonempty subset of A with dist(4, aA) = é > 0 for
some positive constant d, ¢4 being the boundary of A4.
PrOPOSITION 2. Let T, € L2(£2)™*™ be such that

To(x) ed, ae xef.
Then
ToeintX,, &> 0.

Proof. Denoting by 4, = conv(ysA~€uA:) and taking into account that 0 € A, it
can be easily verified that

2.4 dist(d,, 84) > y, 6.
Now, for S e L2(£)™*™ we have
|l % S(x) —w, % To(X)|Izm < MZ||S—Tollf:, xeR

]

where
v = spll foto-na ),
XE. 0o
and || - ||gm is the norm in R™*™_ If ||S— Tol|r2 < v,6/M,, then we get the following
estimation:
(2'5) Hwe*s(x)_wn%TO(x)”R"‘ < 6?31 X GQ-

From Proposition 1 it follows that w,« T, (x) € je; hence owing to the inequalities (2.4)
and (2.5) we arrive at

w,%Sx)ed, xef.
It leads directly to
Sel, >0,

which proves the assertion.

ProposiTION 3. Let 7, be a sequence with 7, € 2,, £ > 0. Suppose that T, converges
weakly to T as ¢ =+ 0. Then Te 2.

Proof. In the first step it will be shown that w, % T, converges weakly to T as ¢ = 0.
From the boundness of T, the boundness of w,% T, can be easily deduced. As it is known
in such a case it suffices to establish that

(ws*n’ fP)Lz = (T, (p)Lz, as £ — 0,

holds for any ¢ € C, (2™, Co(£2) being the space of continuous functions with compact
support in £2. For @ € Co(2)™*™ we have

(@ ¥ T, @) = nf tr[p() [ T x—y)dy|d
Q
= f tr'[Te(y) f q')(x)we(y—X)dx] dy = f tr[T.(y) .- @(»] dy
2 Q Q2

= [0 T.0) (0% 00) -] dy+ [ L) e dy.
o Q2
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Using the estimation
| [ 4[1.0) (@ % 90) - p0)] dy| < 1Tl lual o X 9~ gl
Q

and taking into account
st%‘P‘*‘PHL’ = 0’ as &= O:
we conclude that

(@, %T,, ®)2 = (T, @)z, as e— 0,

Further, from T, € X, we get w,% T, € 2. Since 2'is closed and convex it is weakly closed.
Thus T as a weak limit of w,> T, € X has to belong to 2. The proof is complete.
CoroLLARY 2. From Corollary 1 and Proposition 3 we obtain immediately

) =&,

e>0

Due to (1-4) elements of the family {Z}},,, may be regarded as approximation sets
to 2. Their further important properties will be given in the next Section.

3. Approximation problems and a priori estimates

Let us consider the problem consisting in finding a pair (4, T') such that the relation

(1.10) holds with X replaced by X, ¢ > 0, i.e.,
- L*T—fe —dindg(u),
(3:1) Lu—KT € dindg (T).

The analysis will be carried out under the following hypothesis concerning f given
by the relation (1.9)

(H.1) Safe load condition. There exist u, € =, a closed convex A < A with dist(A~ , 04) =
> 0 > 0 and T, € L*(£2)™*™ such that

() L*Ty—fe —2aindz(uo),
or, equivalently,

ftr[To(waLuo)]dw— fb(v—uo)dw— fp(w—u)ds >0, VvelZ,
2 2 r

(i) To(x)ed forae, xef.
ProrposiTiON 4. Under Hypothesis (H.1) mapping

(3.2) dindy, +0xcszy, € > 0,

is maximal monotone.
Proof. From (i) of (H.1) it follows that

(3.3) —L*T,+f€dinds(uo) < uo € dinds(— L*To+f) = — Lu € dus, 5(To).
On the other hand, (ii) of (H.1) implies by Proposition 2 that
Toeintl,, &>0,

2%
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and, consequently,
3.9 T, eint[dom(dindy)], &> 0,
where “dom” is used to denote an effective domain. Combining the relations (3.3) and
(3.4), we obtain
dom(das, =) N int[dom(éindy)] # 0, &> 0,

which implies the maximal monotonicity of (3.2), [2].

Theorem 1 and Proposition 4 lead to the following existence result.

THEOREM 2. Suppose that K is demicontinuous and strong monofone from L?(Q)™*™
into L*>(£2)™<™_ E is a closed convex nonempty subset of Hy(£2)". Moreover, let X,, ¢ > 0,
be given by the relation (2.1) and let Hypothesis (H.1) hold. Then there exists a pair (u, T) €
€ Ex X, satisfying the relation (3.1). _

Let us denote by (1, T,) € Zx 2, ¢ > 0, a solution of (3.1). It means that the following

relations have to hold:
(T, Lv— Lu,) 2——<f,ﬂ-—u5> 1 2= 0, Vo EE,
(3.5) - " 0

(KT,, S—Ty)2— (Lu,, S—T,);2 ; VSelZ,,
or, equivalently,

(3.6) [T, Loldo+ [t[KT(S—T)do— [ tr[SLu]dow
0 (2] 2
— fb-('v*ug)dw— fp- (v—u)ds =20, VeveZ, VSel,.
Q r

Now, let us pass to a priori estimations for the relation (3.1).
ProrosITION 5. There exists a positive constant C, not depending on ¢, such that

3.7 Tl < C, €>0.

Proof. Putting S = T, and v = u, in the relations (3.5) (#o and T, being the same
as in (H.1)), we get

(Kj-'ﬂl TO— TE)LZ_ (T()_ n! LuO)L’_< _L*TO +f_ (_ L*Te+f)’
uO—ut:)Hl > 0,
which, by the monotonicity of dindg, yields
(K?‘;, TU— Ts)LZ_(TO_Te’ LUO)Lz = 0.
This inequality together with the relations (1.3) amount to
(KT,, To—T,):— (To—T,, Luo),: = Bl|To— T,||72-

Hence we easily obtain the boundness of T..

Further investigations will be continued under the following stronger assumption
related to K:

(H.2) K is a demicontinuous strong monotone operator from L?(2)™™ into L*(£2)"™*™
mapping bounded sets into bounded sets.
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PROPOSITION 6. Let us suppose that (H.1) and (H.2) hold. Then there exists a positive
constant C not depending on &, such that

(3.8) [ Luflpr < C, &e>0,
where ||* |2 is the norm in the space L'($2)™*™, given by

[|E]|p = ftf[ESgnE]dw, E € L}(Q)mxm
Q

Proof. Since To(x)eA for ae. xe® and dist(4, 24) = 6 > 0, so seeing that
||lsgn Lug(X)||gm < m, ae. xef2,
we get

T(,(x)+7iu sgnLu,(x)e 4, ae. xef.
It implies
S, = T0+%sgnTuseZ'c 2 &<,

Putting S = S, in the inequality (3.5), the following estimation can be easily obtained:
m

1Lller < 5 KT el To— Tullos+- 1 Tuolloal | To = Tllua + KT, s mes(@)2.

By Proposition 5 and Hypothesis (H.2) this implies the desired estimation. The proof
is complete.

4. General problem

Our purpose in this Section is to answer the following two questions. What kind of
displacement constraints can be realized in BD() if the stress field is subject to 2’ given
by the relation (1.4)? In what sense is a solution of the problem under consideration
understood? The second question arises from the fact that

f tr[TLu]

may be not well defined for ue BD(£2) and T e L*(£2)(™*™,

We restrict ourselves to such sets = that the following hypothesis holds:

(H.3) £ is a closed convex nonempty subset of Hp(£2)* with

Range(dindz)

closed in (Hy(£2)%)*.

For instance, an arbitrary closed convex cone satisfies (H.3).

ProposiTION 7. Let the inequalities (3.5) be satisfied. Then under Hypotheses (H.2)
and (H.3) there exists T € 2 such that

T, - T weakle in  L2(QY™™ as g, — 0,
4.1) . { KT, —» KT weakle in L*(Q)™™ as ¢, -0,
liIn(K-—T‘e,.,, Ta,,)z.? = (KT, T')L2

8,-0
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for some subsequence &, of ¢ with ¢, — 0. If in addition X is linear and potential and &
is a cone, then in fact
4.2) T, —» T strongly in L*(Q)™™ as g — 0.

Pro of. From Proposition 5 the boundness of T, follows, which allows us to choose
a subsequence &,, & — 0, such that T, converges weakly to some T e L?(Q2)™*™ as

g, = 0. Since T, € X, , so by Proposition 3 we get T € 2. Further, using the inequality
(3.5); and taking into account (H.3) we can easily deduce that

(4.3) —L*T+fe dindg(u)

for some u € 5. Putting S = T € X < Z, in the inequality (3.5), and utilizing the relation

(4.3) we arrive at the following inequality:

4.9 (KT, ,T—T,)p:—(T—T,, Lu): > 0.

Proposition 5 and Hypothesis (H.2) amount to the boundness of K7, . Thus we can

extract from K7, a subsequence (again denoted by K7, ) which converges weakly to some

Z e L2()"<™_ Passing to the limit in the relation (4.2) we obtain immediately
Hmsup (KTa,,a Tu,,) < (Zr T)Lz-

g,—0

Hence the known argument for maximal monotone mappings yields the relations (4.1),
cf. [2]. Now, let us pass to the proof of the relation (4.2). To this end let W and £* denote
the potential for K and the polar cone of Z, respectively. It is easy to check that

WS) = 3 (KS, S) ISR, S L@,

Gpey =ind,, A= {SeL?(Q)™m. _[*S4feF*},
where || - || is the norm generated by K, equivalent to the usual norm || -||.:. From the
inequalities (3.5) we deduce that, [9], T, is a solution of the following minimization problem:
inf  {|IS]I%}.
SeAn):e"

Hence, using Corollary 1 and Hypothesis (H.3) we get
1T, Iz < 1IT]|%.
Taking into account the lower semicontinuity of || - ||2, we arrive at
lim i;lfllT,,,ch = |ITI%.
ey

It implies the following condition:
liﬂ;lIT.,,H?( = ||TlI%,

&
which is equivalent to
lirr})llTL"!Iu = ||T||L2.

This result together with the weak convergence of T, to T leads to the relation (4.2).
It ends the proof.

To investigate the displacement problem let us denote by =, the weak (star) closedness
of £ in BD(2)(?). From Proposition 6 the boundness of u, in BD(R) follows and hence
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the boundness of traces y(u,) in L'(I")" as well, [12]. Now, using the known compactness
results cf. [12], we obtain.

ProrosiTION 8. Let the inequalities (3.5) be satisfied. Then there exist u € £, and
due M(I")" such that

u, > u weakly in Lm—1(Q)",
Tu, — Lu  weakly (star) in =~ M ()™, as ¢ =0,
y(u,)ds — du  weakly (star) in  M(I)"
for some subsequence u, of u,.

Note that without losing the generality we can assume that the subsequences ¢, and ¢,
coincide.

In the sequel we assume
(H.4) Body force be L™(£2)" and surface traction pe C(I")".
Our main result may be formulated as follows:

THEOREM 3. Let us suppose that Hypotheses (H.1)-(H.4) hold. Then there exist u € Zgp
and T € X such that

@5 [t[TLoldo+ [t[KT(S—Tdo— [t[SLul— [ bw—u)do

/

Q2

~ [pleds—di) >0, VoeE, VSeZnC@)™m.
;

If 82 is a C' — manifold and Q is locally on one side of 912, then the above inequalities
can be replaced by

JulTLoldo+ [w[KT(S—Dldo— [ tr[SLul— [ Sn(du—y(w))ds
2 2 2 r

— [ bu-v)do— [peds—du)> 0,
Q r

VoeE, VSeC{Q)™™nL.
where n is the unit outward normal on I.

Proof of Theorem 3 follows immediately from the inequality (3.6), from Propositions
7 and 8 and from the generalized Green’s formula, [12].
REMARK 2. If ue By, and T e X' are smooth enough that means if

[ [T Ly}
2

is well defined, then the inequality (4.2) is equivalent to the following variational ine-
qualities:

[ w[T(vdo— L)~ [b- @-wdo— [ p-(ods—du) > 0,
4.6) e e r
| tr[KT(S=T)do— [ tr[(S—=T)Lu] > 0,
2 2

which have to hold for any v €5 and any S e ZnCy(£2)"*™, respectively.

(3) A sequence v, of BD() converges weak (star) to v iff v, — v strongly in L' ()" and Lo, — Lv
weakly (star) in M, (2)™xm™, [12].
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According to Theorem 3, it is possible to realize in BD(£2) and L?*(£2)™*™ constraints
determined by sets of the form Zpp and 2, in the sense of satisfying the inequality (4.2).
In the particular case, if the solutions are smooth enough, then the inequality (4.2) can
be separated into two variational inequalities (4.3) — one corresponding to the condition
of equilibrium and the other related to the constitutive relation.

From the proof of Theorem 2, it follows that the mapping (3.1) can be regarded as an
approximation problem to the inequality (4.2). This problem via Propositions 7 and 8
leads to the inequality (4.5). There is another way to get the inequality (4.5). It consists
in replacing in the relations (3.1) of the mapping dindy, by the Yosida approximation

of aindzs,—sl—(f —Projy). However, this method leads only to the weak convergence of T,

=
=

to T in the case when = is a cone and K is linear and potential.
In particular, for the Hencky plasticity problem (& coincides with Hg(22)™) the strong
convergence of T,, to T has been obtained.
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