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Some existence results in stationary problems of solid mechanics 
with unilateral constraints for displacements and stresses 

Z. NANIEWICZ (WARSZAWA) 

THE PAPER deals with some class of stationary problems with unilateral constraints imposed 
both on displacements and stresses. The existence of solutions to such problems is discussed. The 
method proposed is based on the suitably constructed family of approximation sets. 

W pracy rozpatruje si~ pewn'l, klas~ zagadnien stacjonarnych z wi~zami jednostronnymi naloi:o
nymi zar6wno na przemieszczenia jak i napr~i:enia. Zbadano problem istnienia rozwi'l,zan tych 
problem6w. Zaproponowano metod~ opart'l, na odpowiednio skonstruowanej rodzinie zbior6w 
przyblii:aj'l,cych. 

B pa6oTe paccMaTpHBaeTCH HeKoTophlli KJiacc CTa~HoHapHhiX 3agaq c ogHocTopoHHHMH caa-
3HMH, HanomeHHhiMH TaK Ha rrepeMer.qeHHH, KaK H Ha HarrpameHHH. HccnegoBaHa rrpo6neMa 
cyr.qeCTBOBaHHH pemeHHH 3THX 3agaq. IJpegJio>KeH MeTog OIIHpalOI.qHHCH Ha COOTBeTCTBeHHo 
IIOCTpoeHHOM CeMeHCTBe IIpH6JIH>KaiOI.qHX MHO>KeCTB. 

1. Introduction 

IN THE PAPER we are to discuss the existence of solutions to some class of stationary problems 
of solid mechanics with unilateral constraints imposed both on displacements and stresses. 
The analysis will be carried out under assumptions of the infinitesimal theory of elasticity. 

Let Q denotes a regular bounded region in the Euclidean space Rm and let R<mxm> be 
the space of all real-valued symmetric matrixes m x m. Throughout this study by LJ c R<mxm> 
a proper convex closed subset of R<mxm> with 0 E LJ and int LJ i= 0 will be denoted. 

We are interested in problems in which the stress field T is subject to the following 
condition: 

(1.1) T(x) E LJ, X E Q. 

Independently of the stress constraints defined above there are also some restrictions 
imposed on the displacement field u, namely 

(1.2) uEE, 

where Eisa certain convex set of all admissible displacement fields, known in every problem 
under consideration. 

The aim of the paper is to present some existence results for problems with the con
straints (1.1) and (1.2). Such problems have been encountered in the theory of slender 
and textile-type materials [5, 15]. The case in which only stress constraints (1.1) are taken 
into account (for example, the Hencky plasticity case) has been analysed by many authors, 
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14 Z. NANIEWICZ 

cf. [1, 6, 7, 10, 11]. For problems with displacement constraints (1.2) only, the reader 
is referred to [3]. 

We start our investigation with the assumption that 

HJ(Q)m = {v E H 1 (Q)m: v/a1D = 0}, 

a 1 Q being a part of the boundary [)Q with a positive m- 1 dimensional measure, and 

L 2 (Q)<mxm> = {S = (Sll):Su = S11 , Sl1EL2 (Q), i,j = 1,2, ... ,m} 

are taken as the displacement space and the stress space, respectively. Let us denote by L 
the operator which assigns to any displacement field v the symmetric part of its gradient 
Vv, i.e., 

Let the material properties of the body be determined by the operator K: L 2 (.Q)<mxm> ~ 
~ L2 (.Q)<mxm> which is assumed to be demicontinuous and strong monotone, i.e. it is 
continuous from L 2 (.Q)<mxm> into L2 (.Q)~mxm> (1), and 

(1.3) (KS-KT, S-T)L
2 
~ ,811S-TIIt2, S, TE L2 (.Q)<mxm>, ,8 > 0, 

( ·, · )L2 and II · 1lL2 being the inner product and the norm in the Hilbert space L 2 (.Q)<m xm>, 

respectively. 
Th.e body force b and surface traction p are assumed to lie in L 2 (.Q)m and L2 (F)'", 

r = o!J-o1 Q, respectively. According to the condition (1.1) the set of all admissible 
stress fields will be defined by 

(1.4) .E = {S E L 2 (.Q)<mxm>: S(x) E L1, a.e. X E Q}. 

·In the sequel the set E of all admissible displacement fields is assumed to be nonempty 
convex and closed in HJ(.Q)m. . 

Summing up, we are to deal with such problems in which the displacement field u 
and stress field T are subject to 

(1.5) 

and 

(1.6) 

uEE 

respectively. In this case the governing relations take the form of the following system 
of two variational inequalities [8, 14]: 

J tr[T(Lv-Lu)]dw- J b · (v-u)dw- J p · (v-u)ds ~ 0, Vv E E, 

(1.7) 
D D r 

J tr [ (KT- Lu) (S- T)] dw ~ 0, V S E .E, 
D 

uEE, TEE, 

(1) L2(Q)~mxm) denotes the space L2 (Q)<mxm) endowed with the weak topology. 
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SOME EXISTENCE RESULTS IN STATIONARY PROBLEMS OF SOLID MECHANICS 15 

or, equivalently, 

J tr[TLv]dw+ J tr[KT(S- T)]dw- J tr[SLu]dw 
!J !J !J 

(1.8) 
- fb·(v-u)dw- fp·(v-u)ds~O, YvEE, VSEE~ 

fJ r 

uEE, TEE. 

Let L*: L 2 (Q)<mxm> ~ (HJ(Q)m)*, (HJ(Q)m)* being the dual of HUQ)m, be the adjoint 
of L. It assigns to any S E L 2 (Q)<mxm> element L*S E (HJ(Q)m)* such that 

<L*S, v)H• ~ (S, Lv)L2' v E HJ(Q)m, 

< ·, )n• being the pairing over (HJ(Q)~)* x HJ(Q)"'.. Putting 

(1.9) <f, v)nt ~ J b ·vdw+ J p · vds, v E HJ(Q)m, 
D r 

the system (1.6) can be rewritten as 

(1.1 0) { 
L*T-fE a i~ds(u), 
Lu- KT E a Itldz(T)' 

where a inds and a indr are the subdifferentials of the indicator functions of E and E~ 
respectively. 

The following existence result for systems of the type (1.10) has been obtained. 
THEOREM 1. [8]. Let E' and E' be closed convex nonempty subsets of HJ(Q)m and· 

L 2 (Q)<mxm>, respectively, and letf' be an element of(HJ(Q)m)*. Define IX<f', E'>: L 2 (Q)<mxm> ~ 
~ (- oo , oo] according to the formula 

CX<f',:E')(S) ~ indi,( -L*S+f'), S E L 2 (Q)<mxm>, 

ind;, being the conjugate ofinds'· Suppose that K': L 2 (Q)<mxm> ~ L 2 (Q)<mxm> is demicon
tinuous and strong monotone and that the mapping 

a indr' +a au'. E'> 

is maximal monotone. Then there exists a pair (u', T') E E' x E' such that 

holds. 

{ 
L*T'-f'E- ainds'(u') 

Lu' -K'T' E oinds'(T') 

From Theorem 1 it follows that the · existence solution problem related to the system· 
(1.10) can be reduced to the investigation of the maximal monotonicity condition for 
mapping 

(1.11) aindr+aa(f,E)' 

where IX<f,E>(S) ~ indi( -L*S+ f), S E L 2 (Q)<mxm>. Unfortunately, for the set E defined 
by the relation (1.4) there are many physical situations with sets E and loadings f for · 
which ,the mapping (1.11) is not maximal monotone (unconstrained displacements, for· 
instance). Hence it can be easily deduced that, in general, the system (1.10) has no solutions. 
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16 Z. NANIEWICZ 

:in spaces H6(Q)m and L 2 (Q)<mxm>. However, as it will be shown in Sect. 2 and Sect. 3, 
1he family {.Ea }a>o of approximation sets to .E may be constructed in L 2 (Q)<mxm> with the 
properties 

1) .Ee :::::> .E, e > 0, 

2) n ..r8 = ..r, 
s>O 

3) oindEa +orx<f,E> is maximal monotone (provided that f satisfies the modified 
·safe load condition). 

So, Theor~m 1 implies the existence of solutions to the system (1.10) with .E replaced 
iby .Ee, i.e. 

1(1.12) 
· {L*T-fE -oind3 (u), 

Tu-KT E oindE/T). 
, 

In Sect. 4, using suitable a priori estimations for the relation (1.12) and assuming among 
·other things that Range (oind3 ) is closed in (HJ(Q)m)*, the existence of solutions to the 
following problem 

1(l.l3) J t~[TLv]dw+ J tr[KT(S- T)ldw- J tr[STu]- J b · (v-u)dw 
!1 !1 !1 !1 

- J p · (vds-du) ~ 0, \IV E E, \IS E .EnC0 (Q)<mxm>, 
r 

u E EBD, r E .E, duE M(rr, 

will be deduced. Above E8 v stands for the weak (star) closedness of E in BD(Q), BD(Q) 
being the space of bounded deformation, [7, 12], C0 (Q) is the space of all continuous 
functions with compact support in Q, M(F) being the space of bounded measures on r. 

This result allows us to conclude that if BD(Q) and L 2 (Q)<mxm> are taken as the displace
ment space and the stress space, respectively, then it is possible to realize the constraints 
.determined by sets of the form E8 v and .E in the sense of satisfying the problem (1.13). 

:2. Approximation . sets 

The aim of this Section is to construct in L 2 (Q)<mxm> the family {.E8 } 8 > 0 of such sets 
·that 

1) L 8 :::::> .E, e > 0 , 

2) n ..rB = ..r, 
e> 0 

3) int.E6 =f 0, e > 0, 

4) if T8 E L 8 , e > 0, and T8 -+ T weakly in L 2 (Q)<mxm> as e-+ 0, then T E .E. 

To this end, let us denote by w8 : Rm -+ R, e > 0, a function having the following 
properties : 
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SOME EXISTENCE RESULTS IN STATIONARY PROBLEMS OF SOLID MECHANICS 17 

we is continuous in Rm, 

suppwe = {x E Rm: llxll ~ e}, 

Jwe(x)dx=l, e>O. 
Rm 

To any S E L 2 (Q)<mxm> will be assigned We* S E C(ti)<mxm> according to the formula 

df f We * S(x) = S(y)we(x- y) dy, xE!J. 
D 

It allows us to define 

(2.1) 

as a convex closed subset of L 2 (Q)<mxm>. 

Setting 

df f Ye(x) = We( X- y)dy, XE!J, e > 0. 
D 

and 

Ye = inf Ye(x), e > 0, 
XED 

we obtain immediately (by the regularity and the boundness of Q): 

(2.2) 0 < Ye < 1 , e > 0. 

PROPOSITION 1. Let n be a closed convex nonempty subset of R<mxm>. Define n8 = 

= conv(y6 nun). Suppose that S E L 2 (Q)<mxm> is such that S(x) En for a.e. x E Q. Then 

W6 * S(x) 'E n8 for every x E Q. 
Proof. We argue by the contradiction. Suppose that there exists x 0 E Q such that 

W 8 * S(x0) ¢ n 8 • Using the standard separation argument for convex sets we can ifind 
wE R(mxm) with -

(2.3) 

where vis a positive constant, ( ·, · )Rm denotes the inner product in R<mxm>. By the assump
tion we have S(x) En for a.e. x E Q. Thus, using the definition of ne and the inequalities 
(2.2) we get 

Ys(x0 )S(x) E.ne, a.e. X E Q. 

Hence, according to the inequalities (2.2) we easily establish that 

ysCxo) (S(x), w )Rm ~ (we*S(x0), W )Rm+v, a.e. X E Q. 

Multiplying both sides of the above inequality by we(x-x0 ) and integrating over Q we 
find 1 

Ys(Xo) (wt*S(xo), W )Rm ~ Y8 (Xo) ((we*S(xo), w)Rm +v), 
which, due to Ys(x0 ) ~ Ys > 0, leads to the contradiction. 

REMARK 1. If 0 En, then Yen c n and, consequently, 7€8 = n for any e > 0. 
CoROLLARY 1. From Proposition 1 and Remark 1 it follows immediately that 

1:8 => .E, e > 0 . 

2 Arch. Mech. Stos. nr 1-2/86 
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18 Z. NANIEWICZ 
------------------- ------------ ------

Let .J c Ll be a closed convex nonempty subset of Ll with dist(.J, oLI) ~ t5 > 0 for 
some positive constant <5, oLI being the boundary of Lt. 

PROPOSITION 2. Let T0 E L 2 (Q)<mxm> be such that 

T0 (x) E J, a.e. x E Q. 

Then 

T0 E intL'8 , s > 0. 

Proof. Denoting by Js = conv(yeJ'euLI:) and taking into account that 0 ELl, it 
can be easily verified that 

(2.4) 

Now, for S E L 2 (Q)<mxm> we have 

llwe*S(x)-we*To(x)llim ~ M?IIS- Toiiih X E Q, 

where 

and II· IIRm is the norm in R<mxm>. If \IS- ToiiL2 ~ Ye<5/Me, then we get the following 
estimation: 

(2.5) 

From Proposition 1 it follows that W 8* T0 (x) E J8 ; hence owing to the inequalities (2.4) 
and (2.5) we arrive at 

It leads directly to 

which proves the assertion. 
PROPOSI~ION 3. Let T8 be a sequence with T8 E L8 , e > 0. Suppose that T6 converges 

weakly to T as s -+ 0. Then T E .E. 
P r o o f. In the first step it will be shown that w6 * T6 converges weakly to T as s -+ 0. 

From the boundness of T8 the boundness of w8* T6 can be easily deduced. As it is known 
in such a case it suffices to establish that 

(w8 *To qJ)L2--+ (T, ffJ)Lz, as c--+ 0, 

holds for any(/) E C0 (Q<mxm>, C0 (.Q) being the space of continuous functions with compact 
support in Q. For fP E C0 (Q)<mxm> we have 

(w8 *Te, ffJ)Lz = J tr[qJ(X) J Te(y)w 8(X- y)dy]dx 
D D 

= J tr[ Te(y) J f{J(x)we(y- x)dx] dy = J tr[Te(y)w8 ~- f{J(Y)] dy 
D D D 

= J tqTe(y) (we*fP(y)-qJ(y))]dy+ J tr[Te(y)f{J(Y)]dy. 
D D 
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SOME EXISTENCE RESULTS IN STATIONARY PROBLEMS OF SOLID MECHANICS 19 

Using the estimation 

IJ tr[Te(y)(ros*(/J(y)-qJ(y))]dyl ~ IITeiiLzllroe-1( qJ-qJiiLz 
[} 

and taking into account 

we conclude that 

(ro8 *T8 ,(/J)L2-+ (T,(/J)Lz, as s-+0. 

Further, from T8 E L 8 we get ro8* T8 E £. Since I: is closed and convex it is weakly close4_._ 
Thus T as a weak limit of ro8 * T8 E I: has to belong to I:. The proof is complete. 

CoROLLARY 2. From Corollary 1 and Proposition 3 we obtain immediately 

Due to (1-4) elements of the family {I:e }e>o may be regarded as approximation sets 
to I:. Their further important properties will be given in the next Section. 

3. Approximation problems and a priori estimates 

Let us consider the problem consisting in finding a pair (u, T) such that the relation 
(1.10) holds with I: replaced by L6 , s > 0, i.e., 

{
L*T-fE -oind5 (u), 

(3.1) 
Lu-KTE oindL/T). 

The analysis will be carried out under the following hypothesis concerning f given 
by the relation (1.9) 

(H.l) Safe load condition. There exist u0 E E, a closed convex J c L1 with dist(J, o Ll) ~ 
~ {J > 0 and ToE L 2 (Q)<mxm) such that 

(i) L*T0 - /E -oind5 (u0), 

or, equivalently, 

J tr[T0 (Lv-Lu0 )]dw- _J b(v-u0 )dw- J p(v-u)ds ~ 0, Vv E E, 
!J D r 

(ii) T0 (x) E J for a.e., x E Q. 
PROPOSITION 4. Under Hypothesis (H.l) mapping 

(3.2) 

is maximal monotone. 
P r o o f. From (i) of (H.l) it follows that 

(3.3) - L *To+ f E 0 inds(uo) ~ Uo E 0 ind;(- L *To+/) ~ - Lu E orxu, E)(To). 

On the other hand, (ii) of (H.l) implies by Proposition 2 that 

T0 E int£8 , e > 0, 

2* 
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20 z. NANfEWICZ 

and, consequently, 

(3.4) T0 E int[dom(8indL)], s > 0, 

where "dom" is used to denote an effective domain. Combining the relations (3.3) and 
(3.4), we obtain 

dom(o~<f.E>) n int[dom(8indz)1 =I= 0, s > 0, 

which implies the maximal monotonicity of (3.2), [2]. 
Theorem 1 and Proposition 4 lead to the following existence result. 
THEOREM 2. Suppose that K is demicontinuous and strong monotone from L 2 (Q)<mxm> 

into L 2 (Q)<mxm>, Eisa closed convex nonempty subset of H6(Q)m. Moreover, let 1.:8 , s > 0, 
be given by the relation (2.1) and let Hypothesis (H.1) hold. Then there exists a pair (u, T) E 

E Ex 1.:8 satisfying the relation (3.1). 
Let us denote by (ue, T8 ) E Ex 1.:6 , s > 0, a solution of (3.1 ). It means that the following 

relations have to hold: 

(3.5) 
(T8 , Lv-Lu6)L2-(f, V-U6 )nt ~ 0, Vv EE, 

(KT8 , S- Te)L2- (LU6 , S- Te)L2 ~ 0, VS E 1.:6 , 

or, equivalently, 

(3.6) J tr[Te Lv]dw+ J tr[KT6 (S- T6 )]dw- J tr[SLu6]dw 
D D D 

- J b · (v-u8 )dw- J p · (v-u6 )ds ~ 0, Vv EE, VS E 1.:6 • 

D r 

Now, let us pass to a priori estimations for the relation (3.1). 
PROPOSITION 5. _There exists a positive constant C, not depending on s, such that 

(3.7) 

P r o o f. Putting S = T0 and v = u0 in the relations (3.5) ( u0 and T0 being the same 
as in (H.1) ), we get 

(KT6 , To- Te)L2- (To- T6 , Luo)L2-( -L*To+f- ( -L*Te+f), 

which, by the monotonicity of 8 indE, yields 

(KT£' To-Teh2-(To-Te, Luo)L2 ~ 0. 

This inequality together with the relations (1.3) amount to 

(KTo, To-Te)L2-(To-T6 , Luo)L2 ~ PIITo-TeiiJ..2. 

Hence we easily obtain the bound ness of Te. 
Further investigations will be continued under the following stronger assumption 

related to K: 
(H.2) Kis a demicontinuous strong monotone operator from L 2 (Q)<mxm> into L 2 (Q)<mxm> 

mapping bounded sets into bounded sets. 
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PROPOSITION 6. Let us suppose that (H.l) and (H.2) hold. Then there exists a positive 

constant C not depending on E, such that 

(3.8) i!Lueiiu ~ C, E > 0, 

where ll·llu is the norm in the space L 1 (!J)<mxm>, given by 

liE I l L~ = J tr[EsgnE]dw, E E L 1 (Q)<mxm). 
{) 

Proof. Since T0 (x) E J for a.e. x E Q and dist(J, aLl)~ <5 > 0, so seeing that 

llsgnLu.(x)IIR"' ~ m, a.e. x E !J, 

we get 

6 
To(x) +- sgnLus(x) ELl, a.e. x E Q. 

m 
It implies 

6 se = To +- sgn TuB E .E c .Ell' E < 0. 
m 

Putting S = Se in the inequality (3.5h the following estimation can be easily obtained: 

m m t 
IILue iiL1 ~ (f IIKTs iiLl ii To- Ts11L2+ 6 11TuoiiL2 IITo- T.,iiL2+miiKTs ii L2 mes(Q) . 

By Proposition 5 and Hypothesis (H.2) this implies the desired estimation. The proof 

is complete. 

4. General problem 

Our purpose in this Section is to answer the following two questions. What kind of 

displacement constraints can be realized in BD(Q) if the stress field is subject to .E given 

by the relation (1.4)? In what sense is a solution of the problem under consideration 

understood? The second question arises from the fact that 

J tr[TLu] 
!] 

may be not well defined for u E BD(Q) and T E L 2 (Q)<mxm>. 

We restrict ourselves to such sets E that the following hypothesis holds: 

(H.3) E is a closed convex nonempty subset of HJ(!J)3 with 

Range(aind.S') 

closed in (HJ(Q)3)*. 
For instance, an arbitrary closed convex cone satisfies (H.3). 

PROPOSITION 7. Let the inequalities (3.5) be satisfied. Then under Hypotheses (H.2) 

and (H.3) there exists T E .E such that 

(4.1) 
{ 

Ts, --+ T weakle in L 2 (Q)>mxm> 

~Te, --+ KT weakle in L 2 (Q)<mxm> 

hm(KTs,, T8 ,)L2 = (KT, T)L2 
a,-+0 

as 

as 
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for some subsequence En of E with En ~ 0. If in addition K is linear and potential and E 
is a cone, then in fact 

(4.2) 

pro of. From Proposition 5 the boundness ofT. follows, which allows us to choose 
a subsequence En, En ~ 0, such that Te" converges weakly t.o some T E L 2 (Q)<mxm> as 
En ~ 0. Since T." E E.", so by Proposition 3 we get T E E. Further, using the inequality 
(3.5)1 and taking into account (H.3) we can easily deduce that 

(4.3) -L*T+fE oinds(u) 

for some u E E. Putting S = T E E c E8 in the inequality (3.5h and utilizing the relation 
(4.3) we arrive at the following inequality: 

(4.4) (KT.", 1'.- T.)L2- (T- Te,,', Lu)L2 ;;;: 0. 

Proposition 5 and Hypothesis (H.2) amount to the boundness of KT8". Thus we can 
extract from KT6 " a subsequence (again denoted by KTe) which converges weakly to some 
Z E L 2 (Q)<mxm>. Passing to the limit in the relation (4.2) we obtain immediately 

limsup (KT
811

, T.) ~ (Z, T)L2· 
811-->0 

Hence the known argument for maximal monotone mappings yields the relations ( 4.1 ), 
cf. [2]. Now, let us pass to the proof of the relation (4.2). To this end let Wand E* denote 
the potential for K and the polar cone of E, respectively. It is easy to check that 

1 df 
W(S) = 'j(KS, S)L2 = IISIIi, S E L 2 (Q)<mxm), 

rxu.s> = indA, A= {SEL2 (fJ)<mxm>: -L*S+fEE*}, 

where II · II K is the norm generated by K, equivalent to the usual norm II ·IIL2. From the 
inequalities (3.5) we deduce that, [9], T." is a solution of the following minimization problem: 

inf {IISIIi}. 

Hence, using Corollary I and Hypothesis (H.3) we get 

IIT."IIi ~ IITIIi. 

Taking into account the lower semicontinuity of II · IIi, we arrive at 

liminfiiT.,.IIi;;;: IITIIi. 
•,.~o 

It implies the following condition: 

lim liT. IIi= I!TIIi, 
s11-+0 

11 

which is equivalent to 

lim II T.,.IIL2 = II Ti1L2. 
e11 -->0 

This result together · with the weak convergence of T. to T leads to the relation ( 4.2). 
It ends the proof. " 

To investigate the displacement problem let us denote by E8 D the weak (star) closedness 
of E in BD(Q)e). From Proposition 6 the boundness of u. in BD(Q) follows and hence 
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SOME EXISTENCE RESULTS IN STATIONARY PROBLEMS OF SOLID MECHANICS 23 

the boundness of traces y(u8 ) in L 1(F)m as well, [12]. Now, using the known compactness 
results cf. [12], we obtain. 

PROPOSITION 8. Let the inequalities (3.5) be satisfied. Then there exist u E 3 80 and 
du E M(F)"' such that 

Uek---+ U 

Tue"---+ Lu 

y(ueJ ds ---+ du 

m 

weakly in Lm- I (.Q)m, 

weakly (star) in M 1 (.Q)<mxm>, 

weakly (star) in M(F)"' 

for some subsequence Usk of U8 • 

as 

Note that without losing the generality we can assume that the subsequences en and ek 

coincide. 
In the sequel we assume 
(H.4) Body force bE Lm(.Q)'n and surface traction p E C(F)m. 

Our main result may be formulated as follows: 
THEOREM 3. Let us suppose that Hypotheses (H.l)-(H.4) hold. Then there exist u E 3 80 

and T E 1: such that 

(4.5) J tr[TLv]dw+ J tr[KT(S-T)]dw- J tr[SLu]- J b(v-u)dw 
n n n n 

- J p(vds-du) ~ 0, Vv E E, VS E l:r\C0 (.Q)<mxm>. 
r 

If [J.Q is a C 1 - manifold and .Q is locally on one side of [J.Q, then the above inequalities 
can be replaced by 

J tr[TLv]dw+ J tr[KT(S-T)]dw- J tr[SLu]- J Sn(du~y(u))ds 
n n n r 

- J b(u-v)dw- J p(vds-du) ~ 0, 
n r 

Vv E E, vs E C1 {.Q)<mxm) n 1:. 
where n is the unit outward normal on r. 

Proof of Theorem 3 follows immediately from the inequality (3.6), from Propositions 
7 and 8 and from the generalized Green's formula, [12]. 

REMARK 2. If u E E 80 and T E 1: are smooth enough that means if 

J tr[T Lu] 
n 

is well defined, then the inequality (4.2) is equivalent to the following variational ine
qualities: 

J tr[T(Lvdw-Lu)]- J b · (v-u)dw- J p ·(vds-du) ~ 0, 

(4.6) n n r 

f tr[KT(S- T)]dw- f tr[(S- T)Lu] ~ 0, 
n n 

which have to hold for any vEE and any S E l:nC0 (.Q)<mxm>, respectively. 

(2) A sequence Vn of BD(Q) converges weak (star) to v iff vn--.. v strongly in V(Q)m and Lvn- Lv 
weakly (star) in M1 (Q)<mxm>, (12]. 
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According to Theorem 3, it is possible to realize in BD(D) and L 2 (D)mxm constraints 
determined by sets of the form E80 and 1:, in the sense of satisfying the inequality (4.2). 
In the particular case, if the solutions are smooth enough, then the inequality (4.2) can 
be separated into two variational inequalities (4.3)- one corresponding to the condition 
of equilibrium and the other related to the constitutive relation. 

From the proof of Theorem 2, it follows that the mapping (3.1) can be regarded as an 
approximation problem to the inequality ( 4.2). This problem via Propositions 7 and 8 
leads to the inequality (4.5). There is another way to get the inequality (4.5). It consists 
in replacing in the relations (3.1) of the mapping oind,1;

8 
by the Yosida approximation 

of oindE, _!_(/-ProJ.d. However, this method leads only to the wea~ convergence of T8 
8 e n 

to Tin the case when E is a cone and K is linear and potential. 
In particular, for the Hencky plasticity problem (E coincides with HJ(D)m) the strong 

convergence of T8 " to T has been obtained. 
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